Supplementary Material for
Neural Mesh Flow: 3D Manifold Mesh Generation
via Diffeomorphic Flows

Kunal Gupta Manmohan Chandraker
University of California, San Diego
{kbgupta, mkchandraker}@eng.ucsd.edu

Abstract

In this supplementary document, we first give additional details about the experi-
ments presented in supplementary video in Section 1. We then show additional
qualitative results in Section 2. We present detailed results for experiments dis-
cussed in the main paper in section 3. We provide some additional details about
our method in Section 4 and discuss its limitations and future scope in Section 5.

1 Supplementary Video

Physically based tasks like rendering, simulation and 3D printing require meshes to be manifold.
Neural Mesh Flow learns to generate manifold meshes by construction since it models a diffeomorphic
flow and thereby maintains the uniqueness and orientation preserving properties|1} 2]. However the
other mesh generation methods AtlasNet[3]], Pixel2Mesh[4} 5], MeshRCNN[5]] and OccNet[6] fail to
generate meshes that satisfy these manifoldness properties. In our supplementary video, we perform
qualitative comparisons amongst the mesh generation methods for these physically based tasks.

1.1 Soft Body Simulation

One of the advantages of a manifold mesh is that it allows us to do physically based simulations.
In this experiment, we specifically take the challenging task of simulating the dropping of a mesh
on a floor. Amongst other things, this is a challenging task because all the mesh components must
support the stress and strain on the mesh as a whole and should result in the solutions to dynamic
equations that best represent the reality. The simulations were performed using [7] with settings
pull = 0.9, push = 0.9, bending = 10 to represent a rubber like material.

We show the 3D meshes (i) and their final form after hitting the ground (ii) in figure[T] It is interesting
to note that AtlasNet[3] (Fig[I] (a)) consisting of 25 mesh patches, while giving good geometric
accuracy, disintegrates into independent parts since the collision dynamics are solved for each
individual meshlet and therefore the results are far from the ground truth (Fig[I[f)). On the contrary
AtlasNet-OJ3]] is able to retain the mesh structure but due to severe self-intersections, the collision
simulation is unrealistic and the amount of self-intersections increase after hitting the ground, which
shows that merely having the correct mesh geometry is not enough for physically realizable meshes,
instead it should also have manifoldness. While Pixel2Mesh[4] 5] (Fig|[T] (c)) also suffers simulation
artifacts from self-intersections, we note that its mesh contains very few and sparse set of vertices
to represent important shape features (like legs). Because of this non-manifoldness we encounter
strange simulation behaviours such as the legs going through the floor (Fig[T](c)) which is unrealistic.
MeshRCNN]J? ] is found to suffer from over-bounciness of its meshes during simulation. We
believe this is because of its poor normal consistency which causes issues when solving contact
force equations. Neural Mesh flow, (Fig[Ife)) due to its high manifoldness gives realistic simulations

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



\ >

(i)

3 =
(i

(b) AtlasNet0 )

(i) (ii)
(f) Ground Truth

Figure 1: Qualitative results for soft body simulation

that are close to the ground truth (Fig[T[f)) which demonstrates its effectiveness and reinforces our
hypothesis that manifoldness is key to physically realizable meshes. We also tested simulation for
OccNet [6] but found that it crashed the simulator due to the presence of several non-manifold vertices
and faces.

1.2 Physically based renderings

Another application that greatly benefits from manifold meshes is physically based rendering. In
this experiment we investigate how various meshes behave under reflection and refraction of light by
rendering them with dielectric and conducting materials. While we compare against several baselines
AtlasNet[3]], AtlasNet-O[3]], MeshRCNN[3]] and Pixel2Mesh[4], we also improve their manifoldness
by adopting a simple post-processing step involving three iterations of Laplacian smoothing. This is
done to minimize the gap in manifoldness of NMF and other baselines. In Fig. 2] we show the mesh
reconstruction as well as rendering results for all baselines with Laplacian smoothing, termed ‘w/
Lap.” and without it. The self-intersecting triangles are shown in color red while flipped normals
containing non-manifold faces is shown in color black. We notice that by applying Laplacian filter,
the amount of self-intersections and flipped normals is reduced. However, this comes at a cost of
geometric accuracy as can be seen for Pixel2Mesh where the legs of its chair are no longer present.
This is in accordance to the regularizer’s dilemma. Notice that NMF generates meshes with much
higher manifoldness and therefore does not require any post-processing. For the case of dielectric
rendering, we observe that AtlasNet baselines perform very poorly even with smoothing. While
Pixel2Mesh lacks sufficient geometric accuracy post smoothing. MeshRCNN[3] does improve with
smoothing but still has several non-manifold artifacts. Notice the image of red box and green ball
which are distorted under MeshRCNN and Pixel2Mesh but is very accurate and clear with NMF
and is infact closer to the ground truth. Even the checkerboard ground has quite realistic reflection
with NMF as opposed to baselines. For conductor material, it is important to take note of reflection
of the blue ball as well as self-reflections of the shape. We observe that due to the fliiped faces,
all baselines fail to various degrees in getting correct reflection of ball. Moreover, we can observe



Pixel2Mesh AtlasNet AtlasNet-O MeshRCNN NMF  Ground Truth

Figure 2: Physically based renderings



A AN

5..‘1‘

2D Image NMF Ground Truth

Figure 3: Additional Physically based renderings from NMF



Figure 4: Example of a 3D printed shape generate by NMF

the self-reflection of the chair for NMF which is pretty close to the ground truth. We observe that
Laplacian smoothing help remove isolated patches of non-manifoldness, but it fails to remove large
patches without making significant losses in terms of geometric accuracy.

1.3 3D Printing

We show a few renders of a 3D printed shape. The shape was generated from NMF without performing
any post processing to the prediction. It is important to note that printing other methods require
significant human inputs owing to high degrees of non-manifold issues. Fig[4]shows a 3D printed
bench that was generated by NMF. Not only does it aids rapid 3D printing technology, the results
thus obtained are very satisfactory.

2 More Qualitative Results

In this section we show additional applications that are enabled by NMF without any changes
to its architecture. These mainly include texture mapping, global shape parameterization, shape
deformation and correspondence.

2.1 Texture Mapping and Parameterization

One of the important problems in graphics research is that of global shape parameterization which
is often used to carry out texture mapping. Since NMF learns to diffeomorphically flow a spherical
mesh to a target shape, it retains the local geodesics. This allows us to take a spherical texture (Fig
[l(a)) and map it to generated shapes (Fig. [5(b-c)) without any human inputs. As we can qualitatively
observe, the texture mapping is satisfactorily without any artifacts and distortions.

2.2 Shape Deformation, Interpolation

For any shape auto-encoder that strives to learn meaningful representations it is important to enable
smooth latent space interpolations and have knowledge sharing across generated shapes. For the



TR
EE RN
| HEEm)
NN RN
I NN

(a) Texture (b) Chair (c) Ccar (d) Airplane

Figure 5: Texture Mapping using NMF

Figure 6: Latent space interpolation of NMF

specific case of NMF that learns to diffeomorphically map a sphere to the target shape, given its
shape embedding, the problems of shape deformation and latent space interpolation are identical.
To this end, given two shape My, M; we feed them the point encoder to get their respective shape
embeddings zg, z1. By linearly interpolating z = Azg + (1 — A)z1, A € [0, 1] we can get continuous
and manifold intermediate shape deformations and interpolations. While we show several such
deformations in out supplementary video, we illustrate a few more interpolations in Fig[6] where we
observe cross category interpolations that retain manifoldness property at each intermediate step.

2.3 Semantic Correspondence

One of the consequence of having smooth interpolations is that NMF is able to learn part corre-
spondence across intances in a category (Fig[7) as well as through instances belonging to different
categories (Fig[8). It is important to mention that this is purely a consequence of NMF architecture
and learning such semantic correspondences does not require any explicit training. In Fig. [7] (a)
we note that the front and back part of the cars (including the wheels) have the same color which
implies that they are semantically correlated. Similarly, the wings and tail of airplane (Fig7|(c)) are
semantically correlated among the two instances. Interestingly, for shapes where there is significant
change in geometry (Fig [7[(b,d)) such as a table/chair having four legs and not, we observe that
NMF still maps the legs in the initial shape (top) to the base of the target shapes (bottom) that act as
pseudo-legs. We observe NMF’s ability to learn semantic correspondence even across categories (Fig
[B). The legs of table (Fig[8|a)) are semantically mapped to the legs of a chair (Fig[§[b)) and even to a
bench (Fig. [§[c)).



(a) Car (b) Chair (c) Airplane (d) Table

Figure 7: Semantic correspondence learned by NMF without supervision

™ f

(a) Table (b) Chair (c) Bench

Figure 8: Cross-Category semantic correspondence learned by NMF without supervision

Thus, the above observations indicate that NMF learns really meaningful latent space for 3D manifold
shapes.

3 Quantitative Results

We list down the exhaustive quantitative results for the task of auto-encoding (Table 1) and single
view reconstruction (Table 2-7).

3.1 Comparison with Implicit Representation method

Here we show some more comparisons between OccNet[6] and NMF. We show quantitative results in
Table [] for the task of point cloud completion and single view reconstruction. We observe that while
OccNet has several from non-manifold vertices and non-manifold edges, NMF is by construction
is immune to such issues. NMF also achieves higher normal consistency which makes it better
suited from physically based tasks like rendering and simulation. While both methods have can
give meshes with almost zero self-intersections, we observe that OccNet does better in terms of
non-manifold faces. However, we argue that this comes at a huge cost of inference time since the
fastest variant of OccNet (almost 2.5 times slower than NMF) has similar score for NM-faces while
performing significantly poor in other metrics. We also show rendering comparisons in Fig[9] Due to
non-manifoldness, occnet does not provide sufficient rendering quality and NMF clearly is closer to
the ground truth.



Chamfer-L2 () Normal Consistency (1) NM-Faces |) Self-Intersection ()
AtNet AtNet-O NMF | AtNet AtNet-O NMF | AtNet AtNet-O NMF | AtNet AtNet-O NMF
table 8.65 4.38 7.08 | 0.837 0.842 0.853 | 2.10 1.96 1.18 | 2822 942 0.20
couch | 2.84 1.98 324 | 0.679 0.668 0.691 | 1.02 0.44 0.14 | 2696 0.79 0.01
speak. | 5.46 5.50 7.30 | 0.680 0.679 0.710 | 0.40 0.14 0.04 | 2274 0.28 0.00
firea. 1.20 1.88 2.19 | 0975 0975 0.977 | 2.17 1.51 0.01 | 2486 6.46 0.00
plane | 1.11 1.20 276 | 0938 0.939 0.957 | 2.96 2.51 091 | 2275 10.06 0.04
chair | 3.80 5.19 5.87 | 0.682 0.697 0.704 | 2.01 1.89 1.63 | 2294 1785 0.20
monit. | 1.76 1.57 227 10734 0.737 0.699 | 0.76 0.80 0.02 | 2594 2383 0.00
phone | 1.74 1.40 236 | 0910 0.765 0.765 | 0.23 0.05 0.02 | 2398 0.16 0.00
boat 1.60 2.36 4.66 | 0.835 0.838 0.849 | 0.86 0.47 0.02 | 2090 2.73 0.00
lamp | 6.21 7.00 19.23 | 0917 0.924 0.923 | 1.11 2.18 0.82 | 16.81 9.0l 0.20
bench | 2.13 1.81 3.02 | 0917 0917 0.926 | 2.41 1.65 0.60 | 24.17 6.95 0.06
car 3.00 2.74 351 | 0.770 0.781 0.805 | 1.37 0.49 0.08 | 30.67 143 0.01
cabin | 3.69 3.53 4.10 | 0.900 0.897 0.896 | 0.67 0.23 0.15 | 26.64 0.62 0.01
mean | 4.15 3.50 554 10815 0.816 0.826 | 1.72 1.43 0.71 | 2480 6.03 0.10
Table 1: Auto Encoding Performance
| Category | table | couch | speak. | firea. | plane | chair | monit. | phone | boat | lamp | bench | car | cabin. | mean |
MeshRCNNI[5] | 534 | 3.73 8.27 2.07 | 227 | 556 | 4.17 3.00 3.55 | 13.67 | 3.21 3.33 5.11 4.73
Pixel2Mesh[4] 6.64 | 448 9.76 242 | 271 | 6.66 | 5.03 3.57 3.78 | 16.55 | 3.80 341 5.86 5.48
AtlasNet-25[3] | 8.67 | 4.97 10.38 | 2.08 | 2.12 | 5.77 5.08 3.50 3.62 | 1573 | 3.32 4.06 | 5.14 5.48
AtlasNet-sph[3] | 8.59 6.57 12.27 | 3.06 | 248 | 8.167 | 8.29 4.47 497 | 17.63 | 450 429 | 4.65 6.67
‘ NMF (Ours) ‘ 10.95 ‘ 6.20 ‘ 12.95 ‘ 4.67 ‘ 3.70 ‘ 8.94 ‘ 7.94 ‘ 4.88 ‘ 7.15 ‘ 26.49 ‘ 4.85 ‘ 4.566 ‘ 5.139 ‘ 7.82 ‘
Table 2: Single View Reconstruction: Chamfer Distances
| Category | table | couch | speak. | firea. | plane | chair | monit. | phone | boat | lamp | bench | car | cabin. | mean |
MeshRCNNJ5] 0.743 | 0.723 | 0.717 | 0.623 | 0.693 | 0.708 | 0.782 | 0.848 | 0.648 | 0.655 | 0.655 | 0.649 | 0.730 | 0.698
Pixel2Mesh([4] 0.723 | 0.743 | 0.761 | 0.612 | 0.685 | 0.703 | 0.805 | 0.843 | 0.680 | 0.643 | 0.654 | 0.683 | 0.745 | 0.706
AtlasNet-25[3] | 0.813 | 0.787 | 0.786 | 0.969 | 0.958 | 0.725 | 0.680 | 0.755 | 0.871 | 0.918 | 0.898 | 0.835 | 0.778 | 0.826
AtlasNet-sph[3] | 0.808 | 0.798 | 0.790 | 0.971 | 0.962 | 0.740 | 0.695 | 0.759 | 0.881 | 0.923 | 0.901 | 0.838 | 0.777 | 0.838
| NMF Ours) | 0.844 | 0.783 | 0.792 | 0.971 | 0.963 | 0.739 | 0.696 | 0.755 | 0.881 | 0.925 | 0.932 | 0.829 | 0.778 | 0.829 |
Table 3: Single View Reconstruction: Normal Consistency
| Category | table | couch | speak. | firea. | plane | chair | monit. | phone | boat | lamp | bench | car | cabin. | mean |
MeshRCNN[5| | 15.869 | 3.052 | 3.055 | 2.332 | 2.630 | 16.292 | 6.733 | 0.468 | 3.503 | 23.496 | 21.710 | 1.586 | 10.281 | 9.319
Pixel2Mesh[4] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AtlasNet-25[3] | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AtlasNet-sph[3] | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
| NMF(©urs) |00 |00 |00 [00 |00 |00 |00 [00 [00 [00 [00 |00 [00 |00 |
Table 4: Single View Reconstruction: Manifold Vertices
| Category | table | couch | speak. | firea. | plane | chair | monit. | phone | boat | lamp | bench | car | cabin. | mean |
MeshRCNN[S] | 34317 | 7.644 | 7.202 | 9.294 | 24.357 | 25.037 | 10.161 | 2.599 | 8.652 | 34.398 | 31.411 | 4.030 | 12.924 | 17.783
Pixel2Mesh[4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AtlasNet-25[3 7.40e3 | 7.40e3 | 7.40e3 | 7.40e3 | 7.40e3 | 7.40e3 | 7.40e3 | 7.40e3 | 7.40e3 | 7.40e3 | 7.40e3 | 7.40e3 | 7.40e3 | 7.40e3
AtlasNet-sph[3] | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NMF (Ours) |00 |00 |00 |00 |00 |00 [00 |00 |00 [00 |00 [00 |00 |00
Table 5: Single View Reconstruction: Manifold Edges
| Category | table | couch | speak. | firea. | plane | chair | monit. | phone | boat | lamp | bench | car | cabin. | mean |
MeshRCNNIS] | 5.29 | 3.69 3.27 747 | 7.74 | 538 | 3.21 1.19 577 | 7.15 | 5.74 2.80 | 3.10 5.18
Pixel2Mesh|[4] 274 | 2.37 2.50 5.80 | 536 | 3.53 | 3.04 2.61 421 | 5.39 | 3.18 249 | 275 3.33
AtlasNet-25[3] 1.77 | 0.92 0.40 4.14 | 3.52 1.84 | 0.756 | 0.31 140 | 1.72 | 1.91 1.17 | 0.50 1.76
AtlasNet-sph[3] | 245 | 1.17 0.88 423 | 3.01 | 254 | 1.80 0.73 273 | 350 | 2.27 0.67 | 0.51 2.19
| NMF (Ours) | 1.22 [ 008 | 0.06 | 000 | 1.02 | 1.81 [0.02 [0.02 |0.03|1.00 | 043 |006|0.16 |083 |
Table 6: Single View Reconstruction: Manifold Faces
| Category | table | couch | speak. | firea. | plane | chair | monit. | phone | boat | lamp | bench | car | cabin. | mean |
Pixel2Mesh([4] 10.18 | 10.41 | 9.81 17.27 | 18.26 | 12.07 | 12.24 | 10.87 | 15.16 | 16.57 | 11.21 | 11.34 | 10.06 | 12.29
AtlasNet-25[3] | 29.94 | 28.11 | 2546 | 32.10 | 29.82 | 24.69 | 26.69 | 27.23 | 26.30 | 19.48 | 27.83 | 30.14 | 27.60 | 26.94
AtlasNet-sph[3] | 12.68 | 5.25 4.89 20.92 | 15.56 | 13.67 | 12.33 | 3.29 1437 | 12.75 | 1495 | 2.67 2.20 11.07
| NMF (Ours) | 0.24 | 000 | 000 |0.00 |007 | 026 |0.00 |000 |000 |026 | 005 |0.00 |00l |012 |

Table 7: Single View Reconstruction: Self-Intersection




| Point Completion | Chamfer-L2 (]) | Normal Consistency (1) | NM-Vertices () | NM-Edges (|) | NM-Faces (|) | Self-Intersection (}) | Time (}) |

OccNet-1[8] 8.77 0.804 1.13 0.85 0.36 0.00 795
OccNet-2[8] 2.82 0.804 5.00 3.75 0.28 0.02 1622
OccNet-3[8] 2.69 0.805 6.74 3.74 0.23 0.08 7973
NMF 5.53 0.826 0.00 0.00 0.71 0.10 189
NMF w/ Laplace 5.25 0.825 0.00 0.00 0.38 0.00 294
| Single View Recon. | Chamfer-L2 (|) | Normal Consistency (1) | NM-Vertices () | NM-Edges (]) | NM-Faces ({) | Self-Intersection () | Time (}) |
OccNet-1[8] 8.77 0.814 1.13 0.85 0.36 0.00 871
OccNet-2[8] 8.66 0.814 2.67 1.79 0.21 0.03 1637
OccNet-3[8] 8.33 0.814 2.79 1.90 0.15 0.09 6652
NMF 7.82 0.829 0.00 0.00 0.83 0.12 187
NMF w/ Laplace 8.64 0.837 0.00 0.00 0.45 0.00 292

Table 8: Comparison with Implicit Representation method

(a) Image

(b) OcNet-3 () NMF (d) Ground Truth

Figure 9: Renderings for OccNet

4 Ablation Study

In this section we provide some more details about the architecture of NMF and various design
choices. On of the important hyperparameters for NeuralODE[9] is the tolerance value. This
determines the step size of the ODE solver. In Table [J] we show the trend in geometric accuracy as
well as manifoldness at various tolerance values. Clearly, by taking a lower value of tolerance, we get
higher geometric accuracy as well as manifoldness, but this comes at a slight cost of inference time.
In practice, we did not find much improvement in results by taking tolerance lesser than 1e®.

In order to allow NMF to learn high resolution meshes across several categories, we introduce two
novel modules in our architecture. These include the instance normalization layer and refinement
modules. As can be observed form Table[T0|without any instance normalization, the network struggles
to learn accurate geometry and has very poor manifoldness (Fig[IT). This can also be interpreted as
the NODE being strained during the learning process. This is because unlike traditional MLPs, in a
NODE, points on the sphere need to be flown to the target location along specific lines of integration.
Therefore, non-uniformity in the path lengths due to variations in categories results in NODE learning
very complex dynamics. Instance normalization layer separates the task of learning shape attributes
from that of learning shape variances. As shown in Fig|10} when using instance normalization, NMF
focuses on learning the geometry and other features (Fig[10(a)) whereas the instance normalization
learns to scale it to match the target variance (Fig |'1;0| (b)). As we can see this greatly simplifies the
task of learning 3D shapes across several categories.

| Error Tolerance | Chamfer-L2 (1) | Normal Consistency (1) | NM-Faces (]) | Self-Intersection (}) | Time (}) |

le-3 8.09 0.832 0.859 0.43 187
le-4 6.09 0.828 0.75 0.24 184
le-5 5.535 0.826 0.71 0.10 189

Table 9: Ablation - ET



(a) NMF prediction before IN (b) NMF prediction after IN

Figure 10: Instance Normalization separates the task of learning shape attributes and shape variances

oalll

No-Norm Deform Block-1 Deform Block-2 Deform Block-3

Figure 11: Effect of IN and refinement modules

We also get better geometric accuracy when using refinement flows as show in Fig[TT] It is important
to note that we observe manifoldness metrics decrease by a small amount with more refinement
modules. We believe this decrease in manifoldness is because in order to approximate sharp features,
more complex dynamics need to be learned, which in turn demand a tighter tolerance value. In
this work we did not choose an extremely tight tolerance so as to get a higher inference speed. For
applications that require extremely high manifoldness, a tighter tolerance can be used.

10



| Chamfer-L2 () | Normal Consistency (1) | NM-Faces (}) | Self-Intersection ({) | Time (]) |

| No Instance Norm | 7.04 | 0.831 | 2.82 | 2.96 | 183 \
1 Deform block 5.53 0.826 0.37 0.03 68
2 Deform block 5.70 0.826 0.38 0.03 124
3 Deform block 5.535 0.826 0.71 0.10 189
Table 10: Ablation
5 Limitations and Future Scope

The major limitation of our method is its restriction to generating shapes of genus-O which is
undesirable as real world objects tend to be of high genus and possess complex topology. Using
templates more representative of target shape may allow handling higher genus, perhaps at the cost
of generalizability. Approaches that learn such templates as part of their pipeline like MeshRCNN
[S] can be explored to further generalize NMF to more object categories. Combining NMF with
contemporary works like SIREN did not yield good results in our preliminary experiments, but
remains an area that requires further study. While we focus on manifold shapes here, future work
should also incorporate texture or material generation along with shape reconstruction.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]
(8]

(9]

M. K. Fort, “The embedding of homeomorphisms in flows,” Proceedings of the American Mathematical
Society, vol. 6, no. 6, pp. 960-967, 1955.

J. Arango and A. Gémez, “Flows and diffeomorphisms,” Revista Colombiana de Matemdticas, vol. 32,
no. 1, pp. 13-27, 1998.

T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry, “Atlasnet: A papier-m\" ach\’e approach to
learning 3d surface generation,” arXiv preprint arXiv:1802.05384, 2018.

N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang, “Pixel2mesh: Generating 3d mesh models from
single rgb images,” in Proceedings of the European Conference on Computer Vision (ECCV), pp. 52-67,
2018.

G. Gkioxari, J. Malik, and J. Johnson, “Mesh r-cnn,” in Proceedings of the IEEE International Conference
on Computer Vision, pp. 9785-9795, 2019.

L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy networks: Learning 3d
reconstruction in function space,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4460-4470, 2019.

R. Hess, Blender Foundations: The Essential Guide to Learning Blender 2.6. Focal Press, 2010.

L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy networks: Learning 3d
reconstruction in function space,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4460-4470, 2019.

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,” in
Advances in neural information processing systems, pp. 6571-6583, 2018.

11



	Supplementary Video
	Soft Body Simulation
	Physically based renderings
	3D Printing

	More Qualitative Results
	Texture Mapping and Parameterization
	Shape Deformation, Interpolation
	Semantic Correspondence

	Quantitative Results
	Comparison with Implicit Representation method

	Ablation Study
	Limitations and Future Scope

