
A Omitted Results and Proofs

Lemma A.1. Let Aldp : D → S be an ε0-DP local randomizer. For D = (d1, . . . , dm) ∈ Dm, q ∈
(0, 1), and k ∈ [m], define BiasedSamplingq(D, k) to return dk with probability q, and a sample
from an arbitrary distribution over D \ {dk} with probability 1− q. For any k ∈ [m] and any set of
outcomes S ⊆ S, we have

Pr [Aldp(dk) ∈ S]

Pr
[
Aldp

(
BiasedSamplingq(D, k)

)
∈ S

] ≤ eε0

1 + q(eε0 − 1)
.

Proof. Fix a set of outcomes S ⊆ S. By ε0-LDP of Aldp, for any d, d′ ∈ D, we get

Pr[Aldp(d) ∈ S]

Pr[Aldp(d′) ∈ S]
≤ eε0 (1)

Now, for dataset D = (d1, . . . , dm) ∈ Dn and k ∈ [m], we have:

Pr [Aldp(dk) ∈ S]

Pr [Aldp(BiasedSamplingq(D, k)) ∈ S]
=

Pr [Aldp(dk) ∈ S]
m∑
j=1

Pr[Aldp(d′) ∈ S]Pr[d′ = dj ]

=
1

m∑
j=1

Pr[Aldp(d′)∈S]
Pr [Aldp(dk)∈S] Pr[d′ = dj ]

=
1

q +
∑
j 6=k

Pr[Aldp(d′)∈S]
Pr [Aldp(dk)∈S] Pr[d′ = dj ]

≤ 1

q + e−ε0
∑
j 6=k

Pr[d′ = dj ]

=
1

q + (1− q)e−ε0
=

eε0

1 + q(eε0 − 1)

where the third equality follows as Pr[d = dk] = q, and the first inequality follows using inequal-
ity 1, and the fourth equality follows as

∑
j 6=k

Pr[d = dj ] = 1− q.

Lemma A.2. Let A(1), . . . ,A(k) be mechanisms of the form A(i) : S(1) × · · · × S(i−1) × D →
S(i). Suppose there exist constants a > 0 and b ∈ (0, 1) such that each A(i) is εi-DP with εi ≤
log
(

1 + a
k−b(i−1)

)
. Then, for any δ ∈ (0, 1), the k-fold adaptive composition of A(1), . . . ,A(k) is

(ε, δ)-DP with ε = a2

2k(1−b) +
√

2a2 log (1/δ)
k(1−b) .

Proof. We start by applying the heterogeneous advanced composition for DP [24] for the sequence
of mechanisms A1, . . . ,Ak to get (ε, δ)-DP for the composition, where

ε =
∑
i∈[k]

(eεi − 1)εi
eεi + 1

+

√√√√2 log
1

δ

∑
i∈[k]

ε2
i (2)

Let us start by bounding the second term in equation 2. First, observe that:∑
i∈[k]

ε2
i =

∑
i∈[k]

(
log

(
1 +

a

k − b(i− 1)

))2

≤
∑
i∈[k]

a2

(k − b(i− 1))2
(3)

where the first inequality follows from log(1 + x) ≤ x.
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Now, we have: ∑
i∈[k]

a2

(k − b(i− 1))2
=

k−1∑
i=0

a2

(k − ib)2
≤ a2

∫ k

0

1

(k − xb)2
dx

= a2

(
1

kb− b2k
− 1

kb

)
=
a2

kb

(
1

1− b
− 1

)
=

a2

k(1− b)
(4)

where the second equality follows as we have
∫

1
(c−dx)2 dx = 1

cd−d2x .

Next, we bound the first term in equation 2 as follows:

∑
i∈[k]

(eεi − 1)εi
eεi + 1

=
∑
i∈[k]

(
a

k−b(i−1)

)(
log
(

1 + a
k−b(i−1)

))
2 + a

k−b(i−1)

≤
∑
i∈[k]

(
a

k−b(i−1)

)2

2 + a
k−b(i−1)

≤
∑
i∈[k]

a2

2 (k − b(i− 1))
2 ≤

a2

2k(1− b)
(5)

where the first inequality follows from log(1 +x) ≤ x, and the last inequality follows from inequal-
ity 4.

Using inequalities 3, 4 and 5 in equation 2, we get that the k-fold adaptive composition of

A1, . . . ,Ak satisfies (ε, δ)-DP, for ε = a2

2k(1−b) +
√

2a2 log (1/δ)
k(1−b) .

Lemma A.3. Suppose A : D → S is an (ε0, δ0)-DP local randomizer with δ0 ≤
(1−e−ε0 )δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0 ))

) . Then there exists an 8ε0-DP local randomizer Ã : D → S such that

for any d ∈ D we have TV (A(d), Ã(d)) ≤ δ1.

Proof. The proof is a direct application of results by Cheu et al. [12]. First we recall that from
[12, Claims D.2 and D.5] (applied with n = 1 in their notation) it follows that given A there exist
randomizers Ãk,T which are 8ε0-DP and satisfy

TV (A(d), Ãk,T (d)) ≤
(

1− ke−2ε0

2

)T
+ (T + 2)

2δ0e
ε0

1− e−ε0

for any k ∈ (0, 2e−2ε0) and T ∈ N as long as δ0 < 1−e−ε0
4eε0 . The result follows from taking

k = 2e−3ε0 , T = ln(2/δ1)/ ln(1/(1− e5ε0)) and noting these choices imply the desired condition
on the total variation distance under our assumption on δ0.

Proof of Corollary 3.3. Setting p0 = m
n in Afix, we get from Theorem 3.2 that β ∈ (0, 1), algo-

rithm Afix satisfies (ε1, β)-DP for

ε1 =
(eε0 − 1)

√
2meε0 log (1/β)

n
+
meε0(eε0 − 1)2

2n2

≤
2(eε0 − 1)

√
2meε0 log (1/β)

n
(6)

where the inequality follows since n ≥ (eε0 − 1)
√
meε0 .

Now, using inequality 6 and applying advanced composition to n
m repetitions of Afix, we get(

ε, nβm + δ
)

-DP, for

ε ≤ ε1

√
2n

m
log (1/δ) +

n

m
ε1 (eε1 − 1) (7)
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Since ε0 ≤
2 log (n/8

√
m)

3 , we have that ε1 ≤ 1
2 , and thus, (eε1 − 1) ≤ 3ε1

2 . Therefore, we get from
inequality 7 that

ε ≤ ε1

√
2n

m
log (1/β) +

3n

2m
ε2

1

≤ 4(eε0 − 1)

√
eε0 log (1/β) log (1/δ)

n
+

12(eε0 − 1)2eε0 log (1/β)

n

= Õ

(
e1.5ε0

√
n

)
where the equality holds since n ≥ (eε0 − 1)2eε0

√
m log (1/β), and Õ(·) hides polylog factors in

1/β and 1/δ.

Proof of Proposition 3.4. In Algorithm 1, for i ∈ [m], we have

Si = {j : User(j) checks-in for index i}
For i ∈ [m], define an indicator random variable Ei that indicates if Si is empty. Note that the
server performs a dummy gradient update for instance i ∈ [n] if and only if Si is empty (or, in other
words, Ei = 1). Next, for j ∈ [n], let Ij denote the index that user j in Algorithm Afix performs
her (Rj , pj)-check-in into, where Rj = [m] and pj = p0. Thus, for index i ∈ [m], we have

Pr [Ei = 1] = Pr

 ⋂
j∈[n]

(
(User j abstains)

⋃
(User j participates ∧ Ij 6= i)

)
=
∏
j∈[n]

((1− p0) + Pr [Ij 6= i] · p0) =

(
(1− p0) +

(
1− 1

m

)
· p0

)n
=
(

1− p0

m

)n
where the second equality follows since the check-ins for each user are independent of the others,
and each user abstains from participating w.p. (1− p0).

Thus, for the expected number of dummy gradient updates, we have:

E(E1:m) =
∑
i∈[m]

Pr [Ei = 1] = m
(

1− p0

m

)n
(8)

If p0 = cm
n for c > 0, from equation 8 we get

E(E1:m) = m
(

1− c

n

)n
≤ m

ec

where the inequality follows as
(
1− a

b

)b ≤ e−a for b > 1, |a| ≤ b.

Proof of Theorem 3.5. To be able to directly apply [33, Theorem 2], our technique Afix needs to
satisfy two conditions: i) each model update should be an unbiased estimate of the gradient, and ii) a
bound on the expected L2-norm of the gradient. Notice that inAfix, every client j ∈ [n] performs a
([m], p0)-check-in. This is analogous to a bins-and-balls setting where n balls are thrown, each with
probability p0, intom bins. Thus, for each update step i ∈ [m], the number of clients checking-in for
this step (i.e., |Si| in the notation of Algorithm 1) can be approximated by an independent Poisson
random variable Yi with mean np0/m, using Poisson approximation [30], as follows:

Pr[|Si| = 0] ≤ 2Pr[Yi = 0] = 2e−np0/m := p′

Now, we know that there exists a probability pb ≤ p′ with which the gradient update gi is 0p.
Thus, to make the gradient update unbiased, each participating user can multiply their update by

1
1−pb ≤

1
1−p′ = 1

1−2e−np0/m
. Consequently, the Lipschitz-constant of the loss `, and the variance

of the noise added to the update, increases by a factor of at most 1

(1−2e−np0/m)
2 . Thus, we get
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E
[
||g̃i||2

]
≤ pσ2+L2

1−2e−np0/m
. With this, our technique will satisfy both the conditions required to apply

the result in [33] for learning rate ηi = c√
i

as follows:

ED,θm [L (D ; θm)]−L (D ; θ∗) ≤
(
R2

c
+

c(pσ2 + L2)

1− 2e−np0/m

)(
2 + log(m)√

m

)
Optimizing the learning rate to be ηi =

R(1−2e−np0/m)√
(pσ2+L2)i

gives the statement of the theorem.

Proof of Theorem 4.2. We prove the first bound on the line of the proof of Theorem 3.5. SinceAavg
skips an update for time step i ∈ [m] if no client checks-in at step i, and otherwise makes an update
of the average of the noisy gradients received by checked-in clients, each update of the algorithm is
unbiased. Now, notice that in Aavg, every client j ∈ [n] checks into [m] u.a.r. Thus, each update
step i ∈ [m] will have n/m checked-in clients in expectation. As a result, for an averaged update
h̃i = g̃i

|Si| , we get E
[
‖h̃i‖2

]
≤ mpσ2

n +L2. With this, our technique will satisfy both the conditions
required to apply [33, Theorem 2] for learning rate ηi = c√

i
, giving:

ED,θm [L (D ; θm)]−L (D ; θ∗) ≤
(
R2

c
+ c

(
mpσ2

n
+ L2

))(
2 + log(m)√

m

)
Optimizing the learning rate to be ηi = R

√
n√

(mpσ2+nL2)i
gives the statement of the theorem.

When in addition the loss is β-smooth we can obtain an improved bound on the expected risk
– in this case, for the average parameter vector 1

m

∑
i θi – by applying [11, Theorem 6.3]. Let

hi = ∇θL (D ; θi) be the true gradient on the population loss at each iteration. The cited result says
that after m iterations with learning rate ηi = 1

β+ κ
√
t√

2R

with κ2 ≥ E[‖hi − h̃i‖2] we get

ED,θ1,...,θm

[
L

(
D ;

1

m

m∑
i=1

θi

)]
−L (D ; θ∗) ≤ Rκ

√
2

m
+
βR2

m

The result now follows from observing that

E[‖hi − h̃i‖2] ≤ ES∼Bin(n,1/m)

[
1

S
(L2 + pσ2)

∣∣∣∣S > 0

]
= O

(m
n

(L2 + pσ2)
)

Proof of Proposition 4.4. In Algorithm Asldw, for i ∈ [n−m+ 1], we have

Si = {j : User(j) checks-in for index i}

For i ∈ [n], define an indicator random variable Ei that indicates if Si is empty. Note that the server
performs a dummy gradient update for instance i ∈ [n] if and only if Si is empty (or, in other words,
Ei = 1). Next, for j ∈ [m], let Ij denote the index that user j in Algorithm Afix performs her
Rj-check-in into, where Rj = {j, . . . , j + m − 1}. Thus, for index i ∈ {m, . . . , n −m + 1}, we
have

Pr [Ei = 1] = Pr

 ⋂
j∈[i−m+1,i]

Ij 6= i

 =
∏

j∈[i−m+1,i]

Pr [Ij 6= i] =

(
1− 1

m

)m
≤ 1

e
(9)

where the second equality follows since the check-ins for each user are independent of the others,
and the inequality follows as

(
1− a

b

)b ≤ e−a for b > 1, |a| ≤ b.
Thus, for the expected number of dummy gradient updates, we have:

E(E1:n) =
∑

i∈{m,...,n−m+1}

Pr [Ei = 1] ≤ n−m+ 1

e

where the inequality follows from inequality 9.
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A.1 Proof of Theorems 3.2 and 4.3

We will first prove the privacy guarantee of Afix (Algorithm 1) by reducing it to algorithm Arep
(Algorithm 3) that starts by swapping the first element in the dataset by a given replacement element,
randomly chooses a position in the dataset to get replaced by the original first element with a given
probability, and then carries out DP-SGD with the local randomizer. W.l.o.g., for simplicity we will
define Arep to update the model for 1-sized minibatches (i.e., update at every time step). It is easy
to extend to b-sized minibatch updates by accumulating the gradient updates for every b steps and
then updating the model.

For the proofs that follow, it will be convenient to define additional notation for denoting distance
between distributions. Given 2 distributions µ and µ′, we denote them as µ u(ε,δ) µ

′ if they are
(ε, δ)-DP close, i.e., if for all measurable outcomes S, we have

e−ε (µ′(S)− δ) ≤ µ(S) ≤ eεµ′(S) + δ

Algorithm 3 Arep: DP-SGD with One Random Replacement

Input: Dataset D = d1:m, local randomizer Aldp.
Parameters: Initial model θ1 ∈ Rp, weights w1:m where wi ∈ [0, wmax] for i ∈ [m],
replacement element dr

1: Sample I u.a.r.←−−− [m]
2: Let G← (dr, d2:m)

3: Let σI(D)← (G1:I−1, zI , GI+1:m), where zI =

{
d1 with probability wI
G[I] otherwise

4: for i ∈ [m] do
5: g̃i ← Aldp(θi;σI(D)[i])
6: θi+1 ← θi − ηg̃i
7: Output θi+1

Theorem A.4 (Amplification via random replacement). Suppose Aldp is an ε0-DP local random-
izer. Let Arep : Dm → Θm be the protocol from Algorithm 3. For any δ ∈ (0, 1), algorithm

Arep is (ε, δ)-DP at index 1 in the central model, where ε =
w2
maxe

ε0 (eε0−1)2

2m + wmax(eε0 −

1)
√

2eε0 log (1/δ)
m . In particular, for ε0 ≤ 1 and δ ≤ 1/100, we get ε ≤ 7wmaxε0

√
log(1/δ)

m . Here,
initial model θ1 ∈ Rp, weights wmax ∈ [0, 1], wi ∈ [0, wmax] for every i ∈ [m], and replacement
element dr ∈ [0, 1] are parameters to Arep. Furthermore, if Aldp is an (ε0, δ0)-DP local random-

izer with δ0 ≤ (1−e−ε0 )δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0 ))

) , then algorithm Arep is (ε′, δ′)-DP at index 1 in the central

model, where ε′ =
w2
maxe

8ε0 (e8ε0−1)2

2m +wmax(e8ε0 −1)
√

2e8ε0 log (1/δ)
m and δ′ = δ+m(eε

′
+ 1)δ1.

Proof. We start by proving the privacy guarantee of Arep for the case where the local randomizer
Aldp is ε0-DP, i.e., for the case where δ0 = 0. Let us denote the output sequence of Arep by
Z2, Z3, . . . , Zm+1. Note that Z2:m+1 can be seen as the output of a sequence of m algorithms with
conditionally independent randomness: B(i) for i ∈ [m] as follows. On input θ2:i and D, B(i) out-
puts a random sample from the distribution of Zi+1|Z2:i = θ2:i. The outputs of B(1), . . . ,B(i−1) are
given as input to B(i). Therefore, in order to upper bound the privacy parameters of Arep, we an-
alyze the privacy parameters of B(1), . . . ,B(m) and apply the heterogeneous advanced composition
for DP [24].

Next, observe that conditioned on the value of I , Zi+1 is the output of A(i)
ldp(θi; d) with its internal

randomness independent of Z2:i. In particular, for i ≥ 2, one can implement B(i) as follows. First,
sample an index T from the distribution of I|Z2:i = θ2:i. Assign g̃i = Aldp(θi; d1) w.p. wi if
T = i, otherwise let g̃i = Aldp(θi; di). For B(1), we first sample T u.a.r. from [m], and let
g̃1 = Aldp(θ1; d1) w.p. w1 if T = 1, otherwise let g̃1 = Aldp(θ1; dr). For each i ∈ [m], algorithm
B(i) outputs θi+1 = θi − ηg̃i.
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We now prove that for each i ∈ [m], B(i) is
(

log
(

1 + wmaxe
ε0 (eε0−1)

i−1+eε0 (m−i+1)

)
, 0
)

-DP at index 1. Let
D = d1:m and D′ = (d′1, d2:m) be 2 datasets differing in the first element. Let θ2:i denote the
input to B(i). Let µ be the probability distribution of B(i)(θ2:i;D). Let µ1 be the distribution
of B(i)(θ2:i;D) conditioned on g̃i = Aldp(θ2:i; d1), and µ0 be the distribution of B(i)(θ2:i;D)
conditioned on g̃i = Aldp(θ2:i; dr) for i = 1, and g̃i = Aldp(θ2:i; di) for i ≥ 2. Also, denote by
µ′, µ′0, and µ′1 the corresponding quantities when B(i) is run on D′. Let qi be the probability that
T = i (sampled from I|Z2:i = θ2:i). By definition, µ = (1− qiwi)µ0 + qiwiµ1, as B(i)(s1:i−1;D)
generates output usingAldp(θ2:i; d1) w.p. wi if T = i. Similarly, µ′ = (1−q′iwi)µ′0 +q′iwiµ

′
1 when

the input dataset is D′.

For i ∈ [m], we observe that µ0 = µ′0, since in both cases the output is generated by Aldp(θ1, dr)
for i = 1, and Aldp(θ2:i; di) for i ≥ 2. W.l.o.g. assume that qi ≥ q′i. Thus, we can shift (qi − q′i)wi
mass from the first component of the mixture in µ′ to the second component to obtain

µ′ = (1− qiwi)µ0 + qiwi

(
q′i
qi
µ′1 +

(
1− q′i

qi

)
µ0

)
= (1− qiwi)µ0 + qiwiµ

′′
1

This shows that µ and µ′ are overlapping mixtures [5]. Now, ε0-LDP of Aldp implies µ0 u(ε0,0) µ1

and µ′0 u(ε0,0) µ
′
1. Moreover, ε0-LDP of Aldp also implies µ1 u(ε0,0) µ

′
1, so by the joint convexity

of the relation u(ε0,0) we also have µ1 u(ε0,0) µ
′′
1 . Thus, we can apply Advanced Joint Convexity

of overlapping mixtures (Theorem 2 in [5]) to get that
µ u(log(1+qiwi(eε0−1)),0) µ

′ (10)

We now claim that qi ≤ eε0

i−1+eε0 (m−i+1) . Observe that for each D∗ ∈ {D,D′}, conditioning on
T = i reduces Arep to running Aldp on σi(D∗). Note that for j < i, we have that σi(D∗)[1 : i− 1]
differs from σj(D

∗)[1 : i − 1] in at most 1 position, and for j > i, we have σi(D∗)[1 : i − 1] =
σj(D

∗)[1 : i− 1]. Since Pr[j ≥ i] = m−i+1
m , by setting q = m−i+1

m in Lemma A.1, we get that
Pr[Z2:i = θ2:i|T = i]

Pr[Z2:i = θ2:i]
≤ eε0

1 + (m−i+1)
m (eε0 − 1)

=
meε0

i− 1 + eε0(m− i+ 1)
(11)

This immediately implies our claim, since we have

qi = Pr[T = i|Z2:i = θ2:i] =
Pr[Z2:i = θ2:i|T = i] ·Pr[t = i]

Pr[Z2:i = θ2:i]

≤ eε0

i− 1 + eε0(m− i+ 1)

where the inequality follows from inequality 11, and as Pr[T = i] = 1
m .

Substituting the value of qi in equation 10, and using the fact that wi ≤ wmax, we get that for
each i ∈ [m], algorithm B(i) is (εi, 0)-DP at index 1, where εi = log

(
1 + wmaxe

ε0 (eε0−1)
i−1+eε0 (m−i+1)

)
.

This can alternatively be written as εi = log

(
1 + wmax(eε0−1)

m−(i−1) e
ε0−1
eε0

)
, and using Lemma A.2 for the

sequence of mechanisms B(1), . . . ,B(m) by setting a = wmax(eε0 − 1), b = eε0−1
eε0 , and k = m,

we get that algorithm Arep satisfies (ε, δ)-DP at index 1, for ε =
w2
maxe

ε0 (eε0−1)2

2m + wmax(eε0 −

1)
√

2eε0 log (1/δ)
m .

Now, for the above bound, if ε0 ≤ 1 and δ ≤ 1/4, we get that

ε =
w2
maxe

ε0(eε0 − 1)2

2m
+ wmax(eε0 − 1)

√
2eε0 log (1/δ)

m

=
wmaxe

0.5ε0(eε0 − 1)√
m

(
wmaxe

0.5ε0(eε0 − 1)

2
√
m

+
√

2 log (1/δ)

)
≤ 3wmaxε0√

m

(
3wmaxε0

2
√
m

+
√

2 log (1/δ)

)
≤ 3wmaxε0√

m

((√
2 +

√
1/2
)√

log (1/δ)
)
≤ 7wmaxε0

√
log (1/δ)

m

18



where the first inequality follows since e0.5ε0(eε0 − 1) ≤ 3ε0 for ε0 ≤ 1, and the second inequality

follows since 3wmaxε0
2
√
m
≤
√

log 1
δ

2 for δ ≤ 1/100.

Now, we prove the privacy guarantee of Arep for the more general case where for each i ∈ [m], the
local randomizerAldp is (ε0, δ0)-DP. To upper bound the privacy parameters ofArep, we modify the
local randomizer to satisfy pure DP, apply the previous analysis, and then account for the difference
between the protocols with original and modified randomizers using the total variation distance.

Since Aldp is (ε0, δ0)-DP with δ0 ≤ (1−e−ε0 )δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0 ))

) , we get from Lemma A.3 that there

exists a randomizer Ãldp that is 8ε0-DP, and for any data record d and parameter vector θ satisfies

TV
(
Aldp(d; θ), Ãldp(d; θ)

)
≤ δ1. After replacing every instance of Aldp in Arep with Ãldp to

obtain Ãrep, a union bound gives:

TV
(
Arep(D); Ãrep(D)

)
≤ mδ1 (12)

Now, proceeding in a similar manner as in the case of ε0-DP local randomizers above to see
that Ãrep using the 8ε0-DP local randomizers Ãldp satisfies (ε′, δ)-DP at index 1 with ε′ =
w2
maxe

8ε0 (e8ε0−1)2

2m + wmax(e8ε0 − 1)
√

2e8ε0 log (1/δ)
m . Thus, using Proposition 3 from [39] and

inequality 12, we get that Arep satisfies (ε′, δ′)-DP at index 1 with δ′ = δ +m(eε
′
+ 1)δ1.

Now, we are ready to prove Theorems 3.2 and 4.3.

Proof of Theorem 3.2. Let D and D′ be 2 datasets of n users that differ in a user at some index
i∗ ∈ [n]. Algorithm Afix can be alternatively seen as follows. The server starts by initializing
F = [0p]m, weights W = [1]m, and for i ∈ [m], set Si = φ. For each user j ∈ [n] s.t. j 6= i∗,
user j performs a random check-in along with some additional operations. She first samples Ij u.a.r.
from [m], and w.p. p0 does the following: she requests the server for model at index Ij (and gets
inserted into set SIj at the server). She also updates F [Ij ] = dj with probability W [Ij ], and sets
W [Ij ] =

W [Ij ]
W [Ij ]+1 . Next, the server runs Arep on input dataset π∗(D) = (di∗ , F [2 : m]), with

the replacement element F [1], initial model θ1, and weight parameters set to W ′[1 : m], where
W ′[i] = W [i] · p0.

First, notice that in the alternative strategy above, for each of the weights W [i], i ∈ [m], it always
holds that W [i] = 1

|Si| . Thus, each weight W [i], i ∈ [m] is updated to simulate reservoir sam-
pling [37] of size 1 in slot F [i]. In other words, updating F [i] = d with probability W [i] for an
element d is equivalent to F [j]

u.a.r.←−−− Si, where Si is the set containing d and all the elements pre-
viously considered for updating Si. As a result, since the first element in Arep performs a random
replacement with weights set to W ′[1 : m] for its input dataset, it is easy to see that performing a
concurrent random check-in for user i∗ (as in Algorithm 1) is equivalent to performing a random
replacement for her after the check-ins of all the other users.

From our construction, we know that datasets π∗(D) and π∗(D′), which are each of lengthm, differ
only in the element with index 1. Moreover, in the alternative strategy above, note that the weights
W ′[1 : m] and the replacement element F [1] input to Arep are independent of the data of user i∗ in
the original dataset. Therefore, in the case δ0 = 0, using Theorem A.4 and setting wmax = p0, we

get Arep(π∗(D)) uε,δ Arep(π∗(D′)) at index 1, for ε = p2eε0 (eε0−1)2

2m +
p(eε0−1)

√
2eε0 log (1/δ)

m ,

which implies Adist(D) uε,δ Adist(D′). Consequently, it implies ε ≤ 7p0ε0

√
log(1/δ)

m for ε0 < 1

and δ < 1/100.

The case δ0 > 0 follows from the same reduction using the corresponding setting of Theorem A.4.

Proof of Theorem 4.3. We proceed similar to the proof of Theorem 3.2. Let D and D′ be 2 datasets
of n users that differ in a user at some index i∗ ∈ [n]. Algorithm Asldw can be alternatively seen
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as follows. The server starts by initializing F = [0p]n−m+1, weights W = [1]n−m+1, and for
j ∈ {m, . . . , n}, set Sj = φ. For each user j ∈ [n] s.t. j 6= i∗, user j performs a random check-in
along with some additional operations. She first samples Ij u.a.r. from {j, . . . , j+m− 1}, requests
the server for model at index Ij (and gets inserted into set SIj at the server). She also updates
F [Ij ] = dj with probability W [Ij ], and sets W [Ij ] =

W [Ij ]
W [Ij ]+1 .

Now, the server runs its loop until it releases i∗ − 1 outputs. Next, the server runs Arep on input
dataset π∗(D) = (di∗ , F [i∗+1 : i∗+m]), with weight parameters set toW [i∗ : i∗+m], initializing
model θi∗ , and the replacement element F [i∗]. Lastly, the server releases the last (n− (i∗+m) + 1)
outputs of Asldw using F [i∗ +m+ 1 : n] and the local randomizer Aldp.

First, notice that in the alternative strategy above, for each of the weights W [i], i ∈ [n], it always
holds that W [i] = 1

|Si| . Thus, each weight W [i], i ∈ [n] is updated to simulate reservoir sam-
pling [37] of size 1 in slot F [i]. In other words, updating F [i] = d with probability W [i] for an
element d is equivalent to F [i]

u.a.r.←−−− Si, where Si is the set containing z and all the elements
previously considered for updating Si. As a result, since the first element in Arep performs a ran-
dom replacement for its input dataset (which doesn’t include F1:i∗−1

⋃
Fi∗+m+1:n in the alternative

strategy above), it is easy to see that sequentially performing a random check-in for user i∗ (as in
Algorithm 1) is equivalent to performing a random replacement for her after the check-ins of all the
other users and releasing the first i∗ − 1 outputs of Asldw.

From our construction, we know that datasets π∗(D) and π∗(D′), which are each of length m,
differ only in the element with index 1. Moreover, in the alternative strategy above, note that the
weights W [i∗ : i∗ + m], initializing model θi∗ and the replacement element F [i∗] input to Arep
are independent of the data of user i∗ in the original dataset. Therefore, using Theorem A.4 and
setting wmax = 1, we get Arep(π∗(D)) uε,δ+mδ0 Arep(π∗(D′)) at index 1, for ε = eε0 (eε0−1)2

2m +

(eε0 − 1)
√

2eε0 log (1/δ)
m , which implies Arc(D) uε,δ+mδ0 Arc(D′). Consequently, it implies ε ≤

7ε0

√
log(1/δ)

m for ε0 < 1 and δ < 1/100.

The case δ0 > 0 follows from the same reduction using the corresponding setting of Theorem A.4.

A.2 Proof of Theorem 4.1

Let L = (L1, . . . , Lm) represent the number of users contributing to each of the update steps, i.e.,
Li = |Si| for i ∈ [m]. We start by considering the output distribution of Aavg(D) conditioned on
L = ` for some ` ∈ [n]m s.t.

∑
i `i = n. This distribution is the same as the one produced by

Algorithm 4 with bin sizes ` on a random permutation π(D) of the original dataset D. To analyze
the privacy of Abin(π(D), `) we use the reduction from shuffling to swapping [19] . This reduction
says it suffices to analyze the privacy ofD 7→ Abin(σ(D), `) on a pair of datasetsD andD′ differing
in the first record, where σ(D) randomly swaps d1 with dI for I uniformly sampled from [n].

Algorithm 4 Abin: DP-SGD with Bins

Input: Dataset D = d1:n, bin sizes ` ∈ [n]m with
∑
i `i = n, local randomizer Aldp

1: Initialize model θ1 ∈ Rp
2: j ← 1
3: for i ∈ [m] do
4: if `i = 0 then
5: θi+1 ← θi
6: else
7: g̃i ← 0
8: for k ∈ {j, . . . , j + `i − 1} do
9: g̃i ← g̃i +Aldp(dk, θi)

10: j ← j + `i
11: θi+1 ← ModelUpdate(θi; g̃i/`i)
12: return sequence θ2:m+1
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Theorem A.5. Suppose Aldp : D × Θ → Θ is an ε0-DP local randomizer. Let ` ∈ [m]n with∑
i `i = n. Also, for any dataset D = {d1, . . . , dn}, define σ(D) be the operation that randomly

swaps d1 with dI for I uniformly sampled from [n]. For any δ ∈ (0, 1), the mechanism M(D) =

Abin(σ(D), `) is (ε, δ)-DP at index 1 with ε =
‖`‖22e

4ε0 (eε0−1)2

2n2 +
‖`‖2e

2ε0 (eε0−1)

n

√
2 log(1/δ).

Furthermore, if Aldp is (ε0, δ0)-DP with δ0 ≤ (1−e−ε0 )δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0 ))

) , then M is (ε′, δ′)-DP with

ε′ =
‖`‖22e

32ε0 (e8ε0−1)2

2n2 +
‖`‖2e

16ε0 (e8ε0−1)

n

√
2 log(1/δ) and δ′ = δ +m(eε

′
+ 1)δ1.

Proof. Let σ(D) = (d̃1, . . . , d̃n) denote the dataset after the swap operation. Using the bin
sizes `, we split this dataset into m0 disjoint datasets D̃1, . . . , D̃m0

of sizes |D̃i| = `i with
D̃1 = (d̃1, . . . , d̃`1), and so on. Note that each of the outputs is obtained as θi+1 ← A(i)(θi; D̃i)
with

A(i)(θi; D̃i) = ModelUpdate

θi; 1

`i

∑
d̃∈D̃i

Aldp(d̃, θi)


By post-processing, each of the A(i) is (ε0, δ0)-DP.

The next step is to modify these mechanisms to reduce the analysis to a question about adaptive
composition. Thus, we introduce mechanisms B(i) for i ∈ [m0] that take as input the whole dataset
D and the outputs θ1:i = (θ1, . . . , θi) of the previous mechanisms. Mechanism B(i) starts by
splitting the dataset D into m0 disjoint datasets D1, . . . , Dm0

of sizes |Di| = `i as above. Then, it
returnsA(i)(θi; D̄i) for a dataset D̄i of size `i constructed as follows: with probability pi = Pr[d1 ∈
D̃i|θ1:i] it takes D̄i to be the dataset obtained by replacing a random element from Di with d1, and
with probability 1 − pi it takes D̄i = Di. Note this construction preserves the output distribution
since for any θ we have

Pr[A(i)(θi; D̃i) = θ|θ1:i] = (1− pi)Pr[A(i)(θi;Di) = θ|θ1:i, d1 /∈ D̃i]

+
pi
`i

∑
d∈Di

Pr[A(i)(θi;Di ∪ {d1} \ {d}) = θ|θ1:i, d1 ∈ D̃i]

= Pr[B(i)(θ1:i;D) = θ]

To bound the probabilities pi we write:

pi = Pr[d1 ∈ D̃i|θ1:i]

=
Pr[θ1:i|d1 ∈ D̃i]Pr[d1 ∈ D̃i]

Pr[θ1:i]

=
`i
n

Pr[θ1:i|d1 ∈ D̃i]∑
k∈[m0] Pr[θ1:i|d1 ∈ D̃k]Pr[d1 ∈ D̃k]

=
`i∑

k∈[m0] `k
Pr[θ1:i|d1∈D̃k]

Pr[θ1:i|d1∈D̃i]

To proceed, we assume δ0 = 0. If that is not the case, then the same argument based on Lemma A.3
used in the proof of Theorem A.4 allows us to reduce the analysis to the case δ0 = 0 and modify the
final ε and δ accordingly. When the local randomizers satisfy pure DP, we have∑

k∈[m0]

`k
Pr[θ1:i|d1 ∈ D̃k]

Pr[θ1:i|d1 ∈ D̃i]
≥ `i + e−2ε0

∑
k<i

`k + e−ε0
∑
k>i

`k

≥ e−2ε0n

Thus we obtain pi ≤ e2ε0`i/n. Now, the overlapping mixtures argument used in the proof of Theo-
rem A.4 (see [5]) shows that B(i) is εi-DP with εi ≤ log(1 + e2ε0(eε0 − 1)`i/n). Furthermore, the
heterogenous advanced composition theorem [24] implies that the composition of B(1), . . . ,B(m0)
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satisfies (ε, δ)-DP with

ε =
∑
i∈[k]

(eεi − 1)εi
eεi + 1

+

√√√√2 log
1

δ

∑
i∈[k]

ε2
i

≤
(eε0 − 1)2e4ε0 ‖`‖22

2n2
+

√
2(eε0 − 1)2e4ε0 ‖`‖22

n2
log

1

δ

To conclude the proof of Theorem 4.1, we provide a high probability bound for ‖L‖2 for random L
representing the loads of m bins when n balls are thrown uniformly and independently.
Lemma A.6. Let L = (L1, . . . , Lm) denote the number of users checked in into each of m update
slots in the protocol from Figure 2. With probability at least 1− δ, we have

‖L‖2 ≤
√
n+

n2

m
+
√
n log(1/δ).

Proof. The proof is a standard application of McDiarmid’s inequality. First note that ‖L‖2 is a
function of n i.i.d. random variables indicating the bin where each ball is allocated. Since changing
the assignment of one ball can only change ‖L‖2 by

√
2, we have

‖L‖2 ≤ E ‖L‖2 +
√
n log(1/δ)

with probability at least 1− δ. Finally, we use Jensen’s inequality to obtain

E [‖L‖2] ≤
√
E
[
‖L‖22

]
=

√∑
i∈[m]

E [L2
i ] =

√
mE [Bin(n, 1/m)2]

=

√
m

(
n

m

(
1− 1

m

)
+
n2

m2

)
≤
√
n+

n2

m

The privacy claim in Theorem 4.1 follows from using Lemma A.6 to condition with probability at
least 1− δ2 to the case where L is such that

‖L‖2
n
≤
√

1

n
+

1

m
+

√
log(1/δ2)

n
,

and for each individual event L = ` satisfying this condition, applying the analysis from Theo-
rem A.5 after the reduction from shuffling to averaging (see, e.g., the proof of Theorem 5.1 below).

A.3 Proof of Theorem 5.1

Algorithm 5 Asl: Local responses with shuffling

Input: Dataset D = d1:n, algorithms A(i)
ldp : S(1) × · · · × S(i−1) ×D → S(i) for i ∈ [n].

1: Let π be a uniformly random permutation of [n]
2: for i ∈ [n] do
3: si ← A(i)

ldp(s1:i−1; dπ(i))
4: return sequence s1:n

We will prove the privacy guarantee of Asl (Algorithm 5) in a similar manner as in the proof of
Theorem 7 in [19]: by reducing Asl to Aswap that starts by swapping the first element with a u.a.r.
sample in the dataset, and then applies the local randomizers (Algorithm 6). They key difference
between our proof and the one in [19] is that we provide tighter, position-dependent privacy guaran-
tees for each of the outputs of Aswap, and then use an heterogeneous adaptive composition theorem
from [24] to compute the final privacy parameters.
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Algorithm 6 Aswap: Local responses with one swap

Input: Dataset D = d1:n, algorithms A(i)
ldp : S(1) × · · · × S(i−1) ×D → S(i) for i ∈ [n].

1: Sample I u.a.r.←−−− [n]
2: Let σI(D)← (dI , d2, . . . , dI−1, d1, dI+1, . . . , dn)
3: for i ∈ [c] do
4: si ← A(i)

ldp(s1:i−1;σI(D)[i])
5: return sequence s1:n

Theorem A.7. (Amplification by swapping) For a domain D, letA(i)
ldp : S(1)× · · · ×S(i−1)×D →

S(i) for i ∈ [n] (where S(i) is the range space of A(i)
ldp) be a sequence of algorithms s.t. A(i)

ldp

is ε0-DP for all values of auxiliary inputs in S(1) × · · · × S(i−1). Let Aswap : Dn → S(1) ×
· · · × S(n) be the algorithm that given a dataset D = d1:n ∈ Dn, swaps the first element in
D with an element sampled u.a.r. in D, and then applies the local randomizers to the resulting
dataset sequentially (see Algorithm 6). Aswap satisfies (ε, δ)-DP at index 1 in the central model,

for ε = e3ε0 (eε0−1)2

2n + e3ε0/2(eε0 − 1)
√

2 log (1/δ)
n . Furthermore, if the A(i) are (ε0, δ0)-DP with

δ0 ≤ (1−e−ε0 )δ1

4eε0

(
2+

ln(2/δ1)

ln(1/(1−e−5ε0 ))

) , then Aswap is (ε′, δ′)-DP with ε′ = e24ε0 (e8ε0−1)2

2n + e12ε0(e8ε0 −

1)
√

2 log (1/δ)
n and δ′ = δ +m(eε

′
+ 1)δ1.

Proof. We start by proving the privacy guarantee of Aswap for the case where for each i ∈ [c], the
local randomizer A(i)

ldp is ε0-DP, i.e., for the case where δ0 = 0. Let us denote the output sequence
ofAswap by Z1, Z2, . . . , Zn. Note that Z1:n can be seen as the output of a sequence of n algorithms
with conditionally independent randomness: B(i) : S(1) × · · · × S(i−1) × Dn → S(i) for i ∈ [n].
On input s1:i−1 and D, B(i) outputs a random sample from the distribution of Zi|Z1:i−1 = s1:i−1.
The outputs of B(1), . . . ,B(i−1) are given as input to B(i). Therefore, in order to upper bound the
privacy parameters of Aswap, we analyze the privacy parameters of B(1), . . . ,B(n) and apply the
heterogeneous advanced composition for DP [24].

Next, observe that conditioned on the value of I , Zi is the output of A(i)
ldp(s1:i−1; d) with its internal

randomness independent of Z1:i−1. In particular, for i ≥ 2, one can implement B(i) as follows.
First, sample an index T from the distribution of I|Z1:i−1 = s1:i−1. Output A(i)

ldp(s1:i−1; d1) if

T = i, otherwise output A(i)
ldp(s1:i−1; di). For B(1), we first sample T u.a.r. from [n], and then

output A(1)
ldp(dT ).

We now prove that for each i ∈ [c], B(i) is
(

log
(

1 + e2ε0 (eε0−1)
e2ε0+(i−1)+(n−i)eε0

)
, 0
)

-DP at index 1.
Let D = d1:n and D′ = (d′1, d2:n) be 2 datasets differing in the first element. Let s1:i−1 denote
the input to B(i). Let µ be the probability distribution of B(i)(s1:i−1;D), and let µ0 (resp. µ1) be
the distribution of B(i)(s1:i−1;D) conditioned on T 6= i (resp. T = i). Let qi be the probability
that T = i (sampled from I|Z1:i−1 = s1:i−1). By definition, µ = (1 − qi)µ0 + qiµ1. Also,
denote by µ′, µ′0, µ′1, and q′i the corresponding quantities when B(i) is run on D′. Thus, we get
µ′ = (1− q′i)µ′0 + q′iµ

′
1.

For i ∈ [n], we observe that µ0 = µ′0, since in both cases the output is generated by A(i)
ldp(dT )

conditioned on T 6= 1 for i = 1, and A(i)
ldp(s1:i−1; di) for i ≥ 2. W.l.o.g. assume that qi ≥ q′i. Thus,

we can shift qi − q′i mass from the first component of the mixture in µ′ to the second component to
obtain

µ′ = (1− qi)µ0 + qi

(
q′i
qi
µ′1 +

(
1− q′i

qi

)
µ0

)
= (1− qi)µ0 + qiµ

′′
1
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This shows that µ and µ′ are overlapping mixtures [5]. Now, ε0-LDP of A(i)
ldp implies µ0 u(ε0,0) µ1

and µ0 u(ε0,0) µ
′
1. Moreover, ε0-LDP of A(i)

ldp also implies µ1 u(ε0,0) µ
′
1, so by the joint convexity

of the relation u(ε0,0) we also have µ1 u(ε0,0) µ
′′
1 . Thus, we can apply Advanced Joint Convexity

of overlapping mixtures (Theorem 2 in [5]) to get that

µ u(log(1+qi(eε0−1)),0) µ
′ (13)

We now claim that qi ≤ e2ε0

e2ε0+(i−1)+(n−i)eε0 . Observe that for each D∗ ∈ {D,D′}, conditioning

on T = i reduces Aswap to running A(k)
ldp, k ∈ [n] on σi(D∗). Note that σi(D∗)[1 : i − 1] differs

from σj(D
∗)[1 : i− 1] in at most 2 positions for j < i, and at most 1 position for j > i. By ε0-LDP

of A(k)
ldp, k ∈ [n], we get that

Pr[Z1:i−1 = s1:i−1|T = i]

Pr[Z1:i−1 = s1:i−1|T = j]
≤ e2ε0 for j < i and

Pr[Z1:i−1 = s1:i−1|T = i]

Pr[Z1:i−1 = s1:i−1|T = j]
≤ eε0 for j > i (14)

Now, on the lines of the proof of Lemma A.1, we have:

Pr[Z1:i−1 = s1:i−1|T = i]

Pr[Z1:i−1 = s1:i−1]

=
Pr[Z1:i−1 = s1:i−1|t = i]

n∑
j=1

Pr[Z1:i−1 = s1:i−1|T = j]Pr[T = j]

=
1

n∑
j=1

Pr[Z1:i−1=s1:i−1|t=j]
Pr[Z1:i−1=s1:i−1|t=i] Pr[T = j]

=
n

1 + (i− 1)
∑
j<i

Pr[Z1:i−1=s1:i−1|T=j]
Pr[Z1:i−1=s1:i−1|T=i] + (n− i)

∑
k>i

Pr[Z1:i−1=s1:i−1|T=k]
Pr[Z1:i−1=s1:i−1|T=i]

≤ n

1 + (i− 1)e−2ε0 + (n− i)e−ε0
=

ne2ε0

e2ε0 + (i− 1) + (n− i)eε0

where the third equality follows as for every j ∈ [n],Pr[T = j] = 1
n , and the first inequality follows

from inequality 14.

This immediately implies our claim, since

qi = Pr[T = i|Z1:i−1 = s1:i−1] =
Pr[Z1:i−1 = s1:i−1|T = i] ·Pr[T = i]

Pr[Z1:i−1 = s1:i−1]

≤ e2ε0

e2ε0 + (i− 1) + (n− i)eε0

where the inequality follows from (11), and as Pr[T = i] = 1
n . Substituting the value

of qi in (13), we get that for each i ∈ [n], algorithm B(i) is (εi, 0)-DP at index 1, where

εi = log
(

1 + e2ε0 (eε0−1)
e2ε0+(i−1)+(n−i)eε0

)
. This results in εi ≤ log

(
1 + eε0 (eε0−1)

n−(i−1)(1− 1
eε0 )

)
, and us-

ing Lemma A.2 for the sequence of mechanisms B(1), . . . ,B(n) by setting a = eε0(eε0 − 1),
b = 1 − 1

eε0 , and k = n, we get that algorithm Aswap satisfies (ε, δ)-DP at index 1, for

ε = e3ε0 (eε0−1)2

2n + e3ε0/2(eε0 − 1)
√

2 log (1/δ)
n .

The case δ0 > 0 uses the same argument based on Lemma A.3 used in the proof of Theorem A.4.
This arguments allows us to reduce the analysis to the case δ0 = 0 and modify the final ε and δ
accordingly.

Now, we are ready to prove Theorem 5.1.
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Proof of Theorem 5.1. This proof proceeds in a similar manner as the proof of Theorem 7 in [19].
Let D and D′ be 2 datasets of length n that differ at some index i∗ ∈ [n]. Algorithm Asl can be
alternatively seen as follows. Pick a random one-to-one mapping π∗ from {2, . . . , n} → [n] \ {i∗}
and let π∗(D) = (di∗ , dπ∗(2), . . . , dπ∗(n)). Next, apply Aswap to π∗(D). It is easy to see that for a
u.a.r. chosen π∗ and u.a.r. I ∈ [n], the distribution of σI(π∗(D)) is a uniformly random permutation
of elements in D.

For a fixed π∗, we know that π∗(D) and π∗(D′) differ only in the element with index 1. Therefore,
in the case δ0 = 0, from Theorem A.7, we get Aswap(π∗(D)) uε,δ Aswap(π∗(D′)) at index 1, for

ε = e3ε0 (eε0−1)2

2n + e3ε0/2(eε0 − 1)
√

2 log (1/δ)
n , which implies Asl(D) uε,δ Asl(D′).

The case δ0 > 0 follows similarly from the corresponding setting of Theorem A.7.
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