A Omitted proofs for the main algorithm’s guarantees

In this section we present the proofs omitted from Sections 2 and 3, which regarded the correctness
and efficiency of DPP-VFX. We start by showing that multiple samples drawn using the same
Nystrom approximation are independent.

Lemma 5 (restated Lemma 1) Ler C' C [n] be a random set variable with any distribution. Suppose
that S1 and S5 are returned by two executions of DPP-VFEX, both using inputs constructed from the

same L and L = LLCLJCCLQI. Then Sy and Sy are (unconditionally) independent.

Proof Let A and B be two subsets of [n] representing elementary events for Sy and C, respectively.
Theorem 2 implies that

Pr(Si—A| C=B) = m _ Pr(S=A).

Now, for any A1, Ay C [n] representing elementary events for Sy and S, we have that

Pr(S;=A; A Sy=As) = Z Pr(S;=A; A Sy=A, | C=B) Pr(C=B)

Be[n)]
= ) Pr(S1=A4; |C=B)Pr(Sy=A4; | C=B) Pr(C=B)
Be[n)
=Pr(S;=A4,)Pr(S2=4;) ¥ _ Pr(C=B).
Be[n]
Since )~ pe(,, Pr(C'=B) = 1, we get that S and S are independent. [ |

‘We now bound the precompute cost, starting with the construction of the Nystrom approximation L.

Lemma 6 (restated Lemma 2) Let L be constructed by sampling m = O(k?log %) columns pro-
portionally to their RLS. Then, with probability 1 — 6, L satisfies the assumption of Theorem 3.

Proof LetL = BBT and L = BPB] where P is a projection matrix. Using algebraic manipulations
we get

s=tr(L-L+LI+L)"") =t(B(PB'BP +1)"'B).

The PB™BP matrix in the above expression been recently analyzed by [CCL ™ 19] in the context of
RLS sampling who gave the following result that we use in the proof.

Proposition 3 (CCL 19, Lemma 6) Let the projection matrix P be constructed by sampling
O(klog(%)/e?) columns proportionally to their RLS. Then,

(1-e)(B'B+I)<PB'BP+I=<(1+¢)(B'B~+1).

We decompose the condition into two parts. In the first part, we bound & — s < 1/2, and then bound
z—tr(BP(I+B7B)"'PBT) < 1/2, see the proof of Theorem 3 for more details. It is easy to see
that applying the construction from Proposition 3 leads to the following bound on s,

L

—€ 1—¢
Tuning € = 1/(2k + 2), we obtain s < k + 1/2 and reordering gives us the desired accuracy result.
Similarly, we can invert the bound of Proposition 3 to obtain

B B+I)"!' <(1+¢)(PB'BP +1)!

1
s=tr(B(PB'BP +1)"'B) < : atr(B(BTB—kI)_lB) =1

and therefore,
tr(BP(I+B"B)"'PB") < (1+¢)tr(BP(I+ PB"BP) 'PB") = (1 +¢)z < (1 +¢)k,

where the last inequality is due to the fact that L < Lsinceitisa Nystrom approximation and that the
operator tr(L(L + I)‘l) is monotone. With the same ¢ as before, we obtain the bound. Summing
the two 1/2 bounds gives us the result. |

Finally, we show how to compute the remaining quantities needed for DPP-VFX (Algorithm 1).
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Lemma 7 (restated Lemma 3) Given L and an arbitrary Nystrom approximation L of rank m,
computing l;, s, z, and L requires O(nm? +m?) time.

Proof Given the Nystrom set C, let us define the matrix B £ LLCLJCF/ 2 ¢ R™™ such that
L = BB'. We also introduce L,,, £ B B to act as a R™*™ counterpart to L. Denote with e; the
i-th indicator vector. Then, exploiting the fact that BB (I+ BB )~! = B(I+ B B)"!B for
any matrix, we can compute l; as

L=[L-L+BB (I+BB") ']y =[L—Ll;+ |T+Lyn) ?B e

Computationally, this means that we first need to compute B, which takes O(m?) time to compute
LE/CQ, and (’)(an) time for the matrix multiplication. Then, [fl]“ is the /5 norm of the i-th row of
B which can be computed in nim time. Similarly, ||(I + L,,) /2B e; |2 requires O(m3 + nm?2)
time. To compute s, we simply sum [;, while to compute z we first compute the eigenvalues of im,
a; = AMLy,);, in O(m?) time, and then compute z = >, ai/(a; + 1). We can also recycle the
eigenvalues to precompute log det(I + L) = log det(I + L,,) = > log(a; +1). |

B Omitted proofs for the reduction to k-DPPs

In this section we present the proofs omitted from Section 4. Recall that our approach is based on the
following rejection sampling strategy,

sample S, ~ DPP(aL), acceptif |Sy| = k.

First, we show the existence of the factor a* for which the rejection sampling is efficient.

Theorem 5 (restated Theorem 4) There exists constant C' > 0 such that for any rank n PSD matrix
L and k € [n), there is o* > 0 with the following property: if we sample So+ ~ DPP(«*L), then

Pr(| S| = k) (1)

1

> .
~oVk
Proof W.l.o.g.assume that L is non-zero, and remember S, ~ DPP(aL) with k, = E[|S,|]. Ata
high level, the proof proceeds as follows. We first prove that the probability that the size of the subset
|Swl is equal to its mode M,, i.e., Pr(|S,| = M,,) is large enough. Then we show that varying « can
make M, = k for any k, and therefore we can find an o* s.t. Pr(|So+| = My ) = Pr(|Sa+| = k)
is large enough. In other words, rescaling DPP(«aL) to make sure that its mean k,, is close to k is
sufficient to guarantee that |S, | = k with high enough probability.

Our starting point is a standard Chernoff bound for |S,|.

Proposition 4 (PP14) Given any PSD matrix L, if S, ~ DPP(aL), then for any a > 0, we have

Pr ([1Sal — E[Sall| = a) < 5exp ( - 16(a+02L2E[|Sa|])>

Note that Proposition 4 is not sufficiently strong by itself, i.e., if we tried to bound the distance
[|Sa| — E[|S4]]| to be smaller than 1 we would get vacuous bounds. However, Proposition 4 implies
that there is a constant C' > 0 independent of L such that Pr (|[Ss| — ko| = CVEq + 1) < 4 forall
a > 0. In particular, this means that the mode of |S,|, i.e. M, = argmax; Pr(|S,| = 4) satisfies

[CVEa]

1
P S(x - k(x ; Z .
> r(|Sal i)z o N

1

20Vka i=—[CVEa]

Pr(|S.| = M) >

2

The distribution of |S,| is given by Pr(|S,| = i) « e;(aL), where e;(-) is the ith elementary
symmetric polynomial of the eigenvalues of a matrix. Denoting A1, ..., A\, as the eigenvalues of L,
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we can express the elementary symmetric polynomials as the coefficients of the following univariate
polynomial with real non-positive roots,

ﬁera/\ Zx en—k(aL).
i=1

The non-negative coefficients of such a real-rooted polynomlal form a unimodal sequence (Lemma 1.1
in [Bral4]), i.e., eg(aL) < --- < epr, (o) > -+ > e,(aL), with the mode (shared between no
more than two positions k, k+1) being close to the mean k,: |M,—kq| < 1 (Theorem 2.2 in [Bral4]).
Moreover, it is easy to see that My = 0 and M, = n for large enough «, so since the sequence is
continuous w.r.t. a, for every k € [n] there is an o* such that Pr(|Sy«| = k) = Pr(|Sa+| = My+)
(every k can become one of the modes). In light of (2), this means that

1 1
Pr(|Sa+| = k) > > )
( | )74C\/km T ACVE+1
where the last inequality holds because |k — k,«| < 1. [ |

Finally, we show how to find o* efficiently.
Lemma 8 Ifk > 1 there is an algorithm that finds o in O(n - poly(k)) time.

Proof In order to leverage Theorem 4, we need to find an o* such that £ = M, that is such that the
mode of DPP(«a*L) is equal to k. Unfortunately simple unimodality is not sufficient to control M«
when a* is perturbed, as it happens during an approximate optimization of . We now characterize
more in detail the distribution of |S,|.

In particular, |Sal = >°1, ba,i each distributed
according to b, ; ~ Bernoulli (\;(aL)/(1 + \;(aL))) [HKP'06]. The sum of independent but not
identically distributed Bernoullis is a so-called Poisson binomial random variable [H™56]. More
importantly, the following result holds for Poisson binomial random variable.

Proposition 5 (D" 64, Theorem 4) Given a Poisson binomial r.v. |S,| with mean k., let k = |k, |.
The mode M, is

k if k<ko<k+ iz
My=qkork+1 if k+k}r2<k <k+1- o
k+1 if k41— mgg <ka<k+1

Therefore it is sufficient to find any constant o* that places k+ in the interval [k, k + k%ﬂ) Unfortu-
n

nately, while the formula for k, = >, \;(L)/(1/a+A;(L)) is a unimodal function of the eigenval-
ues of L which is easy to optimize, the eigenvalues themselves are still very expensive to compute. For
efficiency, we can optimize it instead on the eigenvalues of a Nystrom approximation L, but we have
to be careful to control the error. In particular, remember that ko, = E[|Sq|] when S ~ DPP(aL), so
given a Nystrom approximation L we can define s, 2 2 tr(a(L — L) + L(L +I/a)~1) as a quantity
analogous to s from DPP-VFX. Then, we can strengthen Lemma 2 as follows.

Lemma 9 (see also Lemma 2) Let L be constructed by sampling m = O((kq/<2)log(n/d))
columns proportionally to their RLS. Then with probability 1 — ¢
1 1
ko <54 < 71€
14¢ 1—

Proof of Lemma 9 We simply apply the same reasoning of Lemma 2 on both sides. |

Let (1 — €)sq« = k, with ¢ that we tune shortly. Then proving the first inequality to satisfy
Proposition 5 is straightforward, k = (1 — €)s,+ < kq~. To satisfy the other side we upper bound
kor < (14€)sar = (1 —€)8a + 2684+. We must now choose ¢ such that 2es,+ = 1/(k + 3) <

1/(k + 2). Substituting, we obtain ¢ = m Plugging this in the definition of s, we obtain
that o™ must be optimized to satisfy
2k* + 6k + 1

2%+6

Sa*x =

16



which we plug in the definition of & obtaining our neccessary accuracy ¢ = 1/(2k? + 6k + 1).

Therefore, sampling m = O(k,+k*) columns gives us a s, sufficiently accurate to be optimized.
However, we still need to bound &+, which we can do as follows using Lemma 9 and k£ > 1,

T < (141t _ 10
W2+ 6k+1)° = g )% T g e

10 /2k% +6k+1 10 1 109 5
<= " J="(14+—\|k="Zk="k
-9 ( 2k +6 ) 9 ( +k(2k+6)> 98 4

Therefore m = (5(1@&* k) < 6(k5 ) suffices for the accuracy. Moreover, since s,, is parametrized

only in terms of the eigenvalues of L, which can be found in O(nm? + m?) time, we can compute
2 . ~ . .

an o* such that s,» = 2’“%%“ in O(nk'® + k%) time, which guarantees k < ko» < k + %ﬁ [

ko~

Finally, note that the bounds on the accuracy of L are extremely conservative. In deployment, it is
much faster to try to optimize o* on a much coarser L first, e.g., for m = O(k;), and only if this
approach fails, then to increase the accuracy of L.
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