Appendix

A Environments & Hyperparameters

A.1 Perceptual consistency baseline and fast-path

Two-way consistency (1-2) involves a maximization over the replay buffer, which can be costly. We
use a pairwise, symmetric perceptual consistency criterion as a fast test of similarity in latent space to
accelerate graph construction. A new state § is only added to the memory if it fails both perceptual
and two-way consistency with each state already in the memory, in which case we consider it novel
and useful to retain for planning. This allows us to skip the TWC check for substantially different
states.

We say that § is perceptually consistent with a previously recorded state s € V if

ll¢(s) = @(3)ll2 < 7, 4)

where ||¢(s) — ¢(8)||2 measures the visual similarity of states that the agent encounters through
the /5 distance between embeddings of each state. In proprioceptive tasks, the identity function is
used for the embedding ¢(-). However, in visual navigation, nearby locations can correspond to
images that are significantly different in pixel space, such as when an agent rotates [41]. To mitigate
this problem, for high-dimensional images, ¢(-) is a learned embedding network such as a 5-VAE
[19, 24] for SafetyGym or a subnetwork of the distance function for ViZDoom.

Table 3 shows that two-way consistency significantly outperforms perceptual consistency on its own,
so the TWC criterion is still important. Theorem 1 still holds when combining the strategies as (4)
can only make aggregation more conservative.

A.2 Low-level Controller

For the RL experiments, we use actor-critic methods to train a low-level controller (the actor) and
corresponding distance metric (the critic) simultaneously. In particular, we use distributional RL
and D3PG, a variant of deep deterministic policy gradient [3, 27]. For experiments on SafetyGym,
we use a proprioceptive state-based controller for both SGM and the dense baseline. For the SSL
experiments in ViZDoom, we use the trained, behavior cloned visual controller from SPTM. The
controller is trained to predict actions from a dataset of random rollouts, where goals are given by
achieved visual states.

A.3 Environments

In our experiments, we tune SGM hyperparameters to maintain graph connectivity and achieve a
desired sparsity level. Thresholds are environment-specific due to different scaling of the distance
function. Success rate is only evaluated after selecting parameters.

PointEnv: PointEnv is maze environment introduced in [9] where the observation space is propri-
oceptive. We run all SORB experiments in this environment. The episodic return is undiscounted
~ = 1, and the reward is an indicator function: » = 0 if the agent reaches its goal and » = —1
otherwise. The distance to goals can thus be approximated as d = |Q(s, a)|. We approximate a
distributional () function, which serves as a critic, with a neural network that first processes the
observation with a 256-unit, fully-connected layer, that then merges this processed observation
with the action, and that then passes the observation-action combination through another 256-unit,
fully-connected layer. For an actor, we use a fully-connected network that has two layers of 256 units
each. Throughout, we use ReLU activations and train with an Adam optimizer [23] with a step size
of 0.0003. To evaluate distances, we use an ensemble of three such distributional ) functions, and
we pessimistically aggregate across the ensemble. For SGM, we set MAXDIST = 10, 7, = 0.05,
T, = 5, k = 5, MAXSTEPS = 30, and ACTINGCUTOFF = 1 for the localization threshold. For
SoRB, we set MAXDIST = 6, K = 5 and MAXSTEPS = 18 due to a higher density of states.

ViZDoom: For our ViZDoom visual maze navigation experiments, we use the large training maze
environment of [41]. Following [41], the distance metric is a binary classifer trained with a Siamese
network using a ResNet-18 architecture. The convolutional encoder embeds image observations
into a 512 dimensional latent vector. Two image embeddings are then concatenated and passed

13



Agent observation

Perceptually similar Temporally similar
observations observations

Figure 8: Observations passing perceptual (feature difference threshold) and two-way consistency
criteria for SafetyGym using a 5-VAE for perceptual features and a contrastive distance for two-way
consistency. The two-way consistent observations are, unsurprisingly, more diverse in orientation
than perceptually nearby ones. Although the majority of two-way consistent observations are correct
i.e. nearby in space, there is one false positive (blue floor).

250 500 750 1000 1250 1500 1750 250 500 750 1000 1250 1500 1750 250 500 750 1000 1250 1500 1750

Original exploration sequences . N N "
. e Sparsified graph on observations After k-NN filtration After 114k cleanup steps
: all 20,100 states. Bottom: histogram |V = 2087, |E| = 22398 |V| = 2087, |E| = 9183 |V| = 2087, |E| = 6922

Figure 9: Construction of Sparse Graphical Memory in the ViZDoom environment. We add nodes
from a source replay buffer that unevenly covers the environment (left), creating a sparsified memory.
k-nearest neighbor edge filtration limits the number of errors, which are further corrected via cleanup.
The image memory in SGM much more evenly covers the environment, even though no coordinate
information is used during graph construction.

through a 4 layer dense network with ReLU activations, 512 hidden units, and a binary cross entropy
objective where y = 1 if the two embeddings are temporally close and y = 0 otherwise. An Adam
optimizer [23] with a step size of 0.0001 is used for gradient updates to finetune the pretrained
network of [41]. For the controller, we use the pretrained network of [41] with no finetuning.

For graph creation, we collect a replay buffer of 100 episodes of random actions, each consisting
of 200 steps (i.e. 20,100 total images) and add each image sequentially to SGM to simulate an
online data collection process. For both SPTM and SPTM with SGM, we set MAXDIST = 2, k = 5,
ACTINGCUTOFF = 5.75, and MAXSTEPS = 10. For SGM, 7, = 20 and 7, = 2. To make the
SPTM baseline tractable, we randomly subsample the replay buffer to 2,087 states (the same size as
our sparsified vertex set), as edge creation is O(|V|?) and start/goal node localization is O(|V|). The
baseline graph has 2, 087 nodes and 18, 921 edges. While we can evaluate the baseline with a graph
consisting of all 20, 100 states, this is a dense oracle that has 20, 100 nodes and 1, 734, 524 edges and
takes hours to construct. The oracle achieves 75%, 55%, and 35% success rates at easy, medium and
hard goal difficulties (55.0% =+ 6.4% overall).

To increase the robustness of edge creation under perceptual aliasing, we aggregate the distance over
temporal windows in the random exploration sequence. For states s{" in episode 7 and s’ in episode

J» we set the distance to the maximum pairwise distance between states s{”, s{” s{" 5" s, and

14



Agent observation A

Distances in temporal space

Distances in temporal, max space

Points with temporal, max distance =2 Observation distance frequency

"z

0O 20 40 60 8 100 120 140

° ..
0 250 500 750 1000 1250 1500 1750

° |
0 250 500 750 1000 1250 1500 1750

o A
0 250 500 750 1000 1250 1500 1750

Figure 10: A visualization of the fine-tuned SPTM distance metric in the ViZDoom. The agent sees
the reference image on left. The second image shows the acting distance between the reference
image and states previously seen throughout the maze according to d(Sagent, ). A coordinate is
colored yellow if the associated state is close to the reference in acting distance, while green and blue
coordinates are distant with respect to the reference state. Aggregating the distance pessimistically
across temporal windows (third image) reduces false positives that are distant in coordinate space but
close in acting distance space. In the fourth image, we threshold the aggregated distance according
to 7,. While most states passing the threshold are near the agent, some are distant. These are false
positives. In the rightmost figure, we show histograms of the aggregated acting distance for negative,
distant pairs of states (top) and close, positive pairs (bottom), totaling 404M pairs.

G @ @) &) ) i i i
states s,7) .57 5,7 5,7) 8,7) 0 AgEregating over up to 25.pa1rs. In contrast, SPTM aggregated Wlt.h
the median and compared only 5 pairs. Our aggregation is more pessimistic as our replay buffer is
created with random exploration that suffers from extensive perceptual aliasing rather than a human
demonstrator that mostly stays in the center of hallways. Figure 9 shows the graph construction

process.

SafetyGym: In the SafetyGym environment we employ a contrastive objective to discriminate
between observations from the same window of a rollout and random samples from the replay
buffer. The contrastive objective is a multiclass cross entropy over logits defined by a bilinear inner
product of the form f(z, zy/) = 2} W2y, where W is a parameter matrix, and the distance scores
are probabilities d = exp(— f(zt, z¢/)). To embed the observations, which are 64 x 64 rgb images,
we use a 3 layer convolutional network with ReLLU activations with a dense layer followed by a
LayerNorm to flatten the output to a latent dimension of 50 units. We then train the square matrix W
to optimize the ccontrastive energy function. As before, we use Adam [23] with a step size of 0.0001
for optimization.

The 5-VAE maximum likelihood generative model for perceptual features has an identical architecture
to the distance metric but without the square matrix W. Each image is transformed into an embedding,
which is stored in the node of the graph. When a new image is seen, to isolate visually similar
neighbors, we compute the L2 distance between the latent embedding of the image and all other
nodes in the graph. Since computing the L2 distance is a simple vector operation, it is much more
computationally efficient than querying the distance function, which requires a forward pass through
a neural network, O(|V|) times at each timestep.

Perceptually consistent and two-way consistent observations relative to an agent’s current observation
are shown in Figure 8. For constructing both dense and sparse graphs, we use MAXSTEPS = 9,
k=6,7,=06,and 7, = 5.

B Perceptual Aliasing with Learned Distance

A common issue with learning distances from images is perceptual aliasing, which occurs when two
images are visually similar but were collected far apart in the environment. We examine a heatmap
of learned distances in ViZDoom in Figure 10. Although most observations with small distance are
correctly clustered around the agent’s location, there are several clusters of false positive observations
throughout the map due to perceptual aliasing between parts of the maze. Perceptual aliasing results
in wormhole connections throughout the graph where two distant nodes are connected by an edge,
which creates an attractor for path planning. We show an example path planned by an agent that is
corrupted by perceptual aliasing in Figure 11. In its plan, the agent draws a connection between two
visually identical but distant walls, which corrupts its entire plan to reach the goal.

15



Waypoint 3 Waypoint 4

Waypoint 1 3 Waypoint 2

100 100 o 100

Waypoint 6 Waypoint 8

100

o Waypoint 11 o Waypoint 13 o Waypoint 14

o 100 Perceptually
. Waypoint 19 aliased

" o~ walls

Plan without cleanup or
pessimistic distance aggregation

17501 i :lt:thumt | | 1
1500 el
B I*‘\ ]
wo] L A
7504 ‘ § '
500 J zw

250 + ‘

. |

100 120 140 100 120 140 0 560 10‘00 15‘00

Figure 11: Failure mode in ViZDoom planning when cleanup and pessimistic distance aggregation
are not used. While waypoints in the plan between start and goal states are closely grouped for much
of the path, the planner exploits the perceptual aliasing of walls in the environment as a shortcut
through the environment. Pessimistic aggregation of the distance metric can help with the issue, but
does not fully resolve the problem. By stepping through the environment during cleanup, we can
remove the remaining untraversable edges.

False positives can be reduced further by aggregating the distance pessimistically across consecutively
collected observations. However, doing so does not eliminate them altogether. The presence of
false positives further supports the argument for sparsity. With sparsity and cleanup, it is possible to
remove the majority of incorrect edges to yield robust plans.

C Re-planning with a Sparse Graph

Figure 12 shows an example of an evaluation rollout, which includes a cleanup step when the agent
encounters an unreachable waypoint. The agent creates an initial plan and moves along the proposed
waypoints until it encounters an obstacle. Unable to pass the wall (represented by the blue blocks),
the agent removes the edge between two nodes across the wall and re-plans. Its second plan has no
obstacles and it is therefore able to reach its goal.

D Proof Bounding the Cost Gap of Two-way Consistency

Theorem 1. Let Gg be a graph with all states from a replay buffer B and weights from a distance
function d(-,-). Suppose Grw ¢ is a graph formed by aggregating nodes in Gg according to two-way
consistency Coyy and Cyy, < To. For any shortest path Pry ¢ in Gy o, consider the corresponding
shortest path Pp in Gg that connects the same start and goal nodes. Suppose Pg has k edges. Then:

(i) The weighted path length of Pryy ¢ minus the weighted path length of Pg is no more than 2kt,,.

16



Original plan Infeasible route

Cleanup & re-plan Achieved Goal

Figure 12: Evaluation of SGM in SafetyGym. This figure is a top-down view abstraction of the
SafetyGym environment made to cleanly represent the sparse graph. The actual environment is more
visually complex and the agent sees first-person view images.

(ii) Furthermore, if d(-,-) has error at most ¢, the weighted path length of Pry ¢ is within ke+2kT,,
the true weighted distance along Pp.

Proof. Before proceeding with the proof, we establish more formal notation about the statement of
the theorem.

We denote the replay buffer graph G = (Vi,E, Wg). Aggregating nodes according to TWC
leads to the subgraph Grweo = (Vrwe, Erwe, Wrwe) where all Vis\Vrw o satisty two-way
consistency at threshold 7, with some node in V.

For any start and goal node s1, sx+1 € Vrwe, consider the shortest path that connects them in
Gp: Ps = (s1,S2,...,5k+1). Suppose the edge weights of Pg are (w1, wa, ..., wy), given by the
distance function according to w; = d(s1, s2), etc.

Proof of (i): We will show that there exists a corresponding shortest path in Gy ¢ given by Pryyo =
(51,85, ..., Sk, Sk+1) with edge weights (distances) (w}, w5, ..., w},) where the total weight of P’
is no more than 2k, the total weight of Pg, i.e., Y, w; < 2k7, + >, w;.

We proceed by construction by first specifying s fori € {2,3,...,k}. If s; € Vrwoe, let s, = s;.
Otherwise, let s; be any node in V¢ satisfying two-way consistency with s;.

Given this choice of Pryy ¢, we will show for arbitrary j € {1,2,...,k} that
w) = d(s},85,1) < 274 +d(s5,8541) = 270 + wj.
By outgoing two-way consistency between s; and 5;» (or because s; = s;), we have
|d(sj,8541) — d(s],5511)] < Ta-
Similarly, by incoming two-way consistency between s;; and s;. 41 (or because s; 41 = s;» 11)s
|d(s}, 8j41) = d(s], s541)] < Ta.

By the triangle inequality, |d(s;, sj+1) — d(s;-, s;-+1)| < 27, ie., w; < wj + 27,. Finally, we note
that the result (i) follows by summing the bound wé < 27, + w; over all indices j.

17



Proof of (ii): Furthermore, assume that the edge weights of Pg given by (w1, wa, ..., wy) all have
error at most e. That is to say, if (w],ws,...,w}) denote the true distances along the path Pp,
assume |w; — w)| < eforalli € {1,2,...,k}. We will show that the shortest weighted path length
in the aggregated graph Gy ¢ differs from the true weighted length of the shortest path in Gg by at
most ke 4 2k7,, i.e., | D, wi — > wi| < ke + 2k,

In the proof of (i), we showed . w; < 2k7, + >, w;. By the additional assumption of part (ii),
we have w; < w} +eforalli € {1,2,...,k}. Chaining these two inequalities yields >, w} <
ke + 2k7q + >, wy.

Similarly, the proof of (i) shows |d(s;, sj11) — d(s}, s’ 1)| < 27, for arbitrary j € {1,2,...,k}.
Hence, w; < w} + 27,. Rearranging and summing this bound yields —2k7, + >_; w; < >, wy.
Moreover, as for part (ii) we assume |w; —wj | < eforalli € {1,2,...,k}, we also have w} —e < wj.
Summing and chaining inequalities yields —ke — 2k7o + >, wi < >, wj.

Together, the results of the previous two paragraphs yield what is desired: | >, w; — > w}| <
ke + 2k7,. O

E Planning speed of SGM

Table 4 shows the time required to take a single action including graph planning on a dense graph
constructed using SORB and with a sparse graph in the PointEnv environment. Sparse Graphical
Memory significantly accelerates action selection.

METHOD TIME TO TAKE ACTION (S)
SORB 0.550 £ 0.220
SGM (OURS) 0.077 £ 0.004

Table 4: The average and standard-deviation wall-clock time for taking an action with SGM (our
method) and SoRB (previous state-of-the-art) in PointEnv.

F Reproducibility checklist

Models & Algorithms Section 5 and Section A describe our model architectures, which follow
past work in the two previously studied planning environments (PointEnv and ViZDoom). We
analyze the complexity of graph construction with our online approximation in Section 4.2 and of
edge creation and agent localization in Section A.3.

Theoretical Claims We state and prove Theorem 1, which (i) bounds the increase in plan cost
when aggregating states via two-way consistency and (ii) given an existing error bound on the distance
function, bounds the additional error induced by aggregating states via two-way consistency. The
theorem is stated informally in the main paper and precisely with a proof in Section D.

Datasets Environments and experience collection are described in Section A.

Code Code and documentation are included on the project website: https://mishalaskin.
github.io/sgm/.

Experimental Results We describe the setup of our experiments in Section 5 and Section A,
including hyperparameter selection and specification. Runtimes are described, including in Section E.

18


https://mishalaskin.github.io/sgm/
https://mishalaskin.github.io/sgm/

