
Reviewer 1. Q1: The paper does not address if this is of interest to broader vision/ml community. A1: Crowd1

counting is a well established research problem in Computer Vision, with more than four dozen papers published at2

top-tier conferences in the last two years, including the 12 papers mentioned by R1. Our paper is motivated by crowd3

counting applications, but it actually addresses the underlying fundamental problem: spatial density estimation, which4

has broader interest to machine learning and other communities. We believe that crowd counting is a very appropriate5

and salient evaluation domain for spatial density estimation, especially in the age of social distancing. In addition,6

almost all papers including those listed by R1 used the Gaussian smoothed Ground Truth (GGT), so we believe that a7

theoretical analysis of GGT is necessary and that NeurIPS is a proper venue to present our theoretical results.8

Q2: Missing discussions of several recent works, especially [2,9,10] which focused on improving representation of9

ground-truth for training the networks. A2: We would be happy to cite these papers in our revised paper. Notably, it is10

neither possible nor necessary to cite every single crowd counting paper given the large number of papers. We could11

only discuss the major approaches and representative papers. All the listed papers except [5] used the GGT, which is12

discussed in lines 38–41. Refs [2,9,10] belong to the group of papers that use adaptive kernel widths, discussed in lines13

82-84. Ref [5] belongs to the detection-then-count approach, line 73–76.14

Q3: Missing comparisons to recent methods that have better/comparable results. The improvements are insignificant.15

QNRF ShTech A ShTech B CC-50
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

[2] 97.5 165.2 60.2 94.1 8.0 15.5 233 300
[11] 99.1 159.2 60.6 96 6.8 10.3 216 302
[12] 111 190 59.4 102 7.9 12.9 239 319
[13] 96.5 170.2 59.2 98.1 8.1 12.2 185 278
[14] 118 180.4 62.9 94.9 8.1 13.4 256 348
CAN 107 183 62.3 100.0 7.8 12.2 212 243
BL 88.7 154.8 62.8 101.8 7.7 12.7 229 308
Ours 85.6 148.3 59.7 95.7 7.4 11.8 211 291

A3: Thanks for the references, and this table compares with methods16

in the references. Considering all four datasets as a whole, our method17

outperforms the other methods. Considering individual datasets,18

QNRF is the most difficult and largest one, and the performance gaps19

between our method and others are wide. For ShTech datasets, our20

method performed comparable to the bests. On UCF-CC 50, the21

comparison should be taken with a grain of salt due to small number22

of images (50) and different ways of data splitting for five-fold cross23

validation. Moreover, none of these methods were evaluated on the24

large-scale NWPU dataset. Our method ranked first in the leaderboard25

at the time of submission, reducing SOTA error from 105 to 88.26

Reviewer 2. Q4: DM-Count is worse than CAN in RMSE on UCF-CC-50 and NWPU. A4: One reason is that CAN27

is trained by minimizing the MSE loss, while DM-Count optimizes for the MAE loss. On NWPU, the RMSEs are close28

(388.6 vs 386.5). The comparison on UCF-CC-50 should be taken with a grain of salt, as explained in Answer A3.29

Q5: Why OT loss approximate well for dense regions, but poorer for the sparse regions. A5: Dense areas have higher30

probability values than sparse areas, and in general more probability masses must be transported between dense areas.31

The OT loss is therefore dominated by loss from dense areas. The dense areas have higher priority in the optimization,32

especially when using a finite number of Sinkhorn iterations for computing the OT distance.33

Q6: Without using the TV loss, DM-Count performed worse than Bayesian Loss (BL). A6: This is due to the34

pre-mature stopping of the Sinkhorn algorithm. Tab. 3 reports the performance with 100 Sinkhorn iterations. Using 20035

Sinkhorn iterations, OT loss + Counting loss outperforms BL with MAE 85 and MSE 154. As the TV loss treats both36

dense and sparse areas equally, sparse areas can be optimized well with TV loss and fewer Sinkhorn iterations (100).37

Q7: Is this possible to transfer the DM-Count to other similar tasks, like keypoint regression? A7: Thanks for this38

interesting suggestion. We think it may be possible, given that the GT for keypoint estimation is also a dot map.39

Reviewer 3. Q8: The effects of the hyper-parameters should be studied. A8: On QNRF, by fixing λ2 to 0.01 and40

tuning λ1 from 0.01, 0.05 to 0.1, the MAE varies from 87.2, 86.2 to 85.6. By fixing λ1 to 0.1 and changing λ2 from41

0.01, 0.05 to 0.1, the MAE varies from 85.6, 87.8 to 88.5. See also A5, A6 for the effects of the OT loss and TV loss.42

Q9: “Total variation should be clearly defined and explained. The derivation of Eq. 6 should be further explained.”43

A9: We will clarify that in the context of training loss, Total Variation refers to the total variation distance of two44

probability measures, not the total variation of a function. A formal definition can be found in Definition 2.4, pg 83,45

Tsybakov: Introduction to Nonparametric Estimation. Eq. 6 in our paper is Lemma 2.1, pg 84. We will cite and clarify.46

Q10: What is the maximum Sinkhorn iterations in the experiments? Will these iterations significantly slow down the47

training speed? A10: We experiment with different numbers of iterations in Tab 1 of the supplementary material. The48

performance plateaus after 100 iterations. In our experiments, we used a maximum of 100 iterations, and the OT part49

takes 30% of the total training time. Thus the OT part does not significantly slow down the training speed.50

Q11: Reproducibility A11: Implementation details are provided in Sec 2.3 of the supplementary material.51

Reviewer 4. Q12: Missing ablation studies of using single loss: only OT loss, only TV loss. A12: the OT and TV52

losses take normalized density maps (probability distributions) as inputs (Eqs. 4 and 6), so it is not possible to obtain53

the absolute count using either loss by itself. The counting loss is always needed. In Tab. 3, we showed the performance54

of counting loss + OT loss (or TV loss). Besides, we will report the hyper-parameter study (see Answers A8).55

Q13: Quantitative performance in high-density region. A13: The MAEs in high density images (Ground truth count56

over 1000 in QNRF test set) are 211 (DM-Count), 238 (BL) and 311 (pixel-wise loss). DM-Count outperforms two57

baselines significantly for high density images. We will address other minor issues and release code upon acceptance.58


