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Appendix A  Proof of Theorem]]

Lemma 1. Foranym € Il;, t € {0,...,L — 1}, and k € N, the composition of k one-step c-persistent Bellman operators
(1,7 - T(7tT+k—1) mod 1) Satisfies:

tk—1
(T T Ek—1) moa L@)(8,0) = Evr s P(s,.a.) Z VT R(5r,Gr) + Y Q(Staky Gegn) | St =8, Gy = UL‘|

T=t

where @11 =171 5 (T(r41) mod L(@r,8r41)) forT =1, ., t+k—1
Proof. We give a proof based on induction. For k = 1,
(T7Q)(s,a) =K, ~p(|ss,a0) [R(st; 1) + YQ(S141,Gr41) | 8¢ = 5,8 = a
where Gy 1 = T'f 11 4, (T(¢41) mod £(@t, 5¢41))

holds by the definition of one-step c-persistent Bellman operator 7, (Eq. (3))). Now, assume the induction hypothesis for k.
Then,

(7;7‘- e 7-(t+k—1) mod L(,Yi(:‘:rk) mod LQ)) (S’ a)

t+k—1
:]EVT7ST+1NP("ST7(_1T) [ Z ’YT_tR(S‘H a‘7') =+ ’Yk(7’(;‘r+k) mod LQ)(St‘Hf’ a‘t‘f‘k) St = 8, a’t = a]

T=t
where -1 =I5 1 5 (T(r41) mod L(@r,8741)) forT =1, t+k—1
(by the induction hypothesis)
t+k—1
=Evr s, 1 ~P(|sr,ar) [ Z Y R(sr,ar) + A" (R(ka, At k)
T=t

FYQ(St4k+1, Tt 1,00, (T(t4k41) mod L (@ttks 5t+k+1))>> ‘ st =8, Gy = a]

where a1 =17 1 4 (T(r41) mod £(r, Sr41)) forT =1, t+k—1

t+k
—t = k+1 - ~
=Evr s, 1 1~P(srar) [Z Y R(sr, A7) +y + Q(Stk+1, Tttke+1) ‘ St =85, At = a]

T=t
where @, 11 =17 1 5 (T(r41) mod £(r,Sr41)) form=1t,...;t+k
thus the given statement holds for k& + 1, which concludes the proof. O

Theorem Forallt € {0,...,L — 1}, the L-step c-persistent Bellman operator HT is yF-contraction with respect to
infinity norm, thus HF QF = QT has the unique fixed point solution. In other words, for any Q) : S x A — R, define
?"'1 = H] Q7. Then, the sequence QQ} converges to t-th c-persistent value function of T as n — oo.

Proof. By Lemmall] for any ¢,s,a,and Q1 : S x A - Rand Q2 : S x A — R,
‘HtﬂQl(Saa) - HZTQQ(S#)’ = ‘EVT,ST+1NP("ST,ELT) [’YLQl(St+L,C_lt+L) — Y Qa(se4r, ryr) | st = 5,8 = a} ’
where ar1 =711 5 (T(r41) mod L(@r;Sr41)) forT=1¢,..., 1+ L —1
Qui(s',d’) - Qz(slﬂl)‘
S HTQL - ﬁszHw < ’YLHQl - QzHOC

Therefore, HT is y~-contraction with respect to infinity norm, and by Banach fixed-point theorem, HF QT = QT has the
unique fixed point solution for all ¢.

< ’yL max
s’,a’

A deeper discussion on the Bellman operators with a periodic non-stationary policy can be found in [[10, [18] though it
analyzes the error in approximate policy/value iterations, rather than considering action persistence.
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Corollary QF = 7_;77@?;5-&-1) mod 1, holds for all t € {0, ..., L — 1}, thus c-persistent value functions can be obtained
by repeatedly applying 1-step c-persistent backup in a L-cyclic manner.
Proof.

QFf =HQT = HTH[QT = HTHFH[QT = - -- (by Theorem [T))

= 7_?7_—(7::T+1) mod L *** 7_—(¥+L71) mod L 7—?7——(:;“) mod L * - 77?+L71) mod L Q?

HY Hy

= 7? 7_-(7tr+1) mod L ** '7_—(?+L71) mod L7_7T 7_'(f+1) mod L * * - 777tr+L71) mod LQ%?

H(ﬂ:&«kl) mod L éQ
= 7THZ;+1) mod L@ =""=T" T}LH;O(H(ZH) mod )" @
= 7—?@@“) mod L (by Theorem T)) O

Appendix B Proof of Theorem 2|

Theorem 2| Given a L-periodic, non-stationary, and deterministic policy 7 = (mo,...,m—1) € Iy, let QT be the
c-persistent value of T denoted in Eq. (7). If we update the new policy 7% = (g%, ..., 7% € II, by
Vt,a,s', ™% (a,s’) = argmax Qf(s’, Ffﬁa(a')) @)

a

then QT (s,a) > QT (s, a) holds for all t, s, a.

Proof. For any t, s, a,

Q7 (s,a)

=Ep |R(s¢,a¢) + VQ@H) mod L(8t41, Uiyt a, (T(t41) moa (@, $t4+1))) | 8¢ = 8,8 = a}
<Ep {R(Sta @) +YQ41) mod £ (St+1: Ti1a, (T mod £.(@es 5641))) | s¢ = 8,80 = CL} (by Eq. (&)

=Ep |R(s;,a) + '7<R(3t+17 apy1) + ’YQ?HQ) mod L (5t+27 P§+2,at+1 (T(t42) mod £(Ge41, 5t+2)))) | s¢ = s,a, = a]
new

_ _ Te —
where at41 = Ft+1,ﬁt (Tr(t+1) mod L(at’ St+1))

[t+1
=Ep iWTﬁtR(Sm ar) + 7V’ Qr2) moa £ (5142, T2,y (M(142) mod £(At41, 5142))) | 8¢ = 5,00 = a
Lr=t ]
wher; art1 =741 6 (T(541) mod £.(@ry Sr41)) for 7 =1
e }
<SEp | 47 "R(sr,@r) + Y Q) mod (5142 Tivna,y (T00%) wmod £ (@41, 5642))) | 50 = 5,8 = a
L=t i
where ar 1 =171 5 (7731 nod £(@r, Sr41)) for 7 =1
io _
=Ep tiWT_tR(ST, a.) + 73Q@+3) mod L (5643, LY isa0,s (T(t43) mod L(Gt+2, s143))) | st =s,ar = a
LT=t J

where Gr41 = F‘tr:'+l.,(17. (szil) mod L(a‘Tv ST+1)) forr = t, 1+ 1

oo
<Ep Z'YTﬁtR(STaaT) | St =5,at = @

T=t
where ar 1 =17 o (773 o £(@rs srq1)) form =8, t+1, t+2,...
= Q?"ew (8, CL)
where each of inequalities holds by Eq. (8], and this concludes the proof. O
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Appendix C Proof of Theorem 3]
We first define the following one-step c-persistent Bellman optimality operator:
(T7Q)(5,0) 2 Eyp(sa) [R(s, ) +ymax Q(s', Ty 4(a)) an

Note that the one-step c-persistent Bellman optimality operators are L-periodic with respect to ¢ due to the L-periodic
nature of the projection operator 'y , (a). Therefore, 7,*Q = 7., ; Q always holds for any ¢ and Q. Then, similar to Eq. (6)),
we define an L-step c-persistent Bellman optimality operator H; by making the composition of L one-step c-persistent
Bellman optimality operators:

(1>

(To T T 5T 1Q) (s, a) (12)
(' T - T AT Q) (s, a)

(H;Q)(s,a)
17Q) (s, a)

(1>

=
S

(HEAQ)(&@) £ (7_2117_6* : "7_—5737_?72@)(5&)

Similar to L-step c-persistent Bellman operators, we can show that L-step c-persistent Bellman optimality operators are
contraction mapping.

Lemma 2. Forallt € {0,..., L — 1}, the L-step c-persistent Bellman optimality operator H; is vF-contraction with
respect to infinity norm, thus H; Q} = Qj has the unique fixed point solution. In other words, for any QY : S x A — R,
define Q?'H = H} QY. Then, the sequence Q} converges to t-th c-persistent optimal value function as n — oo.

Proof. Without loss of generality, it is sufficient to prove when ¢ = 0.

Forany Q1 :S X A—-R,Qy:SxA—R,andsg € S,ag € A,

|(HsQ1)(s0,a0) — (H3Q2)(s0, ao)]
=[(To' T+ Ti_1@Q1)(s0,a0) — (ToT1" -+ - Ti—1Q2) (50, ao)|

= Bl [R50 00) 40 T T2, @0) 51T 0]
— Eq,~P(]50,a0) [R(So, aop) +7 H}I?X(ﬂ* T 1Q2) (51,15 4 (al))} ’
= ’Y’EP [I%?X(ﬂ* e TE Q1) (51, T 4 (1)) — H}l&l‘x(ﬂ* T 1Q2) (51,15 4 (m))} ‘

< B [(T7 T a@)ona) — (77 T s@a)ona)|
where a = argmas [(77 -+ 7 4Qu) (1,15 0, (@) — (77 -+ T, Q2) (51, 1% 0, )]

(T Tra@)(s,a) = (T TE 1 Q2)(s,0)

< ymax
s,a

We can continue to expand the inequality in a similar way,

(T T @u)(s,0) = (T TL 1 Q2)(s,0)

Vs, a0, |(HiQ1)(s0, a0) — (HiQ1)(s0,a0)| < 7 max

(75 TiaQu)(s,0) = (T5 -+ T4 Q2)(5,0)

< 72 max
s,a

Q1(s,a) — Q2(s,a)

SNHQL — HEQ2lloo < 451Q1 — Q2lloo

Therefore, H; is v*-contraction with respect to infinity norm, and by Banach fixed-point theorem, H;Q} = Q7 has the
unique fixed point solution for all ¢. O

< ’yL max
s,a
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Therefore, the optimal c-persistent value functions (i.e. the fixed points of each H,... H 7_1) can be represented by L

values, (Qf, ..., Q% ). Also, the following lemma shows that they have the largest possible value, compared to any
c-persistent value functions of any history-dependent policy 7 € II.

Lemma 3. Foranyt, let f_It*mO aL = 7_;*mo dL--- 7_'(*; +L—1) mod L be L-stepﬁc-persistent Bellmfln optimality operator and
Q5 1noa 1 be its fixed point. Then, for any history-dependent policy m € I, QF .. 4 1.(s,a) > Q7 (s, a) holds for all t, s, .

Proof. Foranymr € II,t € Ng,s € S,a € A,and Q : S x A — R, the following inequality holds:
(T7Q)(st,a1) = R(st,a1) + Vs, op(fsisar) [Q(5641, Te 41 0, (ar41)]
agy1~m(-|hig1)

< R(Stv at) + I'I}IH;X E5t+1NP('|3tsat) [Q(St-l—l? Fg—i—l,at (a/))]

= ( 7t*mod L )(Stv at)
which implies

(7" 7t:—1 e ﬁlL—lQ)(sv a) < (T moa L,T(L-l) mod L **° 7:(I+L—1) mod 1@)(8,@) = (H{ 104 Q) (5, a)

Therefore, Q7 (s,a) = lim,, o0 (7;" 111 . ﬁiLn_lQ)(s, a) < limnﬁoo((ﬂ'fmod )"Q)(s,a) = Qf mod 1,(8,a) holds

for any ¢, s, a and history-dependent policy 7, which concludes the proof. [

Now, we are ready to provide the proof of Theorem 3]

Theorem@ Starting from any 7° € 11, induced by L-periodic non-stationary deterministic policy ™° € Ty, the sequence

of value functions Q™" and the improved policies 7" induced by m"* converge to the optimal value function and the

optimal c-persistent policy ©*, i.e. QT (s,a) = lim,, o0 Q?;Od 1(s,a) > QF(s,a) forany w € I, t € Ny, s € S, and
a €A

Proof. By Lemma it is sufficient to show lim,, o, QF = Qj forallt € {0,...,L—1}. By Theorem the performance
of c-persistent policy induced by 7™ is monotonically improved during policy iteration, i.e. Q?"H (s,a) > QT (s,a)
always holds for all ¢, s, a, n. Now, consider when the policy is no longer improved, i.e. 7! = 7" and Q7" = Q7T ".
In this situation, for all ¢, s, a,

Q" (s,0) = Q" (s,0)
= R(5,0) + VEymp(foa) |QF1) moa 208 it o (@,5)]
= R(5,0) + YEwrp(ls0) | Q1) mod (5 T a7 (0, 5)]
= R(s,a) +~ max Esop(|s,a) {QZL) mod £.(5'; F§+1,a(a’/)):| (by Eq. ()

holds, and this implies that an satisfies the c-persistent Bellman optimality equation. By Lemma the c-persistent
Bellman optimality equation has the unique solution, thus Q7 "= Qj . This concludes that 7" is the optimal c-persistent
policy. O

Corollary E There always exists a c-persistent optimal policy 7, which is induced by a L-periodic, non-stationary, and
deterministic policy m € 11j,.

Proof. Every policy 7" encountered during action-persistent policy iteration is within IIz,. Also, by Theorem[3] 7" € II,

induced by 7" € Il eventually converges to the optimal c-persistent policy, which concludes the proof. O
Corollary ensures that the optimal c-persistent policy can be always found only through (7, ..., 7—1) € II;, where
i AxS — A

15



Appendix D Pseudo-code of Action-Persistent Policy Iteration (AP-PI)

Algorithm 1 Action-Persistent Policy Iteration (AP-PI)

Input: M: FA-MDP, ¢: action persistence vector

Randomly initialize 7 = (7q, ..., 7p—1) where 1y : A X S — Aforallt =0,...,L — 1.
Randomly initialize Q@ = (Qo,...,Qr—1) where Q; : S x A — Rforallt =0,...,L — 1.

repeat
# Policy Evaluation
repeat
fort=0,...,L —1do

Vs, a, Ql,(sa a) <~ R(S, a) + ’yES/NP(~|S,(L) [Q(tJrl) mod L (3/7 a/)]

where ¢’ = T'¢, | (T (141) mod £.(a,5"))

end for
until () is converged
# Policy Improvement

Vta a, 8/7 Tt (a7 S/) < argmaxg, Qt (8/7 Ftc,a(a’/))

until 7 does not change
Output: 7* =7

The policy 7* = (7§, ..., 7} _,) obtained by AP-PI is executed as follows. First, @ is initialized randomly. Then, at every
step t, ay = I'§ 5 (7] 10a 1(@; 5t)) is executed, and the reward and the next state is observed: ¢, s¢1.1 ~ p(7¢, St41 [st, at).
Finally, a is updated by a < a;, and this procedure continues.

Appendix E Pseudo-Code of Action-Persistent Actor-Critic

Algorithm 2 Action-Persistent Actor-Critic (AP-AC)

IllEllt: 91, 92, (25_
01 — 91 and 02 — 02
a ~ unif (A)
D+ 0
for each iteration do
for each environment step do
ar ~ Tg4(-]a, 5t)
a Ftﬁ (at)
Tty Se41 ~ P(Te, Se41]5¢, @)
D+ DU{(st,a,7¢,8¢+1)}
end for
for each gradient step do
0; + 0; — AoV, J(6:) fori € {1,2}
¢ ¢+ /\ﬂV(bJW(@
0; — 70; + (]. —’7')91' fori € {1,2}
end for
end for
Output: 91, 92, gf)

> Initialize parameters

> Initialize target network weights

> Initialize @ randomly

> Initialize a replay buffer to an empty set

> Sample a non-persistent action from the policy

> Project the sampled action using Eq. (@)

> Sample reward and transition from the environment

> Store the sampled reward and transition into replay buffer

> Update critic weights by minimizing Eq. (9)
> Update policy weights by maximizing Eq.
> Update target network weights

> Optimized parameters
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Appendix F  Supplementary Experiments

F.1 Results on SAC
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Figure 6: Results on SAC.

In Figure 3] the baseline SAC agent is trained on the standard non-persistent environments while being evaluated on
c-persistent environments where the action-persistence is enforced. As shown in Figure |§'} the performance of SAC
consistently improves in the non-persistent environment that the agent is trained on, but its naive projection into a

c-persistent policy completely fails since the agent never considers the action-persistence during training.

F.2 Effects of varying c
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Figure 7: Effects of varying action-persistence c.

The goal of this work is to provide an efficient solution method for the given action-persistence c, not finding a proper c to
speed up learning. Still, we conducted additional experiments to present the effects on the resulting policy of varying c. As
can be seen from Figure[7} larger action persistence yields more degradation of asymptotic performance due to a limited
degree of freedom of control. AP-AC consistently works well for various c’s.

'A performance gap exists compared to those reported in the original SAC paper, due to usage of different hyperparameters such as
the number of hidden units per layer, i.e. 100 (ours) / 256 (original SAC paper).
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Appendix G Experimental Setup

G.1 Computing Infrastructure

All experiments were conducted on Google Cloud Platform. Specifically, we used the compute-optimized machines
(c2-standard-4) that provide 4 vCPUS and 16GB memory.

G.2 Hyperparameters

Table 1: AP-AC Hyperaparameters

Parameter | Value
optimizer Adam [6]
learning rate 3-1074
discount factor ~y 0.99
replay buffer size 108
number of hidden layers (all networks) 2
number of hidden units per layer 100
number of samples per minibatch 100
nonlinearity ReLU
target smoothing coefficient 7 0.005
target update interval 1
gradient steps 1
(discrete only) temperature of relaxed categorical | 0.1

The hyperparameters we used in the experiments are listed in Table[I} Also, for Mujoco continuous control tasks, we used
automatic entropy adjustment with the entropy target — dim(.A), and for the discrete action task (i.e. traffic light control),
we used the fixed entropy coefficient e = 0.01. We simply tried the listed hyperparameters and not tuned them further.
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