
A Omitted proofs for the main algorithm’s guarantees

In this section we present the proofs omitted from Sections 2 and 3, which regarded the correctness
and efficiency of DPP-VFX. We start by showing that multiple samples drawn using the same
Nyström approximation are independent.

Lemma 5 (restated Lemma 1) Let C ✓ [n] be a random set variable with any distribution. Suppose
that S1 and S2 are returned by two executions of DPP-VFX, both using inputs constructed from the
same L and bL = LI,CL

+
CLC,I . Then S1 and S2 are (unconditionally) independent.

Proof Let A and B be two subsets of [n] representing elementary events for S1 and C, respectively.
Theorem 2 implies that

Pr(S1=A | C=B) =
det(LA)

det(I+ L)
= Pr(S1=A).

Now, for any A1, A2 ✓ [n] representing elementary events for S1 and S2 we have that

Pr(S1=A1 ^ S2=A2) =
X

B2[n]

Pr(S1=A1 ^ S2=A2 | C=B) Pr(C=B)

=
X

B2[n]

Pr(S1=A1 | C=B) Pr(S2=A2 | C=B) Pr(C=B)

= Pr(S1=A1) Pr(S2=A2)
X

B2[n]

Pr(C=B).

Since
P

B2[n] Pr(C=B) = 1, we get that S1 and S2 are independent.

We now bound the precompute cost, starting with the construction of the Nyström approximation bL.

Lemma 6 (restated Lemma 2) Let bL be constructed by sampling m = O(k3 log n
�) columns pro-

portionally to their RLS. Then, with probability 1� �, bL satisfies the assumption of Theorem 3.

Proof Let L = BB> and bL = BPB,
> where P is a projection matrix. Using algebraic manipulations

we get

s = tr(L� bL+ bL(I+ bL)�1) = tr(B(PB>BP+ I)�1B).

The PB>BP matrix in the above expression been recently analyzed by [CCL+19] in the context of
RLS sampling who gave the following result that we use in the proof.

Proposition 3 (CCL
+

19, Lemma 6) Let the projection matrix P be constructed by sampling
O(k log(n�)/"

2) columns proportionally to their RLS. Then,

(1� ")(B>B+ I) � PB>BP+ I � (1 + ")(B>B+ I).

We decompose the condition into two parts. In the first part, we bound k � s  1/2, and then bound
z� tr

�
BP(I+B>B)�1PB>

�
 1/2, see the proof of Theorem 3 for more details. It is easy to see

that applying the construction from Proposition 3 leads to the following bound on s,

s = tr(B(PB>BP+ I)�1B) 
1

1� "
tr(B(B>B+ I)�1B) =

1

1� "
k = k +

"

1� "
k.

Tuning " = 1/(2k + 2), we obtain s  k + 1/2 and reordering gives us the desired accuracy result.
Similarly, we can invert the bound of Proposition 3 to obtain

(B>B+ I)�1
� (1 + ")(PB>BP+ I)�1

and therefore,
tr
�
BP(I+B>B)�1PB>

�
 (1 + ")tr

�
BP(I+PB>BP)�1PB>

�
= (1 + ")z  (1 + ")k,

where the last inequality is due to the fact that bL � L since it is a Nyström approximation and that the
operator tr

�
L(L+ I)�1

�
is monotone. With the same " as before, we obtain the bound. Summing

the two 1/2 bounds gives us the result.

Finally, we show how to compute the remaining quantities needed for DPP-VFX (Algorithm 1).

14

Lemma 7 (restated Lemma 3) Given L and an arbitrary Nyström approximation bL of rank m,
computing li, s, z, and eL requires O(nm2 +m

3) time.

Proof Given the Nyström set C, let us define the matrix B , LI,CL
+/2
C 2 Rn⇥m such that

bL = BB
>

. We also introduce bLm , B
>
B to act as a Rm⇥m counterpart to bL. Denote with ei the

i-th indicator vector. Then, exploiting the fact that BB
>
(I +BB

>
)�1 = B(I +B

>
B)�1B

>
for

any matrix, we can compute li as

li = [L� bL+BB
>
(I+BB

>
)�1]ii = [L� bL]ii + k(I+ bLm)�1/2B

>
eik

2
2.

Computationally, this means that we first need to compute B, which takes O(m3) time to compute
L+/2
C,C , and O(nm2) time for the matrix multiplication. Then, [bL]ii is the `2 norm of the i-th row of

B which can be computed in nm time. Similarly, k(I+ bLm)�1/2B
>
eik22 requires O(m3 + nm

2)

time. To compute s, we simply sum li, while to compute z we first compute the eigenvalues of bLm,
ai = �(bLm)i, in O(m3) time, and then compute z =

P
i ai/(ai + 1). We can also recycle the

eigenvalues to precompute log det(I+ bL) = log det(I+ bLm) =
P

i log(ai + 1).

B Omitted proofs for the reduction to k-DPPs

In this section we present the proofs omitted from Section 4. Recall that our approach is based on the
following rejection sampling strategy,

sample S↵ ⇠ DPP(↵L), accept if |S↵| = k.

First, we show the existence of the factor ↵? for which the rejection sampling is efficient.

Theorem 5 (restated Theorem 4) There exists constant C > 0 such that for any rank n PSD matrix
L and k 2 [n], there is ↵?

> 0 with the following property: if we sample S↵? ⇠ DPP(↵?L), then

Pr(|S↵? | = k) �
1

C
p
k
· (1)

Proof W.l.o.g. assume that L is non-zero, and remember S↵ ⇠ DPP(↵L) with k↵ = E[|S↵|]. At a
high level, the proof proceeds as follows. We first prove that the probability that the size of the subset
|S↵| is equal to its mode M↵, i.e., Pr(|S↵| = M↵) is large enough. Then we show that varying ↵ can
make M↵ = k for any k, and therefore we can find an ↵

? s.t.Pr(|S↵? | = M↵?) = Pr(|S↵? | = k)
is large enough. In other words, rescaling DPP(↵L) to make sure that its mean k↵ is close to k is
sufficient to guarantee that |S↵| = k with high enough probability.

Our starting point is a standard Chernoff bound for |S↵|.

Proposition 4 (PP14) Given any PSD matrix L, if S↵ ⇠ DPP(↵L), then for any a > 0, we have

Pr
⇣��|S↵|� E[|S↵|]

�� � a

⌘
 5 exp

✓
�

a
2

16(a+ 2E[|S↵|])

◆
·

Note that Proposition 4 is not sufficiently strong by itself, i.e., if we tried to bound the distance
||S↵|� E[|S↵|]| to be smaller than 1 we would get vacuous bounds. However, Proposition 4 implies
that there is a constant C > 0 independent of L such that Pr

�
||S↵|� k↵| � C

p
k↵ + 1

�


1
2 for all

↵ > 0. In particular, this means that the mode of |S↵|, i.e. M↵ = argmaxi Pr(|S↵| = i) satisfies

Pr(|S↵| = M↵) �
1

2C
p
k↵

dC
p
k↵eX

i=�dC
p
k↵e

Pr(|S↵| = k↵ + i) �
1

4C
p
k↵

· (2)

The distribution of |S↵| is given by Pr(|S↵| = i) / ei(↵L), where ei(·) is the ith elementary
symmetric polynomial of the eigenvalues of a matrix. Denoting �1, . . . ,�n as the eigenvalues of L,

15

we can express the elementary symmetric polynomials as the coefficients of the following univariate
polynomial with real non-positive roots,

nY

i=1

(x+ ↵�i) =
nX

k=0

x
k
en�k(↵L).

The non-negative coefficients of such a real-rooted polynomial form a unimodal sequence (Lemma 1.1
in [Bra14]), i.e., e0(↵L)  · · ·  eM↵(↵L) � · · · � en(↵L), with the mode (shared between no
more than two positions k, k+1) being close to the mean k↵: |M↵�k↵|  1 (Theorem 2.2 in [Bra14]).
Moreover, it is easy to see that M0 = 0 and M↵ = n for large enough ↵, so since the sequence is
continuous w.r.t.↵, for every k 2 [n] there is an ↵

? such that Pr(|S↵? | = k) = Pr(|S↵? | = M↵?)
(every k can become one of the modes). In light of (2), this means that

Pr(|S↵? | = k) �
1

4C
p
k↵?

�
1

4C
p
k + 1

,

where the last inequality holds because |k � k↵? |  1.

Finally, we show how to find ↵
? efficiently.

Lemma 8 If k � 1 there is an algorithm that finds ↵? in O(n · poly(k)) time.

Proof In order to leverage Theorem 4, we need to find an ↵
? such that k = M↵? , that is such that the

mode of DPP(↵?L) is equal to k. Unfortunately simple unimodality is not sufficient to control M↵?

when ↵
? is perturbed, as it happens during an approximate optimization of ↵. We now characterize

more in detail the distribution of |S↵|.

In particular, |S↵| can be defined as the sum of Bernoullis |S↵| =
Pn

i=1 b↵,i each distributed
according to b↵,i ⇠ Bernoulli (�i(↵L)/(1 + �i(↵L))) [HKP+06]. The sum of independent but not
identically distributed Bernoullis is a so-called Poisson binomial random variable [H+56]. More
importantly, the following result holds for Poisson binomial random variable.

Proposition 5 (D
+

64, Theorem 4) Given a Poisson binomial r.v. |S↵| with mean k↵, let k , bk↵c.
The mode M↵ is

M↵ =

8
><

>:

k if k  k↵ < k + 1
k+2

,
k or k + 1 if k + 1

k+2  k↵  k + 1� 1
n�k+1

,
k + 1 if k + 1� 1

n�k+1 < k↵  k + 1.

Therefore it is sufficient to find any constant ↵? that places k↵? in the interval [k, k + 1
k+2). Unfortu-

nately, while the formula for k↵ =
Pn

i=1 �i(L)/(1/↵+�i(L)) is a unimodal function of the eigenval-
ues of L which is easy to optimize, the eigenvalues themselves are still very expensive to compute. For
efficiency, we can optimize it instead on the eigenvalues of a Nyström approximation bL, but we have
to be careful to control the error. In particular, remember that k↵ = E[|S↵|] when S ⇠ DPP(↵L), so
given a Nyström approximation bL we can define s↵ , tr(↵(L� bL) + bL(bL+ I/↵)�1) as a quantity
analogous to s from DPP-VFX. Then, we can strengthen Lemma 2 as follows.

Lemma 9 (see also Lemma 2) Let bL be constructed by sampling m = O((k↵/"2) log(n/�))
columns proportionally to their RLS. Then with probability 1� �

1

1 + "
k↵  s↵ 

1

1� "
k↵.

Proof of Lemma 9 We simply apply the same reasoning of Lemma 2 on both sides.

Let (1 � ")s↵? = k, with " that we tune shortly. Then proving the first inequality to satisfy
Proposition 5 is straightforward, k = (1� ")s↵?  k↵? . To satisfy the other side we upper bound
k↵?  (1 + ")s↵? = (1� ")s↵? + 2"s↵? . We must now choose " such that 2"s↵? = 1/(k + 3) <
1/(k + 2). Substituting, we obtain " = 1

2(k+3)s↵?
· Plugging this in the definition of s↵? we obtain

that ↵? must be optimized to satisfy

s↵? =
2k2 + 6k + 1

2k + 6
,

16

which we plug in the definition of " obtaining our neccessary accuracy " = 1/(2k2 + 6k + 1).
Therefore, sampling m = eO(k↵?k

4) columns gives us a s↵ sufficiently accurate to be optimized.
However, we still need to bound k↵? , which we can do as follows using Lemma 9 and k � 1,

k↵? 

✓
1 +

1

2k2 + 6k + 1

◆
s↵? 

✓
1 +

1

9

◆
s↵? =

10

9
s↵?


10

9

✓
2k2 + 6k + 1

2k + 6

◆
=

10

9

✓
1 +

1

k(2k + 6)

◆
k =

10

9

9

8
k =

5

4
k.

Therefore m = eO(k↵?k
4)  eO(k5) suffices for the accuracy. Moreover, since s↵ is parametrized

only in terms of the eigenvalues of bL, which can be found in eO(nm2 +m
3) time, we can compute

an ↵
? such that s↵? = 2k2+6k+1

2k+6 in eO(nk10 + k
15) time, which guarantees k  k↵? < k + 1

k+2 ·

Finally, note that the bounds on the accuracy of bL are extremely conservative. In deployment, it is
much faster to try to optimize ↵

? on a much coarser bL first, e.g., for m = O(k1), and only if this
approach fails, then to increase the accuracy of bL.

17

