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1 Supplementary Experiments

1.1 English MINILM Distilled from Better Teacher

We report the results of MINILM distilled from an in-house pre-trained Transformer model following
UNILM [6, 3] in the BERTBASE size. The teacher model is trained using similar pre-training
datasets as in RoBERTaBASE [20], which includes 160GB text corpora from English Wikipedia,
BookCorpus [45], OpenWebText2, CC-News [20], and Stories [36]. We distill the teacher model into
12-layer and 6-layer models with 384 hidden size using the same corpora. The 12x384 model is used
as the teacher assistant to train the 6x384 model.

1.1.1 Results on NLU Tasks

We first evaluate MINILM on natural language understanding tasks. Table 1 presents the dev results
of SQuAD 2.0 and GLUE benchmark. The results of 6x384 MINILM are significantly improved.
The 12x384 MINILM achieves 2.7× speedup while performing competitively better than BERTBASE
on SQuAD 2.0 and GLUE benchmark.

1.1.2 Results on NLG Tasks

We also show that MINILM can be applied for natural language generation tasks, such as question
generation and abstractive summarization. Following Dong et al. [6], we fine-tune MINILM as a
sequence-to-sequence model by employing a specific self-attention mask.

Question Generation We conduct experiments for the answer-aware question generation task [7].
Given an input passage and an answer, the task is to generate a question that asks for the answer. The
SQuAD 1.1 dataset [26] is used for evaluation. The results of MINILM, UNILMLARGE and several
state-of-the-art models are presented in Table 2, our 12x384 and 6x384 distilled models achieve
competitive performance on the question generation task.

Abstractive Summarization We evaluate MINILM on two abstractive summarization datasets,
i.e., XSum [22], and the non-anonymized version of CNN/DailyMail [30]. The generation task is to
condense a document into a concise and fluent summary, while conveying its key information. We
report ROUGE scores [18] on the datasets. Table 3 presents the results of MINILM, baseline, several
state-of-the-art models and pre-trained Transformer models. Our 12x384 model outperforms BERT
based method BERTSUMABS [19] and the pre-trained sequence-to-sequence model MASSBASE [31]
with much fewer parameters. Moreover, our 6x384 MINILM also achieves competitive performance.
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Table 1: The results of MINILM distilled from an in-house pre-trained Transformer model
(BERTBASE size, 12-layer Transformer, 768-hidden size, and 12 self-attention heads) on SQuAD 2.0
and GLUE benchmark. We report the results of our 12-layera and 6-layerb models with 384 hidden
size. The fine-tuning results are averaged over 4 runs.

Model #Param SQuAD2 MNLI-m SST-2 QNLI CoLA RTE MRPC QQP Average
BERTBASE 109M 76.8 84.5 93.2 91.7 58.9 68.6 87.3 91.3 81.5
MINILMa 33M 81.7 85.7 93.0 91.5 58.5 73.3 89.5 91.3 83.1
MINILMb (w/ TA) 22M 75.6 83.3 91.5 90.5 47.5 68.8 88.9 90.6 79.6

Table 2: Question generation results of our 12-layera and 6-layerb models with 384 hidden size on
SQuAD 1.1. The first block follows the data split in Du and Cardie [7], while the second block is the
same as in Zhao et al. [44].

#Param BLEU-4 METEOR ROUGE-L
Du and Cardie [7] 15.16 19.12 -
Zhang and Bansal [43] 18.37 22.65 46.68
UNILMLARGE 340M 22.78 25.49 51.57
MINILMa 33M 21.07 24.09 49.14
MINILMb (w/ TA) 22M 20.31 23.43 48.21

Zhao et al. [44] 16.38 20.25 44.48
Zhang and Bansal [43] 20.76 24.20 48.91
UNILMLARGE 340M 24.32 26.10 52.69
MINILMa 33M 23.27 25.15 50.60
MINILMb (w/ TA) 22M 22.01 24.24 49.51

1.2 Multilingual MINILM

We present the number of Transformer and embedding parameters for different multilingual pre-
trained models and our distilled models in Table 4. We also report the XNLI results for each language
in Table 5, MLQA results for each language in Table 6.

1.3 Supplementary Ablation Studies

Table 7 presents the comparison between transferring value relation and transferring hidden states
using MSE. We use self-attention distributions and hidden states of teacher’s last Transformer layer to
guide the training of the student model (Hidden-MSE). A parameter matrix is introduced to transform
student hidden states to have the same size as the teacher hidden states. Using value relation performs
better than transferring hidden states. Transferring value relation avoids additional transformation
and introduces more knowledge of word dependencies. We have also tried to transfer the relation
between hidden states instead of directly transferring vectors. But we find the performance of student
models are unstable for different teacher models.

To study the rationale behind transferring teacher’s last Transformer layer, we compare more strategies
of mapping teacher and student layers. We conduct experiments using a 3-layer student model with
384 hidden size. Besides transferring teacher’s knowledge to the last student layer and all three
student layers (adopt a uniform strategy to map each teacher and student layers), we use the uniform
strategy to determine the mapping of teacher and student layers but only transfer teacher’s knowledge
of corresponding layers to the last two layers, first and last two layers of the student model. Table 8
shows the results of different strategies. Transferring the last layer performs better than the strategies
using two layers. Transferring two layers achieves better performance than transferring all three
layers. Relaxing restrictions of layer mapping improves performance. Given the student always has
fewer number of layers, the knowledge ideally learned at each student layer may be different from
the knowledge of corresponding layers of the teacher model. Only transferring teacher’s last layer
gives the student more flexibility to learn the knowledge.
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Table 3: Abstractive summarization results of our 12-layera and 6-layerb models with 384 hidden
size on CNN/DailyMail and XSum. The evaluation metric is the F1 version of ROUGE (RG) scores.

Model #Param CNN/DailyMail XSum
RG-1 RG-2 RG-L RG-1 RG-2 RG-L

LEAD-3 40.42 17.62 36.67 16.30 1.60 11.95
PTRNET [30] 39.53 17.28 36.38 28.10 8.02 21.72
Bottom-Up [8] 41.22 18.68 38.34 - - -
UNILMLARGE [6] 340M 43.08 20.43 40.34 - - -
BARTLARGE [16] 400M 44.16 21.28 40.90 45.14 22.27 37.25
T511B [25] 11B 43.52 21.55 40.69 - - -
MASSBASE [31] 123M 42.12 19.50 39.01 39.75 17.24 31.95
BERTSUMABS [19] 156M 41.72 19.39 38.76 38.76 16.33 31.15
T5BASE [25] 220M 42.05 20.34 39.40 - - -

MINILMa 33M 42.66 19.91 39.73 40.43 17.72 32.60
MINILMb (w/ TA) 22M 41.57 19.21 38.64 38.79 16.39 31.10

Table 4: The number of Transformer (Trm) and Embedding (Emd) parameters for different multilin-
gual pre-trained models and our distilled models.

Model #Layers Hidden
Size #Vocab #Param

(Trm)
#Param
(Emd) Speedup

mBERT 12 768 110k 85M 85M 1.0×
XLM-15 12 1024 95k 151M 97M 0.6×
XLM-100 16 1280 200k 315M 256M 0.3×
XLM-RBASE 12 768 250k 85M 192M 1.0×
MINILMa 12 384 250k 21M 96M 2.7×
MINILMb 6 384 250k 11M 96M 5.3×

2 Related Work

2.1 Pre-trained Language Models

Unsupervised pre-training of language models [23, 10, 24, 5, 2, 31, 6, 41, 13, 20, 16, 25, 15, 4]
has achieved significant improvements for a wide range of NLP tasks. Early methods for pre-
training [23, 24] were based on standard language models. Recently, BERT [5] proposes to use a
masked language modeling objective to train a deep bidirectional Transformer encoder, which learns
interactions between left and right context. Liu et al. [20] show that very strong performance can be
achieved by training the model longer over more data. Joshi et al. [13] extend BERT by masking
contiguous random spans. Yang et al. [41] predict masked tokens auto-regressively in a permuted
order.

To extend the applicability of pre-trained Transformers for NLG tasks. Dong et al. [6] extend
BERT by utilizing specific self-attention masks to jointly optimize bidirectional, unidirectional and
sequence-to-sequence masked language modeling objectives. Raffel et al. [25] employ an encoder-
decoder Transformer and perform sequence-to-sequence pre-training by predicting the masked tokens
in the encoder and decoder. Different from Raffel et al. [25], Lewis et al. [16] predict tokens
auto-regressively in the decoder.

2.2 Knowledge Distillation

Knowledge distillation has proven a promising way to compress large models while maintaining
accuracy. It transfers the knowledge of a large model or an ensemble of neural networks (teacher) to
a single lightweight model (student). Hinton et al. [9] first propose transferring the knowledge of the
teacher to the student by using its soft target distributions to train the distilled model. Romero et al.
[28] introduce intermediate representations from hidden layers of the teacher to guide the training of
the student. Knowledge of the attention maps [42, 11] is also introduced to help the training.

In this work, we focus on task-agnostic knowledge distillation of large pre-trained Transformer
based language models. There have been some works that task-specifically distill the fine-tuned
language models on downstream tasks. Tang et al. [35] distill fine-tuned BERT into an extremely
small bidirectional LSTM. Turc et al. [38] initialize the student with a small pre-trained LM during
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Table 5: Cross-lingual classification results of our 12-layera and 6-layerb multilingual models with
384 hidden size on XNLI. We report the accuracy on each of the 15 XNLI languages and the average
accuracy. Results of mBERT, XLM-100 and XLM-RBASE are from Conneau et al. [4].

Model #Layers #Hidden en fr es de el bg ru tr ar vi th zh hi sw ur Avg
mBERT 12 768 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3
XLM-100 16 1280 83.2 76.7 77.7 74.0 72.7 74.1 72.7 68.7 68.6 72.9 68.9 72.5 65.6 58.2 62.4 70.7
XLM-RBASE 12 768 84.6 78.4 78.9 76.8 75.9 77.3 75.4 73.2 71.5 75.4 72.5 74.9 71.1 65.2 66.5 74.5
MINILMa 12 384 81.5 74.8 75.7 72.9 73.0 74.5 71.3 69.7 68.8 72.1 67.8 70.0 66.2 63.3 64.2 71.1
MINILMb (w/ TA) 6 384 79.2 72.3 73.1 70.3 69.1 72.0 69.1 64.5 64.9 69.0 66.0 67.8 62.9 59.0 60.6 68.0

Table 6: Cross-lingual question answering results of our 12-layera and 6-layerb multilingual models
with 384 hidden size on MLQA. We report the F1 and EM (exact match) scores on each of the 7
MLQA languages. Results of mBERT and XLM-15 are taken from Lewis et al. [17]. † indicates
results of XLM-RBASE taken from Conneau et al. [4]. We also report our fine-tuned results (‡) of
XLM-RBASE.

Model #Layers #Hidden en es de ar hi vi zh Avg
mBERT 12 768 77.7 / 65.2 64.3 / 46.6 57.9 / 44.3 45.7 / 29.8 43.8 / 29.7 57.1 / 38.6 57.5 / 37.3 57.7 / 41.6
XLM-15 12 1024 74.9 / 62.4 68.0 / 49.8 62.2 / 47.6 54.8 / 36.3 48.8 / 27.3 61.4 / 41.8 61.1 / 39.6 61.6 / 43.5
XLM-RBASE† 12 768 77.8 / 65.3 67.2 / 49.7 60.8 / 47.1 53.0 / 34.7 57.9 / 41.7 63.1 / 43.1 60.2 / 38.0 62.9 / 45.7
XLM-RBASE‡ 12 768 80.3 / 67.4 67.0 / 49.2 62.7 / 48.3 55.0 / 35.6 60.4 / 43.7 66.5 / 45.9 62.3 / 38.3 64.9 / 46.9
MINILMa 12 384 79.4 / 66.5 66.1 / 47.5 61.2 / 46.5 54.9 / 34.9 58.5 / 41.3 63.1 / 42.1 59.0 / 33.8 63.2 / 44.7
MINILMb (w/ TA) 6 384 75.5 / 61.9 55.6 / 38.2 53.3 / 37.7 43.5 / 26.2 46.9 / 31.5 52.0 / 33.1 48.8 / 27.3 53.7 / 36.6

task-specific distillation. Sun et al. [32] introduce the hidden states from every k layers of the teacher
to perform knowledge distillation layer-to-layer. Aguilar et al. [1] further introduce the knowledge
of self-attention distributions and propose progressive and stacked distillation methods. Mukherjee
and Awadallah [21] propose a stage-wise scheme to transfer teacher’s intermediate representations.
Task-specific distillation requires to first fine-tune the large pre-trained LMs on downstream tasks
and then perform knowledge transfer. The procedure of fine-tuning large pre-trained LMs is costly
and time-consuming, especially for large datasets.

For task-agnostic distillation, the distilled model mimics the original large pre-trained LM and can be
directly fine-tuned on downstream tasks. In practice, task-agnostic compression of pre-trained LMs
is more desirable. MiniBERT [37] uses the soft target distributions for masked language modeling
predictions to guide the training of the multilingual student model and shows its effectiveness
on sequence labeling tasks. DistilBERT [29] uses the soft label and embedding outputs of the
teacher to train the student. TinyBERT [12] and MOBILEBERT [33] further introduce self-attention
distributions and hidden states to train the student. MOBILEBERT employs inverted bottleneck
and bottleneck modules for teacher and student to make their hidden dimensions the same. The
student model of MOBILEBERT is required to have the same number of layers as its teacher to
perform layer-to-layer distillation. Besides, MOBILEBERT proposes a bottom-to-top progressive
scheme to transfer teacher’s knowledge. TinyBERT uses a uniform-strategy to map the layers of
teacher and student when they have different number of layers, and a linear matrix is introduced
to transform the student hidden states to have the same dimensions as the teacher. TinyBERT also
introduces task-specific distillation and data augmentation for downstream tasks, which brings further
improvements.

Different from previous works, our method employs the self-attention distributions and value relation
of the teacher’s last Transformer layer to help the student deeply mimic the self-attention behavior
of the teacher. Using knowledge of the last Transformer layer instead of layer-to-layer distillation
avoids restrictions on the number of student layers and the effort of finding the best layer mapping.
Distilling relation between self-attention values allows the hidden size of students to be more flexible
and avoids introducing linear matrices to transform student representations.

3 Hyper-parameters for Distillation

For the distillation experiments using BERTBASE as the teacher, the number of heads of attention
distributions and value relation are set to 12 for student models. The vocabulary size is 30, 522. The
maximum sequence length is 512. We use Adam [14] with β1 = 0.9, β2 = 0.999. We train the
6-layer student model with 768 hidden size using 1024 as the batch size and 5e-4 as the peak learning
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Table 7: Comparison between transferring value relation and transferring hidden states using MSE.
The fine-tuning results are an average of 4 runs for each task.

Architecture Model SQuAD 2.0 MNLI-m SST-2 Average

M=3;d′h=384 MINILM 66.2 78.8 89.3 78.1
Hidden-MSE 64.5 78.0 88.9 77.1

Table 8: Comparison between different strategies to select layers and transfer teacher’s knowledge.
We adopt a uniform strategy to determine the mapping of teacher and student layers, and transfer
teacher’s knowledge of corresponding layers to the last layer, last two layers, first and last two layers,
and all three layers of the student model. The fine-tuning results are an average of 4 runs for each
task.

Architecture Model SQuAD 2.0 MNLI-m SST-2 Average

M=3;d′h=384

Last Layer 66.2 78.8 89.3 78.1
Last Two Layers 65.4 78.1 89.1 77.5
First and Last Layers 65.4 78.4 88.5 77.4
All Three Layers 64.8 77.7 88.6 77.0

rate for 400, 000 steps. For student models of other architectures, the batch size and peak learning
rate are set to 256 and 3e-4, respectively. We use linear warmup over the first 4, 000 steps and linear
decay. The dropout rate is 0.1. The weight decay is 0.01. All the student models are initialized
randomly.

We also use an in-house pre-trained Transformer model in the BERTBASE size as the teacher model,
and distill it into 12-layer and 6-layer student models with 384 hidden size. For the 12-layer model,
we use Adam [14] with β1 = 0.9, β2 = 0.98. The model is trained using 2048 as the batch size and
6e-4 as the peak learning rate for 400, 000 steps. The batch size and peak learning rate are set to
512 and 4e-4 for the 6-layer model. The rest hyper-parameters are the same as above BERT based
distilled models.

For the training of multilingual MINILM models, we use Adam [14] with β1 = 0.9, β2 = 0.999.
We train the 12-layer student model using 256 as the batch size and 3e-4 as the peak learning rate
for 1, 000, 000 steps. The vocabulary size is 250, 002. The maximum sequence length is 512. The
6-layer student model is trained using 512 as the batch size and 6e-4 as the peak learning rate for
400, 000 steps.

We distill our student models using 8 V100 GPUs with mixed precision training. Following Sun
et al. [32] and Jiao et al. [12], the inference time is evaluated on the QNLI training set with the same
hyper-parameters. We report the average running time of 100 batches on a single P100 GPU.

4 Hyper-parameters for Fine-tuning

Extractive Question Answering For SQuAD 2.0, the maximum sequence length is 384 and a
sliding window of size 128 if the lengths are longer than 384. For the 12-layer model distilled from
our in-house pre-trained model, we fine-tune 3 epochs using 48 as the batch size and 4e-5 as the peak
learning rate. The rest distilled models are trained using 32 as the batch size and 6e-5 as the peak
learning rate for 3 epochs.

GLUE The maximum sequence length is 128 for the GLUE benchmark. We set batch size to 32,
choose learning rates from {2e-5, 3e-5, 4e-5, 5e-5} and epochs from {3, 4, 5} for student models
distilled from BERTBASE. For student models distilled from our in-house pre-trained model, the batch
size is chosen from {32, 48}. We fine-tune several tasks (CoLA, RTE and MRPC) with longer epochs
(up to 10 epochs), which brings slight improvements. For the 12-layer model, the learning rate used
for CoLA, RTE and MRPC tasks is 1.5e-5.

Question Generation For the question generation task, we set batch size to 32, and total length to
512. The maximum output length is 48. The learning rates are 3e-5 and 8e-5 for the 12-layer and 6-
layer models, respectively. They are both fine-tuned for 25 epochs. We also use label smoothing [34]
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Table 9: Summary of the GLUE benchmark.

Corpus #Train #Dev #Test Metrics

Single-Sentence Tasks
CoLA 8.5k 1k 1k Matthews Corr
SST-2 67k 872 1.8k Accuracy

Similarity and Paraphrase Tasks
QQP 364k 40k 391k Accuracy/F1
MRPC 3.7k 408 1.7k Accuracy/F1
STS-B 7k 1.5k 1.4k Pearson/Spearman Corr

Inference Tasks
MNLI 393k 20k 20k Accuracy
RTE 2.5k 276 3k Accuracy
QNLI 105k 5.5k 5.5k Accuracy
WNLI 634 71 146 Accuracy

Table 10: Dataset statistics and metrics of SQuAD 2.0.

#Train #Dev #Test Metrics

130,319 11,873 8,862 Exact Match/F1

with rate of 0.1. During decoding, we use beam search with beam size of 5. The length penalty [40]
is 1.3.

Abstractive Summarization For the abstractive summarization task, we set batch size to 64, and
the rate of label smoothing to 0.1. For the CNN/DailyMail dataset, the total length is 768 and the
maximum output length is 160. The learning rates are 1e-4 and 1.5e-4 for the 12-layer and 6-layer
models, respectively. They are both fine-tuned for 25 epochs. During decoding, we set beam size to 5,
and the length penalty to 0.7. For the XSum dataset, the total length is 512 and the maximum output
length is 48. The learning rates are 1e-4 and 1.5e-4 for the 12-layer and 6-layer models, respectively.
We fine-tune 30 epochs for the 12-layer model and 50 epochs for the 6-layer model. During decoding,
we use beam search with beam size of 5. The length penalty is set to 0.9.

Cross-lingual Natural Language Inference The maximum sequence length is 128 for XNLI. We
fine-tune 5 epochs using 128 as the batch size, choose learning rates from {3e-5, 4e-5, 5e-5, 6e-5}.

Cross-lingual Question Answering For MLQA, the maximum sequence length is 512 and a
sliding window of size 128 if the lengths are longer than 512. We fine-tune 3 epochs using 32 as the
batch size. The learning rates are chosen from {3e-5, 4e-5, 5e-5, 6e-5}.

5 GLUE Benchmark

The summary of datasets used for the General Language Understanding Evaluation (GLUE) bench-
mark3 [39] is presented in Table 9. We add a linear classifier on top of the [CLS] token to predict
label probabilities.

6 SQuAD 2.0

We present the dataset statistics and metrics of SQuAD 2.04 [27] in Table 10. Following BERT [5],
we pack the question and passage tokens together with special tokens, to form the input: “[CLS] Q
[SEP] P [SEP]". Two linear output layers are introduced to predict the probability of each token
being the start and end positions of the answer span. The questions that do not have an answer are
treated as having an answer span with start and end at the [CLS] token.

3https://gluebenchmark.com/
4http://stanford-qa.com
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Figure 1: The visualization of attention distributions of 6x384 student distilled from teacher’s last
layer.

7 Visualization of Attention Distributions

Figure 1–3 present the visualization of attention distributions of the teacher model (BERTBASE) and
the 6x384 student models. The input sequence is “Ronaldo became Manchester United’s first-ever
Portuguese player when he signed before the 2003–04 season.".
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Figure 3: The visualization of attention distributions of BERTBASE.
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