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Abstract

Pre-trained language models (e.g., BERT [12] and its variants) have achieved
remarkable success in varieties of NLP tasks. However, these models usually
consist of hundreds of millions of parameters which brings challenges for fine-
tuning and online serving in real-life applications due to latency and capacity
constraints. In this work, we present a simple and effective approach to compress
large Transformer [42] based pre-trained models, termed as deep self-attention
distillation. The small model (student) is trained by deeply mimicking the self-
attention module, which plays a vital role in Transformer networks, of the large
model (teacher). Specifically, we propose distilling the self-attention module of
the last Transformer layer of the teacher, which is effective and flexible for the
student. Furthermore, we introduce the scaled dot-product between values in the
self-attention module as the new deep self-attention knowledge, in addition to
the attention distributions (i.e., the scaled dot-product of queries and keys) that
have been used in existing works. Moreover, we show that introducing a teacher
assistant [26] also helps the distillation of large pre-trained Transformer models.
Experimental results demonstrate that our monolingual model2 outperforms state-
of-the-art baselines in different parameter size of student models. In particular, it
retains more than 99% accuracy on SQuAD 2.0 and several GLUE benchmark tasks
using 50% of the Transformer parameters and computations of the teacher model.
We also obtain competitive results in applying deep self-attention distillation to
multilingual pre-trained models.

1 Introduction

Language model (LM) pre-training has achieved remarkable success for various natural language
processing tasks [28, 18, 29, 12, 14, 48, 21, 25]. The pre-trained LMs, such as BERT [12] and its
variants, learn contextualized representations by predicting words given their context using large scale
text corpora, and can be fine-tuned with additional task-specific layers to adapt to downstream tasks.
However, these models usually contain hundreds of millions of parameters which brings challenges
for fine-tuning and online serving in real-life applications for latency and capacity constraints.

Knowledge distillation [17, 32] (KD) has been proven to be a promising way to compress a large
model (called the teacher model) into a small model (called the student model), which uses much
fewer parameters and computations while achieving competitive results on downstream tasks. There
have been some works that task-specifically distill pre-trained large LMs into small models [39, 41,
37, 1, 47, 27]. They first fine-tune the pre-trained LMs on specific tasks and then perform distillation.

∗ Contact person.
2The code and models will be publicly available at https://aka.ms/minilm.
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Task-specific distillation is effective, but fine-tuning large pre-trained models is still costly, especially
for large datasets. Different from task-specific distillation, task-agnostic LM distillation mimics
the behavior of the original pre-trained LMs and the student model can be directly fine-tuned on
downstream tasks [40, 35, 20, 38].

Previous works use soft target probabilities for masked language modeling predictions or intermediate
representations of the teacher LM to guide the training of the task-agnostic student. DistilBERT [35]
employs a soft-label distillation loss and a cosine embedding loss, and initializes the student from the
teacher by taking one layer out of two. But each Transformer layer of the student is required to have
the same architecture as its teacher. TinyBERT [20] and MOBILEBERT [38] utilize more fine-grained
knowledge, including hidden states and self-attention distributions of Transformer networks, and
transfer this knowledge to the student model layer-to-layer. To perform layer-to-layer distillation,
TinyBERT adopts a uniform function to determine the mapping between the teacher and student
layers, and uses an additional parameter matrix to linearly transform student hidden states into the
same size as its teacher. MOBILEBERT assumes the teacher and student have the same number of
layers and introduces the bottleneck module to keep their hidden size the same.

In this work, we propose the deep self-attention distillation framework for task-agnostic Transformer
based LM distillation. The key idea is to deeply mimic the self-attention modules which are
the fundamentally important components in the Transformer based teacher and student models.
Specifically, we propose distilling the self-attention module of the last Transformer layer of the
teacher model. Compared with previous approaches, using knowledge of the last Transformer layer
rather than performing layer-to-layer knowledge distillation alleviates the difficulties in layer mapping
between the teacher and student models, and the layer number of our student model can be more
flexible. Furthermore, we introduce the scaled dot-product between values in the self-attention module
as the new deep self-attention knowledge, in addition to the attention distributions (i.e., the scaled dot-
product of queries and keys) that have been used in existing works. Using scaled dot-product between
self-attention values also converts teacher and student representations of different dimensions into
relation matrices with the same dimensions without introducing additional parameters to transform
student representations. It allows arbitrary hidden dimensions for the student model. Finally, we
show that introducing a teacher assistant [26] helps the distillation of large pre-trained Transformer
based models.

We conduct extensive experiments on downstream NLP tasks. Experimental results demonstrate that
our monolingual model distilled from BERTBASE outperforms state-of-the-art baselines in different
parameter size of student models. Specifically, the 6-layer model of 768 hidden dimensions distilled
from BERTBASE is 2.0× faster, while retaining more than 99% accuracy on SQuAD 2.0 and several
GLUE benchmark tasks. Moreover, our multilingual model distilled from XLM-RBASE also achieves
competitive performance with much fewer Transformer parameters.

2 Preliminary

Multi-layer Transformers [42] have been the most widely-used network structures in state-of-the-art
pre-trained models. In this section, we present a brief introduction to the Transformer networks and
the self-attention mechanism, which is the core component of the Transformer. We also present the
existing approaches on knowledge distillation for Transformer networks, particularly in the context
of distilling a large Transformer based pre-trained model into a small Transformer model.

2.1 Backbone Network: Transformer

Given a sequence of input tokens, the vector representations ({xi}|x|i=1) are computed via summing
the corresponding token embedding, position and segment embedding. Transformer [42] is used to
encode contextual information for input tokens. The input vectors {xi}|x|i=1 are packed together into
H0 = [x1, · · · ,x|x|]. Then stacked Transformer blocks compute the encoding vectors as:

Hl = Transformerl(H
l−1), l ∈ [1, L]

where L is the number of Transformer layers, and the final output is HL = [hL
1 , · · · ,hL

|x|]. The
hidden vector hL

i is used as the contextualized representation of xi. Each Transformer layer consists
of a self-attention sub-layer and a fully connected feed-forward network. Residual connection [16] is
employed around each of the two sub-layers, followed by layer normalization [2].
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Figure 1: Overview of Deep Self-Attention Distillation. The student is trained by deeply mimicking
the self-attention behavior of the last Transformer layer of the teacher. In addition to the self-attention
distributions, we introduce the self-attention value-relation transfer to help the student achieve a
deeper mimicry. Our student models are named as MINILM.

Self-Attention In each layer, Transformer uses multiple self-attention heads to aggregate the output
vectors of the previous layer. For the l-th Transformer layer, the output of a self-attention head
Ol,a, a ∈ [1, Ah] is computed via:

Ql,a = Hl−1WQ
l,a, Kl,a = Hl−1WK

l,a, Vl,a = Hl−1WV
l,a

Al,a = softmax(
Ql,aK

ᵀ
l,a√

dk
)

Ol,a = Al,aVl,a

where the previous layer’s output Hl−1 ∈ R|x|×dh is linearly projected to a triple of queries, keys
and values using parameter matrices WQ

l,a,W
K
l,a,W

V
l,a ∈ Rdh×dk , respectively. Al,a ∈ R|x|×|x|

indicates the attention distributions, which is computed by the scaled dot-product of queries and keys.
Ah represents the number of self-attention heads. dk ×Ah is equal to dh in BERT.

2.2 Transformer Distillation

Knowledge distillation [17, 32] is to train the small student model S on a transfer feature set with
soft labels and intermediate representations provided by the large teacher model T . Knowledge
distillation is modeled as minimizing the differences between teacher and student features:

LKD =
∑
e∈D

L(fS(e), fT (e))

WhereD denotes the training data, fS(·) and fT (·) indicate the features of student and teacher models
respectively, L(·) represents the loss function. The mean squared error (MSE) and KL-divergence
are often used as loss functions.

For task-agnostic Transformer based LM distillation, soft target probabilities for masked language
modeling predictions, embedding layer outputs, self-attention distributions and outputs (hidden states)
of each Transformer layer of the teacher model are used as features to help the training of the student.
For the intermediate representations of each Transformer layer, previous works [20, 38] often map
each student layer to its corresponding teacher layer and perform layer-to-layer distillation.

3 Deep Self-Attention Distillation

Figure 1 gives an overview of the deep self-attention distillation. The key idea is three-fold. First,
we propose to train the student by deeply mimicking the self-attention module, which is the vital
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Table 1: Comparison with previous task-agnostic Transformer based LM distillation approaches.

Approach Teacher Model Distilled Knowledge Layer-to-Layer
Distillation

Requirements on
the number of

layers of students

Requirements on
the hidden

size of students

DistilBERT BERTBASE
Soft target probabilities

Embedding outputs X

TinyBERT BERTBASE

Embedding outputs
Hidden states

Self-Attention distributions
X

MOBILEBERT IB-BERTLARGE

Soft target probabilities
Hidden states

Self-Attention distributions
X X X

MINILM BERTBASE
Self-Attention distributions
Self-Attention value relation

component in the Transformer, of the teacher’s last layer. Second, we introduce transferring the
relation between values (i.e., the scaled dot-product between values) to achieve a deeper mimicry,
in addition to performing attention distributions (i.e., the scaled dot-product of queries and keys)
transfer in the self-attention module. Moreover, we show that introducing a teacher assistant [26]
also helps the distillation of large pre-trained Transformer models when the size gap between the
teacher model and student model is large.

3.1 Self-Attention Distribution Transfer

The attention mechanism [3] has been a highly successful neural network component for NLP tasks,
which is also crucial for pre-trained LMs. Some works show that self-attention distributions of
pre-trained LMs capture a rich hierarchy of linguistic information [19, 8]. Transferring self-attention
distributions has been used in previous works for Transformer distillation [20, 38, 1]. We also utilize
the self-attention distributions to help the training of the student. Specifically, we minimize the
KL-divergence between the self-attention distributions of the teacher and student:

LAT =
1

Ah|x|

Ah∑
a=1

|x|∑
t=1

DKL(A
T
L,a,t ‖ AS

M,a,t)

Where |x| and Ah represent the sequence length and the number of attention heads. L and M
represent the number of layers for the teacher and student. AT

L and AS
M are the attention distributions

of the last Transformer layer for the teacher and student, respectively. They are computed by the
scaled dot-product of queries and keys.

Different from previous works which transfer teacher’s knowledge layer-to-layer, we only use the
attention maps of the teacher’s last layer. Jawahar et al. [19] show that top layers of BERT encode
semantic features and capture long-distance dependency knowledge. These knowledge is more
important for most downstream tasks. Besides, layer-to-layer transfer sets a tight restriction for each
student layer. Ablation studies show that relaxing restrictions of layer mapping on student models
improves performance. Distilling knowledge of the last Transformer layer also allows more flexibility
for the number of layers of our student models, avoids the effort of finding the best layer mapping.

3.2 Self-Attention Value-Relation Transfer

In self-attention module, queries, keys, and values are the most basic and important vectors. The
knowledge of queries and keys is transferred via attention distributions. To achieve a deeper mimicry
of the self-attention module, we introduce the values and transfer the value relation. The value relation
is computed via the multi-head scaled dot-product between values. The KL-divergence between the
value relation of the teacher and student is used as the training objective:

VRT
L,a = softmax(

VT
L,aV

Tᵀ
L,a√

dk
), VRS

M,a = softmax(
VS

M,aV
Sᵀ
M,a√

d′k
)

LVR =
1

Ah|x|

Ah∑
a=1

|x|∑
t=1

DKL(VRT
L,a,t ‖ VRS

M,a,t)
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Table 2: Comparison between the publicly released 6-layer models with 768 hidden size distilled
from BERTBASE. We compare task-agnostic distilled models without task-specific distillation and
data augmentation. We report F1 for SQuAD 2.0, Matthews correlation coefficient for CoLA, and
accuracy for other datasets. The GLUE results of DistilBERT are taken from Sanh et al. [35]. We
report the SQuAD 2.0 result by fine-tuning their released model5. For TinyBERT, we fine-tune the
latest version of their public model6 for a fair comparison. We also report the fine-tuning results
of Truncated BERTBASE and the 6x768 BERT model (BERTSMALL) [41] trained using the MLM
objective as baselines. Sajjad et al. [33] show that top-layer dropping consistently outperforms other
strategies when dropping 6 layers, so we drop top 6 layers from BERTBASE for truncated BERTBASE.
The fine-tuning results are an average of 4 runs.

Model #Param SQuAD2 MNLI-m SST-2 QNLI CoLA RTE MRPC QQP Average
BERTBASE [12] (teacher) 109M 76.8 84.5 93.2 91.7 58.9 68.6 87.3 91.3 81.5
BERTSMALL [41] 66M 73.2 81.8 91.2 89.8 53.5 67.9 84.9 90.6 79.1
Truncated BERTBASE [12] 66M 69.9 81.2 90.8 87.9 41.4 65.5 82.7 90.4 76.2

DistilBERT [35] 66M 70.7 82.2 91.3 89.2 51.3 59.9 87.5 88.5 77.6
TinyBERT [20] 66M 73.1 83.5 91.6 90.5 42.8 72.2 88.4 90.6 79.1
MINILM 66M 76.4 84.0 92.0 91.0 49.2 71.5 88.4 91.0 80.4

Where VT
L,a ∈ R|x|×dk and VS

M,a ∈ R|x|×d′
k are the values of an attention head in self-attention

module for the teacher’s and student’s last layer. VRT
L ∈ RAh×|x|×|x| and VRS

M ∈ RAh×|x|×|x|

are the value relation of the last Transformer layer for teacher and student, respectively. The final
training loss is computed via summing the attention distribution and value-relation transfer losses.

Using value relation enables the student to deeply mimic the teacher’s self-attention behavior. Com-
pared with directly transferring value vectors, using scaled dot-product converts teacher and student
value vectors of different dimensions into relation matrices with the same size. It avoids introducing
additional parameters (randomly initialized) to linearly transform student’s vectors into the same size
as its teacher. The additional transformation transforms student vectors into another vector space and
restricts teacher from directly transferring knowledge. Value relation also introduces more knowledge
of word dependencies.

3.3 Teacher Assistant

Following Mirzadeh et al. [26], we introduce a teacher assistant (i.e., intermediate-size student model)
to further improve the model performance of smaller students.

Assuming the teacher model consists of L-layer Transformer with dh hidden size, the student model
has M -layer Transformer with d′h hidden size. For smaller students (M ≤ 1

2L, d′h ≤ 1
2dh), we first

distill the teacher into a teacher assistant with L-layer Transformer and d′h hidden size. The assistant
model is then used as the teacher to guide the training of the final student. The introduction of a teacher
assistant bridges the size gap between teacher and smaller student models, helps the distillation of
Transformer based pre-trained LMs. Moreover, combining deep self-attention distillation with a
teacher assistant brings further improvements for smaller student models.

3.4 Comparison with Previous Work

Table 1 presents the comparison with previous approaches [35, 20, 38]. MOBILEBERT proposes
using a specially designed inverted bottleneck model, which has the same model size as BERTLARGE,
as the teacher. The other methods utilize BERTBASE to conduct experiments. For the knowledge used
for distillation, our method introduces the scaled dot-product between values in the self-attention
module as the new knowledge to deeply mimic teacher’s self-attention behavior. TinyBERT and
MOBILEBERT transfer knowledge of the teacher to the student layer-to-layer. MOBILEBERT
assumes the student has the same number of layers as its teacher. TinyBERT employs a uniform
strategy to determine its layer mapping. DistilBERT initializes the student with teacher’s parameters,
therefore selecting layers of the teacher model is still needed. MINILM distills the self-attention
knowledge of the teacher’s last Transformer layer, which allows the flexible number of layers for the
students and alleviates the effort of finding the best layer mapping. Student hidden size of DistilBERT
and MOBILEBERT is required to be the same as its teacher. Bottleneck and inverted bottleneck
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Table 3: Comparison between student models of different architectures distilled from BERTBASE.
M and d′h indicate the number of layers and hidden dimension of the student model. TA indicates
teacher assistant6. The fine-tuning results are averaged over 4 runs.

Architecture #Param Model SQuAD 2.0 MNLI-m SST-2 Average

M=6;d′h=384 22M

MLM-KD (Soft-Label Distillation) 67.9 79.6 89.8 79.1
TinyBERT 71.6 81.4 90.2 81.1
MINILM 72.4 82.2 91.0 81.9
MINILM (w/ TA) 72.7 82.4 91.2 82.1

M=4;d′h=384 19M

MLM-KD (Soft-Label Distillation) 65.3 77.7 88.8 77.3
TinyBERT 66.7 79.2 88.5 78.1
MINILM 69.4 80.3 90.2 80.0
MINILM (w/ TA) 69.7 80.6 90.6 80.3

M=3;d′h=384 17M

MLM-KD (Soft-Label Distillation) 59.9 75.2 88.0 74.4
TinyBERT 63.6 77.4 88.4 76.5
MINILM 66.2 78.8 89.3 78.1
MINILM (w/ TA) 66.9 79.1 89.7 78.6

Table 4: The number of Embedding (Emd) and
Transformer (Trm) parameters, and inference
time for different models.

#Layers Hidden
Size

#Param
(Emd)

#Param
(Trm)

Inference
Time

12 768 23.4M 85.1M 93.1s (1.0×)
6 768 23.4M 42.5M 46.9s (2.0×)

12 384 11.7M 21.3M 34.8s (2.7×)
6 384 11.7M 10.6M 17.7s (5.3×)
4 384 11.7M 7.1M 12.0s (7.8×)
3 384 11.7M 5.3M 9.2s (10.1×)

Table 5: Effectiveness of self-attention value-
relation (Value-Rel) transfer. The fine-tuning results
are averaged over 4 runs.

Architecture Model SQuAD2 MNLI-m SST-2

M=6;d′h=384 MINILM 72.4 82.2 91.0
-Value-Rel 71.0 80.9 89.9

M=4;d′h=384 MINILM 69.4 80.3 90.2
-Value-Rel 67.5 79.0 89.2

M=3;d′h=384 MINILM 66.2 78.8 89.3
-Value-Rel 64.2 77.8 88.3

modules are introduced in MOBILEBERT to keep the hidden size of the teacher and student are the
same. TinyBERT uses an additional parameter matrix to transform student hidden states with smaller
dimensions during distillation. Using value relation allows our students to use arbitrary hidden size
without introducing additional transformation.

4 Experiments

We conduct monolingual and multilingual distillation experiments in different parameter size of
student models.

4.1 Distillation Setup

We use the uncased version of BERTBASE as our teacher. BERTBASE [12] is a 12-layer Transformer
with 768 hidden size, and 12 attention heads, which contains about 109M parameters. We use
documents of English Wikipedia3 and BookCorpus [49] for the pre-training data, following the
preprocess and the WordPiece tokenization of Devlin et al. [12]. For the training of multilingual
MINILM, we use XLM-RBASE

4 [10] as the teacher, which is also a 12-layer Transformer with 768
hidden size. We perform knowledge distillation using the same training corpora as XLM-RBASE.

4.2 English MINILM

4.2.1 Downstream Tasks

Following previous language model pre-training [12, 25] and task-agnostic pre-trained LM distilla-
tion [35, 20, 38], we evaluate on the extractive question answering and GLUE benchmark.

3Wikipedia version: enwiki-20181101.
4We use the v0 version of XLM-RBASE in our distillation and fine-tuning experiments.
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Table 6: Comparison between different loss func-
tions: KL-divergence over the value relation and
mean squared error (MSE) over value vectors.
An additional parameter matrix is introduced to
transform student value vectors to have the same
dimensions as the teacher values. The fine-tuning
results are an average of 4 runs for each task.

Architecture Model SQuAD2 MNLI-m SST-2

M=6;d′h=384 MINILM 72.4 82.2 91.0
Value-MSE 71.4 82.0 90.8

M=4;d′h=384 MINILM 69.4 80.3 90.2
Value-MSE 68.3 80.1 89.9

M=3;d′h=384 MINILM 66.2 78.8 89.3
Value-MSE 65.5 78.4 89.3

Table 7: Comparison between distilling knowl-
edge of the teacher’s last Transformer layer and
layer-to-layer (La-to-La) distillation. We adopt a
uniform strategy as in Jiao et al. [20] to determine
the mapping between teacher and student layers.
The fine-tuning results are an average of 4 runs
for each task.

Architecture Model SQuAD2 MNLI-m SST-2

M=6;d′h=384 MINILM 72.4 82.2 91.0
+La-to-La 71.6 81.8 90.6

M=4;d′h=384 MINILM 69.4 80.3 90.2
+La-to-La 67.6 79.9 89.6

M=3;d′h=384 MINILM 66.2 78.8 89.3
+La-to-La 64.8 77.7 88.6

Extractive Question Answering Given a passage P , the task is to select a contiguous span of text
in the passage by predicting its start and end positions to answer the question Q. We evaluate on
SQuAD 2.0 [31], which has served as a major question answering benchmark.

GLUE The General Language Understanding Evaluation benchmark [44] consists of nine sentence-
level classification tasks, including linguistic acceptability [45], sentiment analysis [36], text similar-
ity [7], paraphrase detection [13], and natural language inference (NLI) [11, 5, 15, 6, 23, 46, 30].

4.2.2 Main Results

Previous works [35, 37, 20, 1] usually distill BERTBASE into a 6-layer model with 768 hidden size.
We first conduct distillation experiments using the same student architecture. Results on SQuAD
2.0 and GLUE dev sets are presented in Table 2. Since MOBILEBERT distills a specially designed
teacher (in the BERTLARGE size) with inverted bottleneck modules into a 24-layer student using the
bottleneck modules, we do not compare with MOBILEBERT. MINILM outperforms DistilBERT5,
TinyBERT6 and two BERT baselines across most tasks. Our model exceeds the two state-of-the-art
distilled models by 3.0+% F1 on SQuAD 2.0. We present the inference time for models in different
parameter size in Table 4. Our 6-layer 768-dimensional student model is 2.0× faster than BERTBASE,
while retaining more than 99% performance on a variety of tasks, such as SQuAD 2.0 and MNLI.

We also conduct experiments for smaller student models. We compare MINILM with our implemented
MLM-KD (knowledge distillation using soft target probabilities for masked language modeling
predictions) and TinyBERT, which are trained using the same data and hyper-parameters. The results
on SQuAD 2.0, MNLI and SST-2 dev sets are shown in Table 3. MINILM outperforms soft label
distillation and our implemented TinyBERT on the three tasks. Deep self-attention distillation is also
effective for smaller models. Moreover, we show that introducing a teacher assistant7 is also helpful
in Transformer based pre-trained LM distillation, especially for smaller models. Combining deep
self-attention distillation with a teacher assistant achieves further improvement for smaller students.

We also conduct distillation experiments using an in-house pre-trained Transformer model following
UNILM [14, 4] in the BERTBASE size. The distilled models achieve better performance on natural
language understanding tasks. The models can also be applied for natural language generation tasks
and achieve competitive performance. Please refer to the supplementary material.

4.2.3 Ablation Studies

We do ablation tests on several tasks to analyze the contribution of self-attention value-relation transfer.
The dev results of SQuAD 2.0, MNLI and SST-2 are illustrated in Table 5, using self-attention value-
relation transfer positively contributes to the final results for student models in different parameter
size. Distilling the fine-grained knowledge of value relation helps the student model deeply mimic
the self-attention behavior of the teacher, which further improves model performance.

5https://github.com/huggingface/transformers/tree/master/examples/distillation
6https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
7The teacher assistant is only introduced for the model MINILM (w/ TA).
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Table 8: Cross-lingual classification results of
our 12-layera and 6-layerb multilingual models
with 384 hidden size on XNLI. We report the
average accuracy. Results of mBERT, XLM-100
and XLM-RBASE are from Conneau et al. [10].

Model #Layers #Hidden Average
mBERT 12 768 66.3
XLM-100 16 1280 70.7
XLM-RBASE 12 768 74.5
MINILMa 12 384 71.1
MINILMb (w/ TA) 6 384 68.0

Table 9: Cross-lingual question answering results
on MLQA. We report the average F1 and EM (ex-
act match) scores. Results of mBERT and XLM-
15 are taken from Lewis et al. [24]. † indicates
results taken from Conneau et al. [10]. We also
report our fine-tuned results (‡) of XLM-RBASE.

Model #Layers #Hidden Average
mBERT 12 768 57.7 / 41.6
XLM-15 12 1024 61.6 / 43.5
XLM-RBASE† 12 768 62.9 / 45.7
XLM-RBASE‡ 12 768 64.9 / 46.9
MINILMa 12 384 63.2 / 44.7
MINILMb (w/ TA) 6 384 53.7 / 36.6

We compare our proposed value relation with directly transferring value vectors (using mean squared
error (MSE)). An additional parameter matrix is introduced to transform student value vectors if
the hidden dimension of the student is smaller than its teacher. The dev results on three tasks are
presented in Table 6. Using value relation achieves better performance. Specifically, our method
brings about 1.0% F1 improvement on the SQuAD benchmark. Compared with transferring value
vectors using MSE function, our method does not need to introduce additional transformations, which
restrict teacher from directly transferring knowledge. We also show that transferring value relation
performs better than transferring hidden states. Please refer to the supplementary material.

To show the effectiveness of distilling self-attention knowledge of the teacher’s last Transformer
layer, we compare our method with layer-to-layer distillation. We transfer the same knowledge and
adopt a uniform strategy as in Jiao et al. [20] to perform layer-to-layer distillation. The dev results on
three tasks are presented in Table 7. Using the last layer achieves better results. It also alleviates the
difficulties in layer mapping between the teacher and student. Besides, distilling the teacher’s last
Transformer layer requires less computation than layer-to-layer distillation, results in faster training
speed. To study why only using the last layer is more effective, we try more strategies to select layers
and find that reducing the guidance of teacher’s knowledge improves performance. Layer-to-layer
transfer sets a tight restriction for each student layer. Transferring the last layer is more flexible and
effective. Please refer to the supplementary material.

4.3 Multilingual MINILM

We conduct experiments on multilingual pre-trained models and distill XLM-RBASE into 12-layer and
6-layer models with 384 hidden size. We evaluate the student models on cross-lingual natural language
inference (XNLI) benchmark [9] and cross-lingual question answering (MLQA) benchmark [24].

XNLI Table 8 presents XNLI results of MINILM and several pre-trained LMs. Following Conneau
et al. [10], we select the best single model on the joint dev set of all the languages. MINILM achieves
competitive performance on XNLI with much fewer Transformer parameters. The 12x384 MINILM
compares favorably with mBERT [12] and XLM [22] trained on the MLM objective.

MLQA Following Lewis et al. [24], we adopt SQuAD 1.1 [30] as training data and use MLQA
English development data for early stopping. As shown in Table 9, the 12x384 MINILM performs
competitively better than mBERT and XLM. 6-layer MINILM also achieves competitive performance.

4.4 Discussion

MINILM distills self-attention knowledge of the teacher’s last Transformer layer. Previous works [19]
show that BERT encodes surface features or phrase-level information at the bottom layers, syntactic
features in the middle and semantic features at the top layers. Can the small model learn surface
features or phrase-level information by only distilling the last Transformer layer? Following Jawahar
et al. [19], we extract span representations from different layers to analyze the phrase-level information
captured by our student model. We randomly pick labeled chunks and unlabeled spans from the
CoNLL 2000 chunking dataset [34], and extract span representations from each layer of the 6x384
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Table 10: Clustering results of span representations from different layers of BERTBASE and 6x384
MINILM (distilled from BERTBASE). Results of BERTBASE are taken from Jawahar et al. [19].
Normalized mutual information is used to evaluate the clusters.

Layer 1 2 3 4 5 6 8 10 12
BERTBASE 0.38 0.37 0.35 0.30 0.24 0.20 0.16 0.18 0.19
MINILM 0.45 0.49 0.46 0.47 0.37 0.36 - - -

model distilled from BERTBASE. k-means clustering is then performed on span representations. As
shown in Table 10, MINILM distilled from teacher’s last Transformer layer also learns the phrase-
level information well. Moreover, lower layers of MINILM also encode phrasal information better
than higher layers.

We visualize the attention distributions8 of the teacher (BERTBASE) and the 6x384 students trained
using last layer and layer-wise distillation (Figure 1-3 in supplementary material). We find that atten-
tion distributions for each layer of the layer-wise distilled student are very similar to its corresponding
layers of the teacher. For the 6x384 student distilled from teacher’s last layer, attention distributions
of the last layer mimic its teacher’s last layer very well, while the bottom layers are more similar to
the teacher’s bottom layers. Last layer distillation also learns features of teacher’s lower layers.

5 Conclusion

In this work, we propose a simple and effective knowledge distillation method to compress large
pre-trained Transformer based language models. The student is trained by deeply mimicking the
teacher’s self-attention modules, which are the vital components of the Transformer networks. We
propose using the self-attention distributions and value relation of the teacher’s last Transformer layer
to guide the training of the student, which is effective and flexible for the student models. Moreover,
we show that introducing a teacher assistant also helps pre-trained Transformer based LM distillation.
Our student model distilled from BERTBASE retains high accuracy on SQuAD 2.0 and the GLUE
benchmark tasks, and outperforms state-of-the-art baselines. Multilingual MINILM distilled from
XLM-RBASE also achieves competitive performance. The deep self-attention distillation can also be
applied to compress pre-trained models in larger size. We leave it as our future work.

Broader Impact

Pre-trained language models have achieved remarkable success for various natural language pro-
cessing tasks. However, these models consist of hundreds of millions of parameters and become
bigger and bigger. It brings challenges for online serving in real-life applications due to latency and
capacity constraints. Our work focuses on compressing large pre-trained models into small and fast
pre-trained models, while achieving competitive performance. Our method and released models can
be useful for a lot of real-life applications. Besides, fine-tuning large pre-trained models has hard
requirements of GPU resources and the computational cost is also very high. Fine-tuning and running
inference using small models can save GPU hours, dollars, and carbon dioxide emissions. Our small
and fast models can also help researchers with less computing resources.

References
[1] Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao, Xing Fan, and Edward Guo. Knowledge

distillation from internal representations. CoRR, abs/1910.03723, 2019. URL http://arxiv.
org/abs/1910.03723.

[2] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016. URL http://arxiv.org/abs/1607.06450.

8We use the visualization tool from Vig [43] to analyze model’s attention distributions.

9

http://arxiv.org/abs/1910.03723
http://arxiv.org/abs/1910.03723
http://arxiv.org/abs/1607.06450


[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[4] Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang, Xiaodong Liu, Yu Wang, Songhao
Piao, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. Unilmv2: Pseudo-masked language
models for unified language model pre-training. arXiv preprint arXiv:2002.12804, 2020.

[5] Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, and Danilo Giampiccolo. The second
PASCAL recognising textual entailment challenge. In Proceedings of the Second PASCAL
Challenges Workshop on Recognising Textual Entailment, 01 2006.

[6] Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini.
The fifth pascal recognizing textual entailment challenge. In In Proc Text Analysis Conference
(TAC’09, 2009.

[7] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017
task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv
preprint arXiv:1708.00055, 2017.

[8] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does
BERT look at? an analysis of bert’s attention. CoRR, abs/1906.04341, 2019. URL http:
//arxiv.org/abs/1906.04341.

[9] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R Bowman, Holger
Schwenk, and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2018.

[10] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
supervised cross-lingual representation learning at scale. CoRR, abs/1911.02116, 2019. URL
http://arxiv.org/abs/1911.02116.

[11] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entail-
ment challenge. In Proceedings of the First International Conference on Machine Learn-
ing Challenges: Evaluating Predictive Uncertainty Visual Object Classification, and Recog-
nizing Textual Entailment, MLCW’05, pages 177–190, Berlin, Heidelberg, 2006. Springer-
Verlag. ISBN 3-540-33427-0, 978-3-540-33427-9. doi: 10.1007/11736790_9. URL
http://dx.doi.org/10.1007/11736790_9.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[13] William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential para-
phrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005),
2005.

[14] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming
Zhou, and Hsiao-Wuen Hon. Unified language model pre-training for natural language un-
derstanding and generation. In 33rd Conference on Neural Information Processing Systems
(NeurIPS 2019), 2019.

[15] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL
recognizing textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop
on Textual Entailment and Paraphrasing, pages 1–9, Prague, June 2007. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/W07-1401.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778, 2016.

[17] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. CoRR, abs/1503.02531, 2015. URL http://arxiv.org/abs/1503.02531.

10

http://arxiv.org/abs/1906.04341
http://arxiv.org/abs/1906.04341
http://arxiv.org/abs/1911.02116
http://dx.doi.org/10.1007/11736790_9
https://www.aclweb.org/anthology/W07-1401
http://arxiv.org/abs/1503.02531


[18] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classifica-
tion. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 328–339, Melbourne, Australia, July 2018. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/P18-1031.

[19] Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. What does BERT learn about the structure
of language? In Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages
3651–3657, 2019. URL https://www.aclweb.org/anthology/P19-1356/.

[20] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun
Liu. Tinybert: Distilling BERT for natural language understanding. CoRR, abs/1909.10351,
2019. URL http://arxiv.org/abs/1909.10351.

[21] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy.
Spanbert: Improving pre-training by representing and predicting spans. arXiv preprint
arXiv:1907.10529, 2019.

[22] Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. Advances
in Neural Information Processing Systems (NeurIPS), 2019.

[23] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge.
In Thirteenth International Conference on the Principles of Knowledge Representation and
Reasoning, 2012.

[24] Patrick S. H. Lewis, Barlas Oguz, Ruty Rinott, Sebastian Riedel, and Holger Schwenk. MLQA:
evaluating cross-lingual extractive question answering. CoRR, abs/1910.07475, 2019. URL
http://arxiv.org/abs/1910.07475.

[25] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[26] Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, and Hassan Ghasemzadeh. Improved
knowledge distillation via teacher assistant: Bridging the gap between student and teacher.
CoRR, abs/1902.03393, 2019. URL http://arxiv.org/abs/1902.03393.

[27] Subhabrata Mukherjee and Ahmed Hassan Awadallah. Xtremedistil: Multi-stage distillation
for massive multilingual models. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R.
Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2020, Online, July 5-10, 2020, pages 2221–2234. Association for
Computational Linguistics, 2020.

[28] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana, June 2018. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/N18-1202.

[29] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Im-
proving language understanding by generative pre-training. 2018. URL
https://s3-us-west-2.amazonaws.com/openaiassets/research-covers/
language-unsupervised/languageunderstandingpaper.pdf.

[30] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas, Novem-
ber 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL
https://www.aclweb.org/anthology/D16-1264.

11

https://www.aclweb.org/anthology/P18-1031
https://www.aclweb.org/anthology/P19-1356/
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1910.07475
http://arxiv.org/abs/1902.03393
http://www.aclweb.org/anthology/N18-1202
http://www.aclweb.org/anthology/N18-1202
https://s3-us-west-2.amazonaws.com/openaiassets/research-covers/language-unsupervised/language understanding paper.pdf
https://s3-us-west-2.amazonaws.com/openaiassets/research-covers/language-unsupervised/language understanding paper.pdf
https://www.aclweb.org/anthology/D16-1264


[31] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 2: Short
Papers, pages 784–789, 2018.

[32] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. Fitnets: Hints for thin deep nets. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1412.6550.

[33] Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. Poor man’s BERT: smaller and
faster transformer models. CoRR, abs/2004.03844, 2020.

[34] Erik F. Tjong Kim Sang and Sabine Buchholz. Introduction to the conll-2000 shared task
chunking. In Walter Daelemans and Rémi Zajac, editors, Fourth Conference on Computational
Natural Language Learning, CoNLL 2000, and the Second Learning Language in Logic Work-
shop, LLL 2000, Held in cooperation with ICGI-2000, Lisbon, Portugal, September 13-14, 2000,
pages 127–132. ACL, 2000.

[35] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. URL
http://arxiv.org/abs/1910.01108.

[36] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language
processing, pages 1631–1642, 2013.

[37] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for BERT model
compression. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 4322–4331, 2019.

[38] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mo-
bilebert: Task-agnostic compression of bert by progressive knowledge transfer, 2019. URL
https://openreview.net/pdf?id=SJxjVaNKwB.

[39] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling
task-specific knowledge from BERT into simple neural networks. CoRR, abs/1903.12136, 2019.
URL http://arxiv.org/abs/1903.12136.

[40] Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Arivazhagan, Xin Li, and Amelia Archer.
Small and practical BERT models for sequence labeling. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November
3-7, 2019, pages 3630–3634, 2019.

[41] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn
better: The impact of student initialization on knowledge distillation. CoRR, abs/1908.08962,
2019. URL http://arxiv.org/abs/1908.08962.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural In-
formation Processing Systems 30, pages 5998–6008. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

[43] Jesse Vig. A multiscale visualization of attention in the transformer model. arXiv preprint
arXiv:1906.05714, 2019. URL https://arxiv.org/abs/1906.05714.

[44] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJ4km2R5t7.

12

http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1910.01108
https://openreview.net/pdf?id=SJxjVaNKwB
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1908.08962
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://arxiv.org/abs/1906.05714
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7


[45] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability
judgments. arXiv preprint arXiv:1805.12471, 2018.

[46] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1112–1122, New Orleans, Louisiana, June
2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1101. URL https:
//www.aclweb.org/anthology/N18-1101.

[47] Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, and Ming Zhou. Bert-of-theseus: Com-
pressing BERT by progressive module replacing. CoRR, abs/2002.02925, 2020.

[48] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V Le.
XLNet: Generalized autoregressive pretraining for language understanding. In 33rd Conference
on Neural Information Processing Systems (NeurIPS 2019), 2019.

[49] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In Proceedings of the IEEE international conference on
computer vision, pages 19–27, 2015.

13

https://www.aclweb.org/anthology/N18-1101
https://www.aclweb.org/anthology/N18-1101

	Introduction
	Preliminary
	Backbone Network: Transformer
	Transformer Distillation

	Deep Self-Attention Distillation
	Self-Attention Distribution Transfer
	Self-Attention Value-Relation Transfer
	Teacher Assistant
	Comparison with Previous Work

	Experiments
	Distillation Setup
	English MiniLM
	Downstream Tasks
	Main Results
	Ablation Studies

	Multilingual MiniLM
	Discussion

	Conclusion

