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Abstract

How does the uncertainty of the value function propagate when performing tem-
poral difference learning? In this paper, we address this question by proposing a
Bayesian framework in which we employ approximate posterior distributions to
model the uncertainty of the value function and Wasserstein barycenters to propa-
gate it across state-action pairs. Leveraging on these tools, we present an algorithm,
Wasserstein Q-Learning (WQL), starting in the tabular case and then, we show how
it can be extended to deal with continuous domains. Furthermore, we prove that,
under mild assumptions, a slight variation of WQL enjoys desirable theoretical
properties in the tabular setting. Finally, we present an experimental campaign
to show the effectiveness of WQL on finite problems, compared to several RL
algorithms, some of which are specifically designed for exploration, along with
some preliminary results on Atari games.

1 Introduction

Effectively balancing exploration and exploitation is a key challenge in Reinforcement Learning [RL,
43]. When an agent takes decisions under uncertainty, it faces the dilemma between exploiting the
information collected so far to execute what is believed to be the best action or to choose a possibly
suboptimal action to explore new portions of the environment and gather new information, leading
to more profitable behaviors in the future. Traditional exploration strategies, such as ε-greedy and
Boltzmann exploration [43], inject random noise into the action-selection process, i.e., the policy, to
guarantee that each action is tried often enough. Although these methods allow RL algorithms to learn
the optimal value function under mild assumptions [39], they are not efficient, since exploration is
random and not driven by confidence on the value function estimate. Therefore, they might converge
towards the optimal behavior after an exponential number of steps [24].

The exploration-exploitation dilemma has been extensively analyzed in the RL community, focusing
on the definition of proper indices for provably-efficient exploration and devising algorithms with
strong theoretical guarantees [25, 11, 21, 30]. Most of these algorithms are inherently model-based,
i.e., they need to maintain and update estimates of the environment dynamics and the reward function
during the learning process. For this reason, model-based methods are rather unsuited to problems
with large state spaces and inapplicable to continuous environments. Apart from rare exceptions [41],
the RL community has only recently focused on devising efficient model-free exploration strategies.
Some works have succeeded in obtaining provably-efficient algorithms [35, 31, 23]; whereas others
are more empirically-oriented [30, 29, 6].
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A fundamental step towards efficient exploration is the quantification of the uncertainty of the value
function. The notion of uncertainty is formalized in Bayesian statistics by means of a posterior
distribution. Bayesian Reinforcement Learning incorporates the Bayesian inference tools to provide a
principled way to address the exploration-exploitation dilemma [20]. However, these methods rarely
exploit the specific way in which the uncertainty propagates through the Bellman equation. Recently,
in [28] a partial answer has been provided, proposing an uncertainty Bellman inequality; although no
posterior distribution is explicitly considered.

In this paper, we propose a novel Bayesian framework to address the problem of exploration using
posterior distributions over the value function. Specifically, we focus on how to model and propagate
uncertainty when performing temporal-difference learning (Section 3). Moreover, we show how
to use this uncertainty information to effectively explore the environment. Finally, we combine
these elements to build our algorithm: Wasserstein Q-Learning (WQL, Section 4). Similarly to
Bayesian Q-Learning [15], we equip each state-action pair with an approximate posterior distribution
(named Q-posterior), whose goal is to quantify the uncertainty of the value function. Whenever a
transition occurs, we update our distribution, in a temporal difference [TD, 43] fashion, in order to
incorporate all sources of uncertainty: i) the one due to the sample estimate of the reward function
and environment dynamics; ii) the uncertainty injected using the estimate of the next-state value
function. Rather than employing a standard Bayesian update, we resort to a variational approach to
approximate the posterior distribution, based on Wasserstein barycenters [2]. Recently, several works
have embedded into RL algorithms notions coming from Optimal Transport [OT, 51], especially
the Wasserstein metric, to improve the learning abilities of policy search algorithms [34] or in the
filed of robust RL [1]. Furthermore, we prove in Section 5, that a slight modification of WQL, in
tabular domains, is PAC-MDP in the average loss setting [42]. After examining the related literature
(Section 6), we present an experimental evaluation on tabular environments to show the effectiveness
of WQL, compared to the classic RL algorithms, some of which specifically designed for exploration
(Section 7.1). Finally, we provide some preliminary results on the application of WQL to deep
architectures (Section 7.2). The proofs of all results are reported in Appendix B. The implementation
of the proposed algorithms can be found at https://github.com/albertometelli/wql.

2 Preliminaries

In this section, we provide the notation and the basic notions we will use in the following. Given a
set X , we denote with P(X ) the set of all probability measures over X .

Markov Decision Processes A discrete-time Markov Decision Process [MDP, 36] is defined as
a 5-tuple M = (S,A,P,R, γ), where S is the state space, A is the (finite) action space, P :
S × A → P(S) is a Markovian transition model, R : S × A → P(R) is a Markovian reward
model, γ ∈ [0, 1) is the discount factor. The behavior of an agent is defined by means of a
Markovian policy π : S →P(A). Whenever the environment is in state s ∈ S, the agent performs
action A ∼ π(·|s) and the environment transitions to the next state S′ ∼ P(·|s,A) providing
the agent with the reward R ∼ R(·|s,A). We assume |R| ≤ rmax < +∞ almost surely. We
indicate with r(s, a) = ER∼R(·|s,a)[R] the expected reward obtained by taking action a ∈ A
in state s ∈ S. Given a policy π we define the state-value function, or V-function, as vπ(s) =
EA∼π(·|s),S′∼P(·|s,A) [r(s,A) + γvπ(S′)]. The action-value function, or Q-function, is given by
qπ(s, a) = r(s, a) + γ ES′∼P(·|s,a),A′∼π(·|S′) [qπ(S′, A′)]. The optimal action-value function is
defined as q∗(s, a) = supπ∈Π{qπ(s, a)} for all (s, a) ∈ S ×A and it satisfies the optimal Bellman
equation: q∗(s, a) = r(s, a)+γ ES′∼P(·|s,a) [maxa′∈A{q∗(S′, a′)}]. The boundedness of the reward
function implies that the Q-function is uniformly bounded, i.e., |q∗(s, a)| ≤ qmax ≤ rmax/(1− γ).
Then, an optimal policy π∗ is any policy that plays only greedy actions w.r.t. q∗, i.e., for all s ∈ S we
have π∗(·|s) ∈P (arg maxa∈A{q∗(s, a)}).

Temporal Difference Learning Temporal-difference methods update the estimate of the optimal
Q-function using the estimates of the next states V-functions [43]. For TD(0), we have that whenever
a (St, At, St+1, Rt+1) tuple is collected, the temporal difference update rule is executed:

qt+1(St, At) = (1− αt) qt(St, At) + αt (Rt+1 + γvt(St+1)) , (1)

where qt is the estimated Q-function at time t, αt ≥ 0 is a learning rate, and vt is an estimate of the
V-function at time t. Different choices for vt generate different learning algorithms. If vt(St+1) =
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qt(St+1, At+1) we get the SARSA update [38], if vt(St+1) = EA∼πt(·|St+1)[qt(St+1, A)] we get the
Expected SARSA update [50], being πt the exploration policy played at time t, and if vt(St+1) =
maxa∈A{qt(St+1, a)} we are performing Q-learning [52].

Wasserstein Barycenters Let (X , d) be a complete separable metric (Polish) space and x0 ∈ X
be an arbitrary point. For each p ∈ [1,+∞) we define Pp(X ) as the set of all probability measures
µ over (X ,F ) such that EX∼µ[d(X,x0)p] < +∞. Let µ, ν ∈Pp(X ), the Lp-Wasserstein distance
between µ and ν is defined as [51]:

Wp(µ, ν) =

(
inf

ρ∈Γ(µ,ν)
E

X,Y∼ρ
[d(X,Y )p]

)1/p

, (2)

where Γ(µ, ν) is the set of all probability measures on X × X (couplings) with marginals µ and ν.
With little abuse of notation, we will indicate with Wp(X,Y ) = Wp(µ, ν), whenever clear from
the context. The Wasserstein distance comes from the optimal transport community. Intuitively, it
represents the “cost” to move the probability mass to turn one distribution into the other. Given a set of
probability measures {νi}ni=1, belonging to the class N , and a set of weights {ξi}ni=1,

∑n
i=1 ξi = 1

and ξi ≥ 0, the L2-Wasserstein barycenter is defined as [2]:

ν = arg inf
ν∈N

{
n∑
i=1

ξiW2(ν, νi)
2

}
. (3)

3 How to Model and Propagate Uncertainty?

In this section, we introduce a unifying Bayesian framework for exploration in RL that employs
(approximate) posterior distributions to model uncertainty of value functions (Section 3.1) and Wasser-
stein barycenters to propagate uncertainty when performing TD updates (Section 3.2). Furthermore,
we discuss how to leverage on the Q-posteriors to estimate the action that attains the maximum return
in each state (Section 3.3) and to effectively explore the environment (Section 3.4).

3.1 Modeling Uncertainty via Q-Posteriors

Taking inspiration from Bayesian approaches to RL [15, 20], for each state s ∈ S and action a ∈ A
we maintain a probability distribution Q(s, a), which we call Q-posterior, representing a (possibly
approximate) posterior distribution of the Q-function estimate. This distribution will depend on
the underlying MDP, in particular, the environment dynamics P and reward model R, and on the
updates of the Q-function estimates performed. As in a model-free scenario we cannot represent
such distribution exactly, we employ a class of approximating probability distributions Q ⊆P(R).
Similarly to usual value functions, we introduce the V-posterior V(s) which represents the (possibly
approximate) posterior distribution of V-function, that combines the uncertainties modeled by the
Q-posteriors Q(s, a). Furthermore, being the V-function defined, in the usual framework, as the
expectation of the Q-function over the action space, i.e., vπ(s) = EA∼π[qπ(s, a)], it is natural to
define, in our setting, the V-posterior V(s) as the Wasserstein barycenter of the Q-posteriorsQ(s, a).2

Definition 3.1 (V-posterior). Given a policy π and a state s ∈ S, we define the V-posterior V(s)
induced by the Q-posteriors Q(s, a) with a ∈ A as the Wassertein barycenter of the Q(s, a):

V(s) ∈ arg inf
V∈Q

{
E

A∼π(·|s)

[
W2 (V,Q(s,A))

2
]}

. (4)

When the policy π is known, the expectation over the action space can be computed as we are
assuming that A is finite. In a prediction problem, policy π is a fixed policy, whereas, in a control
problem, π is a policy aimed at properly selecting the best action in state s accounting for the
uncertainty modeled by the Q-posterior (see Section 3.3). Moreover, when Q(s, a) are deterministic
distributions, V(s) is a deterministic distribution too centered in the mean of the Q(s, a). In this way,
we obtain the usual V-function definition (see Proposition A.3).

2The Wasserstein barycenter can be regarded as a way of averaging distributions [2].
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It is important to stress that our approach is rather different from Distributional Reinforcement
Learning [9, 13, 12, 37]. Indeed, we employ a distribution to represent the uncertainty of the Q-
function estimate and not the intrinsic randomness of the return. The two distributions are clearly
related and both depend on the stochasticity of the reward and of the transition model. However, in
our approach the stochasticity refers to the uncertainty on the Q-function estimate which reduces as
the number of updates increases, being a sample mean.3

3.2 Propagating Uncertainty via Wasserstein Barycenters

In this section, we discuss the problem of uncertainty propagation, i.e., how to deal with the update
of the Q-posteriors when experiencing a transition (St, At, St+1, Rt+1). Whenever a TD update
(Equation (1)) is performed, there are two sources of uncertainty involved. First, we implicitly
estimate the environment dynamics P(·|St, At) and the reward model R(·|St, At) using a set of
sampled transitions (St, At, St+1, Rt+1). Second, when using the V-function estimates of the next
states vt(St+1) we bring into qt+1(St, At) part of the uncertainty of vt(St+1) and they become
correlated. For this reason, the standard Bayesian posterior update, used for instance in Bayesian
Q-learning [15], becomes rather inappropriate as it assumes that the samples are independent, which
is clearly not true. We argue that, rather than using a Bayesian update, when we have a Q-posterior
Qt(St, At) and a V-posterior Vt(St+1) we can combine them using a notion of barycenter, which
does not require the independence assumption. We formalize this idea in the following update rule.
Definition 3.2 (Wasserstein Temporal Difference). Let Qt be the current Q-posterior, given a
transition (St, At, St+1, Rt+1), we define the TD-target-posterior as Tt = Rt+1 + γVt(St+1). Let
αt ≥ 0 be the learning rate, we define the Wasserstein Temporal Difference (WTD) update rule as:

Qt+1(St, At) ∈ arg inf
Q∈Q

{
(1− αt)W2 (Q,Qt(St, At))2

+ αtW2 (Q, Tt)2
}
. (5)

Therefore, the new Q-posterior Qt+1(St, At) is the Wasserstein barycenter between the current
Q-posterior Qt(St, At) and the TD-target posterior Tt = Rt+1 + γVt(St+1), which in turn embeds
information of the current transition (i.e., the reward Rt+1 and the next state St+1) and the next-state
V-posterior Vt(St+1). It is worth noting that the two terms appearing in Equation (5) account for
all sources of uncertainty. Indeed, the first term W2 (Q,Qt(St, At)) avoids moving too far from the
current estimation Qt(St, At), as we are performing the update experimenting a single transition,
whereas W2 (Q, Tt) allows bringing in the new Q-posterior the V-posterior of the next-state Vt(St+1)
(including its uncertainty). We stress the analogy with the standard TD update in the following result.

Proposition 3.1. If Q is the set of deterministic distributions over R, then the WTD update rule
(Equation (5)) has a unique solution that corresponds to the TD update rule (Equation (1)).

Supporting deterministic distributions, as the Q-posteriors, is fundamental for our method that models
a sample mean, whose variance reduces as the number of samples increases, moving towards a
deterministic distribution. This justifies the choice of the Wasserstein metric over other distributional
distances (e.g., α-divergences). The choice of the prior for Q0 plays an important role, along with
the learning rate schedule αt. We will show in Section 5 that specific choices of Q0 and αt, for a
particular class of distributions Q, allow achieving PAC-MDP property in the average loss setting.

3.3 Estimating the Maximum Expected Value

The TD-target-posterior Tt = Rt+1 + γVt(St+1) is defined in terms of the next state V-posterior
Vt(St+1). In a control problem, we aim at learning the optimal Q-function q∗ and, thus, we are
interested in propagating back to Qt+1(St, At) a V-posterior Vt(St+1) related to the optimal action
to be taken in the next state.4 This can be performed by a suitable choice of the policy π, as
in Definition 3.1. A straightforward approach consists in propagating the Q-posterior Q(St+1, a)
of the action with the highest estimated mean, i.e., πM (·|s) ∈ P

(
arg maxa∈A{EQ∼Q(s,a)[Q]}

)
.

3A notable difference w.r.t. the distributional RL is that the variance of our posterior distribution
VarQ∼Q(s,a)[Q] vanishes as the number of updates grows to infinity.

4We stress that we are uninterested in modeling the distribution maxa∈A{Q(s, a)}, but rather in exploiting
the uncertainty modeled byQ(s, a) to properly perform the computation of the optimal action.
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Table 1: Probability density function (pdf), Wasserstein Temporal Difference (WTD) update rule and
computation of the V-posterior for Gaussian and Particle posterior distributions.

Q pdf WTD and V-posterior

Gaussian
exp

{
− 1

2

(
x−m(s,a)
σ(s,a)

)2
}

√
2πσ2(s, a)

mt+1(St, At) = αtmt(St, At) + (1− αt) (Rt+1 + γmt(St+1))
σt+1(St, At) = αtσt(St, At) + (1− αt)γσt(St+1)
m(s) = EA∼π(·|s) [m(s,A)]
σ(s) = EA∼π(·|s) [σ(s,A)]

Particle

∑M
j=1 wjδ(x− xj(s, a))

x1(s, a) ≤ ... ≤ xM (s, a)∑M
i=j wj = 1 and wj ≥ 0

xj,t+1(St, At) = αtxj,t(St, At) + (1−αt) (Rt+1 + γxj,t(St+1))
xj(s) = EA∼π(·|s) [xj(s,A)] , j = 1, 2, ...,M

We refer to this approach as Mean Estimator (ME) for the maximum. However, when posterior
distributions are available, we can use them to define a wiser way to estimate the V-posterior of
the next state.5 A first method based on Optimism in the Face of Uncertainty [OFU, 3] consists
in selecting the action that maximizes a statistical upper bound uδ(s, a) of the Q-posterior, i.e.,
πO(·|s) ∈ P

(
arg maxa∈A{uδ(s, a)}

)
. We will refer to this method as Optimistic Estimator

(OE). However, if we want to make full usage of the Q-posteriors, we can resort to the Posterior
Estimator (PE) of the maximum, based on Posterior Sampling [PS, 47]. In this case, each action
contributes to the update rule weighted by the probability of being the optimal action, i.e., πP (a|s) =
PrQs,a∼Q(s,a) (a ∈ arg maxa′∈A{Qs,a′}).

3.4 Exploring using the Q-posteriors

In the previous section, we have introduced two approaches that exploit the Q-posterior to properly
define the V-posterior of the next state, using specific policies π. These policies can also be used to
implement effective exploration strategies aware of the uncertainty. Using the optimistic policy πO
in each state, we play (deterministically) the action that maximizes the statistical upper bound on
the estimated Q-function uδ(s, a), we call this strategy Optimistic Exploration (OX). Instead, we
can directly use the posterior policy πP to sample the action from the Q-posterior Q(s, a). Thus, in
Posterior Exploration (PX), each action is played with the probability of being optimal.

4 Wasserstein Q-Learning

Input: a prior distributionQ0, a step size schedule
(αt)t≥0, an exploration policy schedule (πt)t≥0

1: InitializeQ(s, a) with the priorQ0

2: for t = 1, 2, ... do
3: Take action At ∼ πt(·|St)
4: Observe St+1 and Rt+1

5: Compute Vt(St+1) using Equation (4)
6: UpdateQt+1(St, At) using Equation (5)
7: end for

Algorithm 1: Wasserstein Q-Learning.

The ideas presented so far can be combined in
an algorithm, Wasserstein Q-Learning (WQL),
whose pseudocode is reported in Algorithm 1.

We developed our approach for a generic class of
distributions Q, however, in practice, we focus
on two specific classes: Gaussian posteriors (G-
WQL) and Particle posteriors (P-WQL), i.e., a
mixture of M > 1 Dirac deltas. For both classes
the Wasserstein Barycenter is unique and can be
computed in closed form (see Appendix A.3).6 In
Table 1, we summarize the main relevant features
of these distributions classes. WQL simply needs
to store the parameters of the Q-posterior for every state-action pair (m(s, a) and σ(s, a) for G-WQL
and xj(s, a) for P-WQL). Therefore, unlike the majority of provably-efficient algorithms, it can be
extended straightforwardly to continuous state spaces as long as we adopt a function approximator
for the parameters of the posterior. For instance, we could approximate m(s, a) and σ(s, a) or the
particles xj(s, a) using a neural network with multiple heads. For this reason, our method easily

5This problem was treated in RL, without distributions, proposing several estimators, such as the double
estimator [48] and the weighted estimator [17, 16].

6It is worth noting that, even for the Gaussian case, using the standard Bayesian posterior update is inappro-
priate, as the independence of the Q-function estimates across state-action pairs cannot be assumed.
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applies to deep architecture by adopting a network that directly outputs the posterior parameters,
instead of the value function (see Section 7.2).

5 Theoretical Analysis

In this section, we show that WQL, with some modifications, enjoys desirable theoretical properties
in the tabular setting. We start providing a modification of the WTD update rule that will be used for
the analysis; then we prove that with such modification our algorithm, under certain assumptions, is
PAC-MDP in the average loss setting [42].
Definition 5.1 (Modified Wasserstein Temporal Difference). Let Qt be the current Q-posterior and
Qb be a zero-mean distribution, given a transition (St, At, St+1, Rt+1), we define the TD-target-
posterior as Tt = Rt+1 + γVt(St+1). Let αt , βt ≥ 0 be the learning rates, we define the Modified
Wasserstein Temporal Difference (MWTD) update rule as:

Q̃t+1(St, At) ∈ arg inf
Q∈Q

{
(1− αt)W2

(
Q, Q̃t(St, At)

)2

+ αtW2 (Q, Tt)2

}
,

Qt+1(St, At) ∈ arg inf
Q∈Q

{
W2

(
Q, Q̃t+1(St, At) + βtQb

)2
}
,

We will denote the algorithm employing this update rule as Modified Wasserstein Q-Learning
(MWQL). The reason why we need to change the WTD lies in the fact that the uncertainty on the
Q-function value (the Q-posterior) is, as already mentioned, the contribution of two terms: i) the
uncertainty on the reward and transition model; ii) the uncertainty on the next-state Q-function. These
terms need to be averaged into the Q-posterior at different speeds. If nt(s, a) is the number of times
(s, a) is visited up to time t, (i) has to reduce proportionally to 1/

√
nt(s, a) being a sample mean,

while (ii) is averaged with coefficients proportional to 1/nt(s, a). Therefore, we should keep the two
sources of uncertainty separated. To this end, we use an additional distribution Qb to prevent the
uncertainty from reducing too fast.

The notion of PAC-MDP in the average loss setting [42] is a relaxation of the classical PAC-MDP
notion introduced in [24], in which we consider the actual reward received by the algorithm while
learning, instead of the expected values over future policies. We recall the definitions given in [42].
Definition 5.2 (Definition 4 of [42]). Suppose a learning algorithm A is run for T steps. Consider
partial sequence S0, R1, ..., ST−1, RT , ST visited by A. The instantaneous loss of the agent at time t
is ilA(t) = v∗(St)−

∑T
i=t γ

i−tRi+1. The quantity LA = 1
T

∑T
t=1 ilA(t) is called the average loss.

Then, a learning algorithm A is PAC-MDP in the average loss setting if for any ε ≥ 0 and δ ∈ [0, 1],
we can choose a value T , polynomial in the relevant quantities (1/ε, 1/δ, |S|, |A|, 1/(1− γ)), such
that the average loss LA of the agent (following the learning algorithm A) on a trial of T steps is
guaranteed to be less than ε with probability at least 1− δ.

In the following, we will restrict our attention to MWQL with Gaussian posterior, optimistic esti-
mator (OE) and optimistic exploration policy (OX). We leave the analysis of the posterior sampling
exploration (PX) as future work. To prove the main result we need an intermediate result.
Theorem 5.1. Let S0, ..., ST−1, ST be the sequence of states and actions visited by MWQL with
Gaussian posterior, OE and OX. Then, there exists a prior Q0 and a zero-mean distribution Qb and a
learning rate schedule for (αt, βt)t≥0 (whose values are reported in Appendix B.1), such that for any
δ ∈ [0, 1], with probability at least 1− δ it holds that:7

T∑
t=1

[v∗(St)− vA(St)] ≤ O
(

qmax

(1− γ)
3
2

√
|S||A|T log

|S||A|T
δ

)
, (6)

where vA is the value function induced by the (non-stationary) policy played by algorithm A.

From this result, we can exploit an analysis similar to [42] to prove that MWQL with Gaussian
posterior, OE and OX is PAC-MDP in the average loss setting.

7This performance index resembles the regret [21]. However, it is a weaker notion, being defined in terms of
the trajectory generated by algorithm A, instead of the trajectories of an optimal policy.
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Theorem 5.2. Under the hypothesis of Theorem 5.1, MWQL with Gaussian posterior, OE and OX is
PAC-MDP in the average loss setting, i.e., for any ε ≥ 0 and δ ∈ [0, 1], after

T = O
(
q2
max|S||A|
ε2(1− γ)3

log
q2
max|S|2|A|2
δε2(1− γ)3

)
steps we have that the average loss LA ≤ ε with probability at least 1− δ.

The per-step computational complexity of MWQL isO(log |A|) as we can maintain the upper bounds
of the Q-function as a max-priority queue [40] and the space complexity is O(|S||A|).

Despite the theoretical guarantees, MWQL turns out to be often impractical for two main reasons.
First, MWQL cannot be extended to continuous MDPs, as αt and βt are defined in terms of number
of visits n(s, a) (Equation (20)), which can only be computed for finite MDPs. Second, as many
provably efficient RL algorithms, MWQL is extremely conservative, leading to very slow convergence.
This is why most provably efficient RL algorithms, when used in practice, are run with non-theoretical
values of hyperparameters. In this sense, WQL can be seen as a “practical” version of MWQL in
which αt is treated as a normal hyper-parameter and βt = 0.

6 Related Works

A variety of approaches has been proposed in the RL literature to tackle the exploration-exploitation
trade-off [44]. We consider only those that do not assume the availability of a simulator of the
environment [26]. A first dimension of classification is the RL setting they consider: finite-horizon,
discounted or undiscounted. Finite-horizon MDPs are a convenient framework to devise provably-
efficient exploration algorithms with theoretical guarantees on the regret [32, 14, 5]. Recently, in
[23] it was shown that Q-learning, in the finite-horizon setting, can be made efficient by resorting to
suitable exploration bonuses. Similar results have been proposed in the infinite-horizon undiscounted
case. The main challenge of this class of problems is the connection structure of the MDP [7].
Early approaches [25, 4, 46, 21] impose restrictive requirements on either mixing/hitting times or
diameter, which have been progressively relaxed [19]. A significant part of the early provably-efficient
algorithms considers the discounted setting [25, 11, 41, 45, 27]. However, their theoretical guarantees
are based on the notion of PAC-MDP [24] rather than on regret.

Another relevant dimension is the kind of policy used for exploration. Taking inspiration from the
Multi Armed Bandit [MAB, 10] framework, two main approaches have been proposed: Optimism
in the Face of Uncertainty [3] and Thompson Sampling [47]. Most exploration algorithms employ
the optimistic technique, selecting actions from the optimal policy of an optimistic approximation
of the MDP [21] or of the value function directly [41, 23]. Some methods, instead, use a posterior
sampling approach in which either the entire MDP or a value function is sampled from a (possibly
approximate) posterior distribution.

Inspired by these methods, numerous practical variants have been devised. Exploration bonuses,
based on pseudo-counts [8, 33], mimicking optimism, have been applied with positive results to
deep architectures. Likewise, with the idea of approximating a posterior distribution, Bootstrapped
DQN [30] and Bayesian DQN [6] succeeded in solving challenging Atari games. Recently, new
results of sample-efficiency beyond tabular domains have been derived [22].

7 Experiments

In this section, we provide an experimental evaluation of WQL on tabular domains along with some
preliminary results on Atari games (implementation details are reported in Appendix C).

7.1 Tabular Domains

We evaluate WQL on a set of RL tasks designed to emphasize exploration: the Taxi problem [15], the
Chain [15], the River Swim [42], and the Six Arms [42]. We extensively test several WQL variants that
differ on: i) the Q-posterior model (Gaussian G-WQL vs particle P-WQL); ii) the exploration strategy
(optimistic OX vs posterior sampling PX), iii) the estimator of the maximum (ME, OE, and PE).
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Figure 1: Online average return as a function of the number of samples, comparison of P-WQL and
G-WQL with QL, BQL, Delayed-QL, and MBIE-EB. 10 runs, 95% c.i.
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We compare these combinations with the classic Q-
learning [QL, 52] (Boltzmann exploration), Bootstrapped
Q-learning [BQL, 30] both with the double estimator [48],
Delayed Q-learning [Delayed-QL, 41] and MBIE-EB [42].8

Figure 1 shows the online performance on the considered
tabular tasks. While we tried all the WQL variants, due to
space constraints, we show the best combination of explo-
ration strategy and maximum estimator for both Gaussian
and particle models (complete results are reported in Ap-
pendix C). We can see that WQL learns substantially faster
than classical approaches, like QL, in tasks that require sig-
nificant exploration, such as Taxi, Six Arms, or River Swim.
Our algorithm also outperforms BQL in most tasks, except
in the River Swim, where performances are not substan-
tially different. Finally, we can see that across all the tasks
WQL displays a faster learning curve w.r.t. to Delayed-QL.
MBIE-EB outperforms WQL in small domains like Chain
and RiverSwim, but not in SixArms. MBIE-EB was not
tested on the Taxi domain as the number of states (∼ 200) makes the computational time demands
prohibitive. We cross-validate the hyperparameter of Delayed Q-Learning and MBIE-EB.

Among the variants of WQL, we discovered that the choice of the exploration strategy and the
maximum estimator are highly task dependent. However, we can see a general pattern across the
tasks. As intuition suggests, being the exploration strategy and the maximum estimator closely
related, the best combinations are: OX exploration with OE estimator and PX exploration with PE
estimator. We illustrate in Figure 2 all the possible combinations of G-WQL on Six Arms, a domain
in which exploration is essential. We can notice that the “hybrid” combinations, such as OX with PE
and PX with OE are significantly outperformed by the more “coherent” ones.

7.2 Atari Games

We adapted WQL with the particle model to be used paired with deep architectures. For this purpose,
similarly to Bootstrapped DQN [BDQN, 30], we use a network architecture with a head for each
particle while the convolutional layers are shared among them. We compare the resulting algorithm,
which we call Particle DQN (PDQN), with Double DQN [DDQN, 49], a classic benchmark in
Deep-RL, and Bootstrapped DQN, specifically designed for deep exploration using Q-posteriors. To
compare algorithms we consider offline scores, i.e., the scores collected using the current greedy
policy. The goal of this experiment, conducted on three Atari games, is to prove that WQL, although
designed to work in finite environments, can easily be extended to deep networks with potentially
good results. In Figure 3, we can see that PDQN, compared to BDQN and DDQN, manages to

8We are considering a discounted setting, thus, several provably efficient algorithms, like UCRL2 [21],
PSRL [32], RLSVI [30], optimistic Q-learning [23] and UCBVI [5], cannot be compared as they consider either
average reward or finite-horizon setting.
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Input: a prior distribution {xi}Mi=1, a step size schedule (αt)t≥0, an exploration policy schedule (πt)t≥0

1: Initialize a Q-function network with M outputs {Qj}Mj=1 and parameters θ and the target network with
parameters θ− = θ

2: for t = 1, 2, ... do
3: Take action At ∼ πt(·|St;θ)
4: Store transition (St, At, St+1, Rt+1) in the replay buffer
5: Sample random a batch of transitions (Sl, Al, Sl+1, Rl+1) from the replay buffer
6: Compute targets yj(Sl+1) = EA∼π(·|Sl+1)[Qj(Sl+1, A;θ−)] for each output Qj where π ∈

{πM , πO, πP } as in Section 3.3
7: Perform a gradient descent step w.r.t. θ on the objective

∑M
j=1(yj(St+1)−Qj(Sl, Al;θ))2 and using

the step size αt
8: Periodically update target network θ− = θ
9: end for

Algorithm 2: Particle DQN.
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Figure 3: Offline average return of the greedy policy as a function of the number of collected frames,
comparing PDQN, DDQN and BDQN on Asterix, Enduro and Breakout games. 5 runs, 95% c.i.

achieve higher scores in Asterix and Enduro, where exploration is needed, while achieving similar
scores in Breakout. A relevant feature of PDQN is the particle initialization interval. Indeed, a
narrower initial interval causes faster learning but might lead to premature convergence. In this sense,
the initial interval becomes a hyperparameter of PDQN, which influences the amount of exploration
and it is likely task-dependent. The pseudocode of PDQN is shown in Algorithm 2.

8 Discussion and Conclusions

In this paper, we presented a novel RL algorithm, Wasserstein Q-Learning (WQL), which addresses
several issues related to efficient exploration in model-free RL. We discussed how to model uncertainty
of the estimated Q-function by means of approximate posterior distributions (Q-posteriors). Then,
we devised a variational method to propagate uncertainty across state-action pairs when performing
TD learning, based on Wasserstein barycenters. The experimental evaluation allowed us to appreciate
the properties of WQL. In tabular domains, whenever exploration is really necessary, our approach
is able to significantly outperform TD methods even if designed specifically for exploration (e.g.,
Bootstrapped Q-Learning and Delayed Q-Learning). Although preliminary, the results on the Atari
games are promising and need to be further investigated as future work in order to make WQL scale
on complex environments. We believe that our algorithm contributes to bridging the gap between
theory and practice of exploration in RL. WQL is a theoretically grounded method, equipped with
guarantees in the average loss setting, but, at the same time, it is a very simple algorithm, easily
extensible to deal with continuous domains.
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Index of the Appendix

In the following, we briefly recap the contents of the Appendix.

– Appendix A provides additional details about the properties of the Wasserstein metric and the
Wasserstein barycenters.

– Appendix B reports all proofs and derivations.

– Appendix C reports additional experiments in the tabular domain along with some implementation
details.

A Details on Wasserstein distance

In this appendix, we provide some additional details on Wasserstein distance and some properties of
our approximate posterior distribution models. It can be proved [51] that the functions Wp are metrics
on the sets Pp(X ). Moreover, the following monotonicity property holds: Wp(µ, ν) ≤Wq(µ, ν) if
p ≤ q. We will assume that all the involved probability measures µ admit cumulative distribution
function (c.d.f.) Fµ and probability density function (p.d.f.) fµ w.r.t. the Lebesgue measure. When
X = R and d(x, y) = |x− y| is the Euclidean distance, the Wasserstein distance can be rephrased in
terms of the quantile functions:

Wp(µ, ν) =

(∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣p dt

)1/p

, (7)

where F−1 is the quantile function, i.e., F−1
µ (t) = inf {x ∈ R : t ≤ Fµ(x)}. The L2-Wasserstein

distance admits a closed form for both the Gaussian and particle models. For two Gaussian distri-
butions, considering just the univariate case, µ = N (m1, σ

2
1) and ν = N (m2, σ

2
2), we have [18]:

W2(µ, ν)2 = (m1 −m2)2 + (σ1 − σ2)2. (8)

For the particle models, with the same weighting wj we have the following result.

Proposition A.1. Let µ and ν be two mixture of M Dirac deltas with the same weighting wj for
j = 1, 2, ...,M having fµ(x) =

∑M
j=1 wjδ(x− xj) and fν(x) =

∑M
j=1 wjδ(x− yj) as p.d.f.s with

x1 ≤ x2 ≤ ... ≤ xM and y1 ≤ y2 ≤ ... ≤ yM . Then, the L2-Wasserstein distance between µ and ν
is given by:

W2(µ, ν)2 =

M∑
j=1

wj(xj − yj)2. (9)

Proof. We use Equation (7), thus we need to compute the quantile function of a mixture of M Dirac deltas. Let
us introduce the intervals Ij = [tj−1, tj), t0 = 0, tj =

∑j
k=1 wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . It is

clear that:

F−1
µ (t) =

M∑
j=1

xj1Ij (t), F−1
µ (t) =

M∑
j=1

yj1Ij (t),

where 1X is the indicator function of the set X . Thus we can compute the Wasserstein distance by employing
Equation (7):

W2(µ, ν)2 =

∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣2 dt

=

M∑
j=1

∫
Ij

∣∣F−1
µ (t)− F−1

ν (t)
∣∣2 dt

=

M∑
j=1

∫
Ij

(xj − yj)2dt

=

M∑
j=1

(xj − yj)2

∫
Ij

dt
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=

M∑
j=1

wj(xj − yj)2,

where we observed that
∫
Ij

dt = tj − tj−1 = wj .

A.1 Approximation of an arbitrary distribution with a mixture of Deltas

In this section, we show that we are able to approximate an arbitrary distribution with a mixture of
Deltas, provided that we consider a sufficiently large number of components.
Proposition A.2. Let µ be an arbitrary probability measure over the interval [a, b] ⊂ R admitting
Fµ as c.d.f. and let ν be a mixture of M Dirac deltas x̂1 ≤ x̂2 ≤ ... ≤ x̂M weighted by wj for
j = 1, 2, ...,M fixed. Then, the L2-Wasserstein W2(µ, ν) has a unique minimizer:

x̂j =
1

|Ij |

∫
Ij

F−1
µ (t)dt, j = 1, 2, . . . ,M,

where Ij = [tj−1, tj), t0 = 0, tj =
∑j
k=1 wk and |Ij | = tj − tj−1 for j = 1, 2, ...N . In this case,

the L2-Wasserstain distance can be bounded as:

W2(µ, ν)2 ≤ (b− a)2

4
max

j=1,2,...,n
|Ij |.

Proof. Let us first compute the quantile function of ν, i.e., F−1
ν :

F−1
ν (t) =

M∑
j=1

xj1Ij (t). (10)

Using Equation (7), the L2-Wasserstein distance can be written as:

W2(µ, ν)2 =

∫ 1

0

(
F−1
µ (t)− F−1

ν (t)
)2

dt

=

M∑
j=1

∫
Ij

(
F−1
µ (t)− xj

)2
dt.

The objective is clearly convex, thus, we take the derivative w.r.t. xj and we get:

∂W 2
2

∂xj
= −2

∫
Ij

(
F−1
µ (t)− xj

)
dt = 0, (11)

from which the first result follows, by observing that
∫
Ij

dt = |Ij |. Let us now observe, since F−1
µ is

monotonically increasing, that for every j:∫
Ij

(
F−1
µ (t)− x̂j

)2
dt ≤

∫
Ij

(
F−1
µ (t)−

F−1
µ (tj) + F−1

µ (tj−1)

2

)2

dt (12)

≤ 1

4

∫
Ij

[
(F−1
µ (t)− F−1

µ (tj)) + (F−1
µ (t)− F−1

µ (tj−1))
]2

dt

≤ 1

4

∫
Ij

[
(F−1
µ (t)− F−1

µ (tj−1))− (F−1
µ (tj)− F−1

µ (x))
]2

dt (13)

≤ 1

4

∫
Ij

(
F−1
µ (tj)− F−1

µ (tj−1)
)2

dt

≤ 1

4
|Ij |
(
F−1
µ (tj)− F−1

µ (tj−1)
)2
,

where (12) follows from the fact that x̂j is the minimizer and (13) derives from observing that F−1
µ (t) −

F−1
µ (tj−1) ≤ 0 by definition of F−1

µ (tj−1) whereas F−1
µ (t) − F−1

µ (tj−1) ≥ 0. Let us rename ∆j =

F−1
µ (tj)− F−1

µ (tj−1), the error can be bounded overall as:

W2(µ, ν)2 ≤ 1

4

M∑
j=1

|Ij |∆2
j
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≤ 1

4
max

j=1,2,...,M
|Ij |

n∑
j=1

∆2
j

≤ 1

4
max

j=1,2,...,M
|Ij |

(
M∑
j=1

∆j

)2

≤ 1

4
max

j=1,2,...,M
|Ij | (b− a)2 ,

where we used Cauchy–Schwarz inequality in the last passage, observing that ∆j ≥ 0 from the monotonicity of
F−1
µ .

When we consider a uniform particle model, i.e., wj = 1/M , the result reduces to:

W2(µ, ν)2 ≤ (b− a)2

4M
. (14)

The result tells us that when M → ∞ the error vanishes as expected. Up to now, we considered
the error introduced by representing a given distribution with a mixture of deltas. It is interesting to
investigate the properties of the approximating distribution ν.
Lemma A.1. Let ν be the best mixture of deltas L2-Wasserstein approximation of an arbitrary
distribution µ, as defined in Proposition A.2. If µ admits expectation, then it holds that:

E
X∼µ

[X] = E
X∼ν

[X]. (15)

Proof. We are going to assume that µ admits a p.d.f. fµ and we indicate with fν the p.d.f. of ν. We first observe
that by making the substitution x = F−1

µ (t), we have the identity:∫
Ij

F−1
µ (t)dt =

∫ F−1
µ (tj)

F−1
µ (tj−1)

xfµ(x)dx. (16)

Therefore:

E
X∼ν

[X] =

∫ b

a

xfν(x)dx

=

M∑
j=1

wj x̂j

=

M∑
j=1

wj
1

|Ij |

∫
Ij

F−1
µ (t)dt

=

M∑
j=1

∫
Ij

F−1
µ (t)dt

=

M∑
j=1

∫ F−1
µ (tj)

F−1
µ (tj−1)

xf(x)dx

=

∫ b

a

xfµ(x)dx = E
X∼µ

[X].

Thus, our approximation preserves the mean, but unfortunately, this does not hold for the higher order
moments.

A.2 Combining Posteriors via Wasserstein Barycenters

In this section, we introduce the notion of Fréchet mean, we show how it reduces to the Wasserstein
barycenter when selecting the Wasserstein distance as a metric.
Definition A.1. Let (X , d) be a complete separable metric (Polish) space and µ ∈ P2(X ) a
probability measure over X . The Fréchet mean is defined as:

x = arg inf
x∈X

E
Y∼µ

[
d(x, Y )2

]
. (17)
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The Fréchet mean generalizes the notion of mean by minimizing the expected value of a metric. In
the particular case in which X = R, and d(x, y) = |x − y| is the Euclidean distance, the Fréchet
mean is the expectation of X under µ, i.e., x = EX∼µ [X].9

In our scenario, we have that X = Q is a set of probability measures (the Q-posteriors) and we
select as metric d = W2, i.e., the L2-Wasserstein distance. Therefore, Equation (17) defines the
Wasserstein barycenter [2]. Typically, the notion of barycenter is defined in terms of a finite set of
distributions [2]. However, we can also consider infinite (possibly continuous) sets of distributions.
For our posterior distribution models, the Wasserstein barycenter is unique and we have a closed
form expression.

A.3 Closed-Forms for Wasserstein Barycenters of Gaussians and Particle models

We show in the following that the standard close forms for finite sets, when using Gaussian and
particle models, naturally extends for continuous spaces.
Proposition A.3. Let (T ,F ) be a measurable space and let µ ∈P(T ) be a probability measure
over T . Let {ν(t)}t∈T be a family of probability measures. Then,

inf
ν∈N

E
T∼µ

[
W2 (ν, ν(T ))

2
]

has a unique solution both for Gaussian and uniform particle models. In particular, for the Gaussian
model, the parameters of the L2-Wasserstein barycenter are:

m = E
T∼µ

[µ(T )] , σ = E
T∼µ

[σ(T )] ,

and for equally weighted particle models:

xj = E
T∼µ

[xj(T )] , j = 1, 2, ...,M.

Proof. All it takes is to write down the objective function and compute its minimizer. Let us start with the
Gaussian model. The L2-Wasserstein distance between two Gaussians is given in Equation (8), therefore our
objective becomes:

L(µ, σ) = E
T∼µ

[
W2 (ν, ν(T ))2] = E

T∼µ

[
(m−m(T ))2 + (σ − σ(T ))2] ,

where ν(T ) = N (m(T ), σ2(T )) and ν = N (m,σ2). The objective is clearly convex, therefore we just need
to take the derivatives w.r.t. µ and σ:

∂L
∂µ

= 2 E
T∼µ

[m−m(T )] = 0 =⇒ m = E
T∼µ

[m(T )] ,

∂L
∂σ

= 2 E
T∼µ

[σ − σ(T )] = 0 =⇒ σ = E
T∼µ

[σ(T )] ,

from which the result follows. Similarly, for the equally weighted particle models, using Proposition A.1, we
have:

L(x1, x2, ..., xM ) = E
T∼µ

[
W2 (ν, ν(T ))2]

= E
T∼µ

[
M∑
j=1

wj(xj − xj(T ))2

]

=

M∑
j=1

wj E
T∼µ

[
(xj − xj(T ))2] .

We take the derivatives again and we obtain for every j = 1, 2, ...,M :

∂L
∂xj

= 2wj E
T∼µ

[xj − xj(T )] = 0 =⇒ xj = E
T∼µ

[xj(T )] .

9Different choices of exponent to which d(x, Y ) is raised generate different indexes of central tendency, like
median for exponent 1 and mode for the exponent going to 0 in the limit.
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In other words, the L2-Wasserstein barycenter of a set of Gaussians is a Gaussian distribution
having as mean the expectations of the mean and standard deviation the expectations of the standard
deviations. Similarly, the L2-Wasserstein barycenter of a set of uniform mixtures of deltas is a
uniform mixture of deltas where each particle is located at the expectation of the locations.

B Proofs and Derivations

Proposition 3.1. If Q is the set of deterministic distributions over R, then the WTD update rule
(Equation (5)) has a unique solution that corresponds to the TD update rule (Equation (1)).

Proof. It is a simple application of Proposition A.3 for the particle model setting M = 1, µ = (1− αt, αt)T ,
ν1 = qt(St, At) and ν2 = Rt+1 + γvt(St+1).

B.1 Provable Efficiency

In this section, we provide a series of results about the provable efficiency of a slightly modified
version of WQL. We restrict our attention to the Gaussian model and we consider the optimistic
estimator (OE) for the maximum and optimistic exploration (OX). We will consider w.l.o.g. the
following assumption.
Assumption B.1. The reward function is deterministic and positive.

As a consequence we have that 0 ≤ qπ(s, a) ≤ qmax. Several parts of the proofs we are going to
present are inspired to [23]. We now illustrate how to modify WQL in order to have the desired
theoretical guarantees.

B.1.1 Modified Gaussian WQL

First of all, we need to particularize the MWTD for the Gaussian case:

m̃t+1(s, a) = (1− αt)m̃t(s, a) + αt (Rt+1 + γmt(St+1)) ,

σ̃t+1(s, a) = (1− αt)σ̃t(s, a) + αtγσt(St+1),

mt+1(s, a) = m̃t+1(s, a) + βtmb,

σt+1(s, a) = σ̃t+1(s, a) + βtσb,

with mb = 0 by definition. We also define the auxiliary quantities that account for the accumulated
effect of the learning rate:

α0
t =

t∏
i=0

(1− αi), αit = αi

t∏
j=i+1

(1− αj)

It is clear that, by definition, for any t = 0, 1, ... we have that αt0 +
∑t
i=1 α

t
i = 1. Using these

quantities we can rewrite the update rules for the mean and the standard deviation:

mt(s, a) = αnt(s,a)m0 +

nt(s,a)∑
i=1

αint(s,a) [Rti+1 + γmti(Sti+1)] ,

σt(s, a) = αnt(s,a)σ0 + γ

nt(s,a)∑
i=1

αint(s,a)σti(Sti+1) + βtσb,

where nt(s, a) is the number of times pair (s, a) was visited up to time t, ti is the time at which
pair (s, a) was visited for the i-th time, mti(Sti+1) = mti(Sti+1, a) and σti(Sti+1, a), where
a = arg maxa∈A u

δ
ti(Sti+1, a) is the action that maximizes the upper bound of the Q-function,

defined as:

uδt (s, a) = mt(s, a) + z1−δσt(s, a), uδt (s, a) = min
{
uδt (s, a), qmax

}
(18)

Notice that we can define an update rule for the upper bound uδt (s, a) too:

uδt (s, a) = αnt(s,a) [m0 + z1−δσ0]

18



Input: m0, σ0, σb
1: for t = 1, 2, ... do
2: Take action At ∈ arg maxa∈A u

δ
t (St, At)

3: Observe St+1 and Rt+1

4: Update the posterior distribution

mt+1(St, At) = (1− αt)m̃t(St, At) + αt (Rt+1 + γmt(St+1))

σ̃t+1(St, At) = (1− αt)σ̃t(St, At) + αtγσt(St+1)

σt+1(St, At) = σ̃t+1(St, At) + βtσb

nt+1(St, At) = nt(St, At) + 1

5: end for

Algorithm 3: Modified Gaussian Wasserstein Q-Learning

+

nt(s,a)∑
i=1

αint(s,a) [Rti+1 + γ (mti(Sti+1) + z1−δσti(Sti+1))] + βtσb

= αnt(s,a) [m0 + z1−δσ0] +

nt(s,a)∑
i=1

αint(s,a)

[
Rti+1 + γuδt (Sti+1)

]
+ βtσb

where ut(Sti+1) is the upper bound of the V-function defined as:

uδt (s) = max
a∈A

{
uδt (s, a)

}
. (19)

In Algorithm 3 we provide the pseudocode of Modified Wasserstein Q-Learning (MWQL). The
learning rates and the initialization values will be specified later in the analysis.

B.1.2 Learning Rate

In this section, we introduce the learning rates αt and βt we will use to prove our theoretical results
and we will present some properties we are going to exploit for the subsequent proofs:

αt =
a

b+ t
, βt =

c√
d+ t

. (20)

with 0 < a ≤ b+ 1, b ≥ 1, 0 < c2 ≤ d, d ≥ 1 and d ≤ b, whose values will be specified later. This
choice of learning rates allows us to prove the following properties.
Lemma B.1. If a > 1 and b > 1, the following relations hold for any t = 1, 2, ... and i = 1, 2, ...:

1.
+∞∑
t=1

αit ≤
a

a− 1
;

2.
+∞∑
t=1

α0
t =

b

a− 1
− 1;

3.
t∑
i=1

(αit)
2 ≤ a

b+ t
.

Proof. Let us start with 1. By using the properties of the Gamma function, we have that:
M∑
t=1

αit =
a

a− 1

Γ(b+ i)

Γ(1− a+ b+ i)

[
Γ(2− a+ b)

Γ(1 + b)
− Γ(2− a+ b+M)

Γ(1 + b+M)

]
.

Since a > 1 we have that 2− a+ b+M < 1 + b+M , thus for M → +∞ the second addendum goes to zero.
Moreover, for the same reason Γ(b+i)

Γ(1−a+b+i)
≤ 1 and Γ(2−a+b)

Γ(1+b)
≤ 1. The result follows immediately. A similar

argument can be stated for 2. By using the properties of the Gamma function, we have the following equality:
M∑
t=1

α0
t =

b

a− 1
− 1− Γ(1 + b)Γ(2− a+ b+M)

(a− 1)Γ(1− a+ b)Γ(1 + b+M)
.
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Since a > 1 we have that 2 − a + b + M < 1 + b + M and therefore for M → +∞ the ratio of Gamma
functions goes to zero, from which the result follows. Finally, for 3 we employ an argument similar to that of
Lemma 4.1 (b) of [23]:

αit =
a

b+ i

(
b+ i+ 1− a
b+ i+ 1

· b+ i+ 2− a
b+ i+ 2

. . .
b+ t− a
b+ t

)
=

a

b+ t

(
b+ i+ 1− a

b+ i
· b+ i+ 2− a

b+ i+ 1
. . .

b+ t− a
b+ t− 1

)
≤ a

b+ t
,

where we exploited the fact that b+i+j−a
b+i+j−1

≤ 1 for all j = 1, ...t − i being a > 1. Now, observing that∑t
i=1 α

i
t ≤ 1, we have:

t∑
i=1

(αit)
2 ≤ a

b+ t

t∑
i=1

αit ≤
a

b+ t
.

B.1.3 Optimism

We now prove that with a suitable choice of m0, σ0 and σb we are able to guarantee that uδt (s, a) is
optimistic w.r.t. q∗(s, a) with high probability. We start proving the following intermediate result.
Lemma B.2. For any δ ∈ [0, 1], with probability at least 1− δ, we have simultaneously for all s ∈ S ,
a ∈ A and t ∈ {1, 2, ..., T}:
nt(s,a)∑
i=1

αint(s,a)

[
uδti(Sti+1)− E

S′∼P(·|s,a)

[
uδti(S

′)
]]
≤ qmax

√√√√nt(s,a)∑
i=1

(
αint(s,a)

)2

log
|S||A|T

δ
.

Proof. Let us provide a formal definition of ti:

ti = min ({t ∈ {1, 2, ..., T} : t > ti−1 ∧ (st, at) = (s, a)} ∪ {T + 1}) , (21)

where we have assigned the value T + 1 if (s, a) is experienced less than i times. Consider the filtration
Fi = σ(S0, A0, R1, ..., Sti−1, Ati−1, Rti) generated by all the random variables realized until time ti. The
random variable Xti = 1{ti≤T}

[
uδti(Sti+1)− ES′∼P(·|s,a)

[
uδti(S

′)
]]

is a martingale difference sequence
(MDS) w.r.t. the filtration {Fi}i=1,2,..., as E[Xti |Fi] = 0 and |Xti | < qmax a.s.. Using Azuma-Hoeffding
inequality and a union bound over the time {1, 2, ..., T}, the states S and the actions A we have that w.p. at
least 1− δ the statement holds.

We are now ready to prove that uδt (s, a) are optimistic with high probability.

Theorem B.1. (Optimism) Let m0 = qmax, σ0 = 0 and σb = γqmax

cz1−δ

√
a log |S||A|Tδ for all s ∈ S,

a ∈ A. Then, for any δ ∈ [0, 1], with probability at least 1− δ, we have simultaneously for all s ∈ S ,
a ∈ A and t ∈ {1, 2, ..., T}:

uδt (s, a) ≥ q∗(s, a). (22)

Proof. The proof is by induction on t. For t = 0, we have that uδ0(s, a) ≥ qmax ≥ q∗(s, a). Let us assume the
statement hold up to time t − 1, we prove that it holds for t. Recall that uδt (s, a) = min{uδt (s, a), qmax}. If
uδt (s, a) = qmax then the statement hold. Otherwise we have uδt (s, a) = uδt (s, a). Let us write explicitly the
expression of the upper bound uδt (s, a). With probability at least 1− δ we have:

uδt (s, a) = αnt(s,a) [m0 + z1−δσ0] +

nt(s,a)∑
i=1

αint(s,a)

[
Rti+1 + γuδt (Sti+1)

]
+ βnt(s,a)z1−δσb

= αnt(s,a) [m0 + z1−δσ0] + βnt(s,a)z1−δσb

+

nt(s,a)∑
i=1

αint(s,a)

[
r(s, a) + γ E

S′∼P(·|s,a)

[
uδti(S

′)
]]

(23)

+ γ

nt(s,a)∑
i=1

αint(s,a)

[
uδti(Sti+1)− E

S′∼P(·|s,a)

[
uδti(S

′)
]]
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≥ α0
nt(s,a)q

∗(s, a) +

nt(s,a)∑
i=1

αint(s,a)

[
r(s, a) + γ E

S′∼P(·|s,a)

[
v∗(S′)

]]
(24)

+ βnt(s,a)z1−δσb − γqmax

√√√√nt(s,a)∑
i=1

(
αint(s,a)

)2

log
|S||A|T

δ
(25)

≥ q∗(s, a) + βnt(s,a)z1−δσb − γqmax

√
a

b+ nt(s, a)
log
|S||A|T

δ
, (26)

where line (23) derives from the fact that the reward is deterministic (Rti+1 = r(s, a)), line (24) is an
application of the inductive hypothesis being all ti < t and observing that uδti(S

′) = maxa∈A{uδti(S
′, a)} ≥

maxa∈A{q∗(S′, a)} = v∗(S′) and we applied Lemma B.2 at line (25). Line (26) follows from the application
of Bellman equation and using Lemma B.1 to bound the summation in the square root. In order to guarantee that
this expression is non-negative for all t ∈ {1, 2, ..., T} we need to satisfy:

βnt(s,a)z1−δσb ≥ γqmax

√
a

b+ nt(s, a)
log
|S||A|T

δ

=⇒ σb ≥ γqmax

√
d+ nt(s, a)

cz1−δ

√
a

b+ nt(s, a)
log
|S||A|T

δ
.

The term depending on t can be bounded recalling that d ≤ b and that nt(s, a) ≤ T :√
d+ nt(s, a)

b+ nt(s, a)
≤
√
d+ T

b+ T
≤ 1.

Therefore, we choose:

σb =
γqmax

cz1−δ

√
a log

|S||A|T
δ

.

B.1.4 Main Result

We now provide this central lemma that we will use to state a bound on the sample complexity
considering our running algorithm as a non stationary policy A.
Lemma B.3. Let s ∈ S be any state and let ∆t(s) = v∗(s)− vA(s) be the instantaneous regret of
state s at time t and define Ψt(s) = uδt (s)− vA(s). Let δ ∈ [0, 1], then with probability at least 1− δ
the following chain inequalities holds simultaneously for all s ∈ S, a ∈ A and t ∈ {1, 2, ..., T}:
∆t(s) ≤ Ψt(s) and

Ψt(s) ≤ α0
nt(s,a)qmax + γ

nt(s,a)∑
i=1

αint(s,a)Ψti(sti+1) + 2γqmax

√
a

d+ nt(s, a)
log
|S||A|T

δ
, (27)

where a ∈ arg maxa′∈A{uδt (s, a′)}.

Proof. Consider a state s ∈ S, we decompose the instantaneous regret at time t, i.e., ∆t(s). It is important to
notice that s is not necessarily the state visited by our algorithm at time t, i.e., st. With probability at least 1− δ
we have simultaneously for all t:

∆t(s) = v∗(s)− vA(s)

= max
a∈A
{q∗(s, a)} − vA(s)

≤ max
a′∈A
{uδt (s, a′)} − vA(s) (28)

= uδt (s)− vA(s) = Ψt(s) (29)

≤ uδt (s, a)− qA(s, a), (30)

were a ∈ arg maxa′∈A u
δ
t (s, a

′). Line (28) follows from the optimism (Theorem B.1) and line (30) is obtained
by observing that maxa′∈A{qA(s, a′)} ≥ qA(s, a) for any a ∈ A. We now apply the Bellman equation on the
upper confidence bound:

uδt (s, a)− qA(s, a) ≤ uδt (s, a)− qA(s, a) (31)
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= α0
nt(s,a) (m0 − qA(s, a)) + βnt(s,a)z1−δσb

+

nt(s,a)∑
i=1

γαint(s,a)

(
uδti(sti+1)− E

S′∼P(·|s,a)

[
vA(S′)

])
= α0

nt(s,a) (m0 − qA(s, a)) + βnt(s,a)z1−δσb

+ γ

nt(s,a)∑
i=1

αint(s,a)

(
uδti(sti+1)− vA(sti+1)

)

+ γ

nt(s,a)∑
i=1

αint(s,a)

(
vA(sti+1)− E

S′∼P(·|s,a)

[
vπt(S

′)
])

≤ α0
nt(s,a)qmax + γqmax

√
a

d+ nt(s, a)
log
|S||A|T

δ
(32)

+ γ

nt(s,a)∑
i=1

αint(s,a)

(
uδti(Sti+1)− vA(Sti+1)

)

+ γqmax

√√√√nt(s,a)∑
i=1

(
αint(s,a)

)2

log
|S||A|T

δ
(33)

≤ α0
nt(s,a)qmax + 2γqmax

√
a

d+ nt(s, a)
log
|S||A|T

δ
+ γ

nt(s,a)∑
i=1

αint(s,a)Ψti(Sti+1),

where line (32) follows from observing that m0 − qA(s, a) = qmax − qA(s, a) ≤ qmax and by substitution of
the value of σ(2)

0 (s, a) and line (33) is obtained by applying Azuma-Hoeffding inequality, like in Lemma B.2
(all it takes it to consider vA instead of uδti ) and recalling that d ≤ b.

Using the previous lemma we are able to state the following theorem that represents the core of our
analysis. In this case, we are going to evaluate how well is our algorithm performing (in terms of
value function) over the states visited by the algorithm itself. This will allow us to derive immediately
a guarantee on the sample complexity of PE-WQL.
Theorem B.2. Let S0, S1, ..., ST be the sequence of states and actions visited by the algorithm. Let
a = 2+γ

2(1−γ) and b = a− 1. Then, under the same assumptions as Lemma B.1, for any δ ∈ [0, 1], with
probability at least 1− δ it holds that:

T∑
t=1

∆t(St) ≤ O
(

qmax

(1− γ)3/2

√
|S||A|T log

|S||A|T
δ

)
. (34)

Proof. We are now going do deal with the summation
∑T
t=1 Ψt(st+1):

T∑
t=1

Ψt(st+1) = qmax

T∑
t=1

α0
nt(st+1,at+1)

(i)

+γqmax

√
a log

|S||A|T
δ

T∑
t=1

1√
d+ nt(st+1, at+1)

(ii)

+ γ

T∑
t=1

nt(st+1,at+1)∑
i=1

αint(st+1,at+1)Ψti(st+1,at+1)(sti(st+1,at+1)+1)

(iii)

We make the following observation we are going to use throughout the proof

nt(st+1, at+1) = nt+1(st+1, at+1)− 1. (35)

Let us start with (i):
T∑
t=1

α0
nt(st+1,at+1) =

T∑
t=1

α0
nt+1(st+1,at+1)−1

=

T+1∑
h=2

α0
nh(sh,ah)−1 (36)
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≤
T+1∑
h=1

α0
nh(sh,ah)−1

=
∑
s∈S

∑
a∈A

nT+1(s,a)∑
i=1

α0
i−1 (37)

=
∑
s∈S

∑
a∈A

nT+1(s,a)−1∑
i=0

α0
i

≤
∑
s∈S

∑
a∈A

+∞∑
i=0

α0
i =

(
b

a− 1
+ 1

)
|S||A|, (38)

where we made the change of variable h = t+ 1 to get line (36), we decomposed the summation over the state
action pairs obseving that each of them appears nT+1(s, a) times to get line (37) and we used Lemma B.1 to get
line (38).

Let us now consider (ii); using Equation (35) we get:

T∑
t=1

1√
d+ nt(st+1, at+1)

=
T∑
t=1

1√
d+ nt+1(st+1, at+1)− 1

=

T+1∑
h=2

1√
d+ nh(sh, ah)− 1

≤
T+1∑
h=1

1√
d+ nh(sh, ah)− 1

=
∑
s∈S

∑
a∈A

nT+1(s,a)∑
i=1

1√
d+ i− 1

(39)

≤ 2
∑
s∈S

∑
a∈A

√
nT+1(s, a) (40)

≤ 2
√
|S||A|(T + 1), (41)

where line (39) derives from decomposing the summation over state-action pairs and observing that each
state-action pair appears nT+1(s, a) times. Line (40) is obtained by bounding the summation with the
integral:

∫ nT+1(s,a)+1

1
1√

b+x−1
dx = 2

√
d+ nT+1(s, a) − 2

√
d ≤ 2

√
nT+1(s, a), where the last in-

equality derives from the subadditivity of the square root. Finally, line (41) is obtained by observing that∑
s∈S

∑
a∈A nT+1(s, a) = T + 1 and the expression is maximized by taking nT+1(s, a) = T+1

|S||A| .

Now we consider the term (iii). First observe that nt(st+1, at+1) ≥ 1 in order to appear in the inner summation.
Consider the derivation:

T∑
t=1

nt(st+1,at+1)∑
i=1

αint(st+1,at+1)Ψti(st+1,at+1)(sti(st+1,at+1)+1)

=

T∑
t=1

nt+1(st+1,at+1)−1∑
i=1

αint+1(st+1,at+1)−1Ψti(st+1,at+1)(sti(st+1,at+1)+1)

=

T+1∑
h=2

nh(sh,ah)−1∑
i=1

αinh(sh,ah)−1Ψti(sh,ah)(sti(sh,ah)+1)

≤
T+1∑
h=1

nh(sh,ah)−1∑
i=1

αinh(sh,ah)−1Ψti(sh,ah)(sti(sh,ah)+1) (42)

=

T+1∑
t=1

Ψt(st+1)

nT+1(st,at)∑
i=nt(st,at)

α
nt(st,at)
i−1 (43)

≤
T+1∑
t=1

Ψt(st+1)

+∞∑
i=2

α
nt(st,at)
i−1 (44)
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≤
T+1∑
t=1

Ψt(st+1)

+∞∑
i=1

α
nt(st,at)
i

≤ a

a− 1

T+1∑
t=1

Ψt(st+1) (45)

≤ a

a− 1

T∑
t=1

Ψt(st+1) +
a

a− 1
qmax. (46)

where line (43) is obtained by observing that given Ψt(st+1) it is going to appear in the summation for all
t ≥ ti(st, at). The first time it will appear multiplied by αnt(st,at)nt(st,at)−1, the second time with αnt(st,at)nt(st,at)

and
so on. Line (44) derives from observing that nt(st+1, at+1) ≥ 1, thus nt+1(st+1, at+1) ≥ 2. Line (45) is
obtained by applying Lemma B.1.

Now, we put all together into the bound on the summation:

T∑
t=1

Ψt(st+1) ≤ qmax

(
b

a− 1
+ 1

)
|S||A|+ 2γqmax

√
a log

|S||A|T
δ

√
|S||A|(T + 1)

+
aγ

a− 1

T∑
t=1

Ψt(st+1) +
aγ

a− 1
qmax.

In order to solve the inequality, we must require aγ
a−1

< 1, i.e., a > 1
1−γ . In such a case, we obtain:

T∑
t=1

Ψt(st+1) ≤
(

1− aγ

1− a

)−1 [
qmax

(
b

a− 1
+ 1

)
|S||A|

+ 2γqmax

√
a log

|S||A|T
δ

√
|S||A|(T + 1) +

aγ

a− 1
qmax

]
.

Now, we propose a value for a and b that fulfills all the conditions. In particular, among all possible values we
select:10 a = 2+γ

2(1−γ)
. Then we take the smallest possible value for b, i.e., b = a− 1. From which we get:

T∑
t=1

Ψt(st+1) ≤ 3

1− γ

[
2qmax|S||A|+ 2γqmax

√
2 + γ

2(1− γ)
log
|S||A|T

δ

√
|S||A|(T + 1) +

2 + γ

3
qmax

]

≤ 3

1− γ

[
qmax(|S||A|+ 1) + 2γqmax

√
3

2(1− γ)
log
|S||A|T

δ

√
|S||A|(T + 1)

]

≤ O

(
qmax

(1− γ)3/2

√
|S||A|T log

|S||A|T
δ

)
,

where the last passage is obtained by observing that: if T + 1 ≥
√
|S||A|(T + 1) then

√
|S||A|(T + 1) ≥

|S||A|; on the contrary
∑T
t=1 Ψt(st+1) ≤ T ≤

√
|S||A|(T + 1)− 1. Thus, we can discard the first term.

Theorem B.2 allows us to bound the per-step regret over the trajectories visited by the algorithm.

Corollary B.1. Let a = 2+γ
2(1−γ) and b = a− 1. Then, under the same assumptions as Lemma B.1,

for any δ ∈ [0, 1], with probability at least 1− δ for T ≥ T0:

T0 = O
(
q2
max|S||A|
ε2(1− γ)3

log
q2
max|S|2|A|2
δε2(1− γ)3

)
we have that:

1

T

T∑
t=1

∆t(St) ≤ ε.

10It can be easily proved that taking the value of a that minimizes
(

1− aγ
1−a

)−1√
a just changes the bound

by a constant and does not modify the dependence on (1− γ).
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Proof. Following the reasoning of [21], we just need to find a sufficiently large T0 such that for all T ≥ T0 the
per step regret is smaller than ε:

1

T
O

(
qmax

(1− γ)3/2

√
|S||A|T log

|S||A|T
δ

)
< ε =⇒ T ≥ O

(
q2
max|S||A|
ε2(1− γ)3

log
|S||A|T

δ

)
We rename τ =

q2max|S||A|
ε2(1−γ)3

. We select T0 = O
(

2τ log τ |S||A|
δ

)
. Therefore, we have:

T0 = O
(

2τ log
τ |S||A|

δ

)
= O

(
τ log

(
τ |S||A|

δ

τ |S||A|
δ

))
≥ O

(
τ log

(
2
τ |S||A|

δ
log

τ |S||A|
δ

))
= O

(
τ log

T0|S||A|
δ

)
= O

(
q2
max|S||A|
ε2(1− γ)3

log
|S||A|T0

δ

)
,

where we exploited the inequality x > 2 log x for x > 0.

Finally, we prove that MWQL is PAC-MDP in the average loss setting. We import several ideas
from [41]. First of all, we recall the notion of adjusted loss.
Definition B.1 (Definition 5 of [42]). Suppose a learning algorithm A is run for one sequence
of T1 + T2 − 1 steps. Consider partial sequence S0, R1, ..., St−1, Rt, St visited by A. For any
policy π and integer t such that t ≤ T1, let RπT2

(t) =
∑t+T2−1
t′=t γt

′−tRt′+1 + γT2vπ(St+T2
)

be the adjusted return. Let IπT2
(t) = vπ(St) − RπT2

(t) be the adjusted instantaneous loss. Let
LπT1,T2

= 1
T1

∑T1

t=1 I
π
T2

(t) be the adjusted average loss.

We are now ready to prove the result.
Theorem 5.2. Under the hypothesis of Theorem 5.1, MWQL with Gaussian posterior, OE and OX is
PAC-MDP in the average loss setting, i.e., for any ε ≥ 0 and δ ∈ [0, 1], after

T = O
(
q2
max|S||A|
ε2(1− γ)3

log
q2
max|S|2|A|2
δε2(1− γ)3

)
steps we have that the average loss LA ≤ ε with probability at least 1− δ.

Proof. A running algorithm can be viewed as a non stationary policy A. Define T = T1 + T2 − 1 and define
the adjusted average loss of At w.r.t. itself.

LA
T1,T2

=
1

T1

T1∑
t=1

IAT2
(t). (47)

In [42] it is proven that for any algorithm A and for

T1 ≥ max

{
1 + 2 log(1/δ)q2

max

ε2(1− γ)2
, 2 log(1/δ)q2

max(T2 − 1)

}
, (48)

we have that LA
T1,T2

≤ ε with probability at least 1− δ. We now consider the adjusted average loss w.r.t. to the
optimal policy π∗ and we decompose it:

Lπ
∗
T1,T2

=
1

T1

T1∑
t=1

Iπ
∗

T2
(t) (49)

=
1

T1

T1∑
t=1

Iπ
∗

T2
(t)± 1

T1

T1∑
t=1

IAT2
(t)

≤ ε+
1

T1

T1∑
t=1

(
Iπ
∗

T2
(t)− IAT2

(t)
)

(50)
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= ε+
1

T1

T1∑
t=1

(
vπ∗(St)−Rπ

∗
T2

(t)−
(
vA(St)−RA

T2
(t)
))

(51)

= ε+
1

T1

T1∑
t=1

(vπ∗(St)− vA(St)) +
1

T1

T1∑
t=1

γT2 (vA(St+T2)− vπ∗(St+T2)) (52)

≤ ε+
1

T1

T1∑
t=1

∆t(St) (53)

≤ 2ε, (54)

where (50) derives from the fact that LA
T1,T2

≤ ε, (51) is from the definition of adjusted instantaneous loss, (52)
derives from the definition of adjusted return, (53) is obtained by observing that vA(St+T2) ≤ vπ∗(St+T2) and
the definition of ∆t(St) and (54) derives from Corollary B.1. Therefore, the inequality hold for T1 satisfying
condition (48) and Corollary B.1, with probability at least 1−2δ. Proposition 3 of [42] proves that for T1 ≥ 2T2

ε

and T2 ≥ log(ε(1−γ))
log γ

we have that the adjusted loss Lπ
∗
T1,T2

is ε-close to the average loss LA. Therefore we
have that LA ≤ 3ε with probability at least 1− 2δ provided that:

T1 = O
(
q2
max|S||A|

9ε2(1− γ)3
log

q2
max|S|2|A|2

2δε2(1− γ)3

)
= O

(
q2
max|S||A|
ε2(1− γ)3

log
q2
max|S|2|A|2

δε2(1− γ)3

)
. (55)

It can be easily proved that among all the conditions T1 has to satisfy the most restrictive is the one imposed by
Corollary B.1.

C Additional Experimental Results

In this section, we provide the experimental setup we adopted and some additional results we did not
include in the main paper.

C.1 Tabular RL

C.1.1 Experimental Setup

We train each agent for 100 episodes, the length of each episode is domain dependent. During the
training periods we collect the rewards and use them to calculate the online scores. After each training
period, we turn off exploration and evaluate the greedy policies learned by the agent. The length of
the evaluation episodes is the same as the training episodes. We use the rewards collected during
evaluation to calculate the offline scores. We perform this process in each domain, for each algorithm
considered and show the mean scores of 10 runs with 95% c.i.. We calculate the undiscounted scores,
even though we use a discount factor γ = 0.99 in each domain during learning.

For our particle algorithms, we initialize the particles equally spaced in an interval [qmin, qmax],
for each state action-pair. For the Gaussian model we initialized µ0(s, a) = (qmax + qmin)/2

and σ0(s, a) = (qmax − qmin)/
√

12. The range of this interval is problem dependent and we see
these hyperparameters as a way to incorporate prior knowledge about the domain. We consider
Bootstrapped Q-learning with two policy models, the Bootstrapped policy defined in [30] and the
posterior sampling policy. We initialize the Q-tables with values drawn from a Gaussian distribution
with parameters µ = qmin+qmax

2 , σ = qmax − qmin. Furthermore, we consider Q-learning algorithm
with ε-greedy and Boltzmann exploration. In both Q-learning versions, the Q-table is initialized to 0.
We compare our results with Delayed Q-learning [41], a model-free PAC-MDP algorithm. In each
of the problems considered we tuned the m parameter, the number of visits necessary to attempt an
update for each state-action pair, to find the one that yields better results. We did not employ the
theoretical values being too much conservative.

For all algorithms, we use an exponentially decaying learning rate given by:

αt(s, a) =
b

t(s, a)a
, (56)

where t(s, a) is the visit count for state-action pair (s, a), b is the initial value which we set to 1 and
a is the decay exponent. We cross validated the value of a, which was set to a = 0.2, for all our
experiments.
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For the Q-learning algorithms, we had to chose also the schedules for ε and β, for ε-greedy and
Boltzmann exploration respectively. For ε we used an exponentially decaying schedule as in (56)
with b = 1 and a = 0.5 whereas for the Boltzmann policy we used an exponentially decaying β with
initial value, b = 1.5qmax and decay exponent, a = 0.5.

Here we show the results on more domains: Taxi, Chain and Loop domain from [15], River Swim
and Six Arms from [42] and Knight Quest from [19].
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C.1.2 Comparison of WQL with State of the Art Algorithms

In Figure 4, we show a comparison between the best version of WQL, using the two models to
approximate posteriors, and the considered RL algorithms.
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Figure 4: Comparison of G-WQL, P-WQL, QL, BQL and Delayed QL. 10 runs, 95% c.i.

28



C.1.3 Results of WQL algorithm

Figure 5 provides a full empirical analysis of the different flavors of WQL algorithms in the domains
we considered.
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Figure 5: Results of different variations of WQL algorithm. 10 runs, 95% c.i.
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C.1.4 Effect of initialization in Particle WQL

We analyzed the effect of the initialization of the prior distributions in the particle case. We argue
that the particle algorithm performs better when used with particles equally spaced in a given interval
[qmin, qmax]. To show this we added noise to these equally spaced particles and ran the learning
algorithm in the same domain. Figure 6 shows our results as a function of α, denoting how spaced are
the particles between each other. More specifically, α = 0 means the particles were drawn uniformly
random in the interval [qmin, qmax] and α = 1 means the particles are equally spaced in this interval.
Any value in between is a combination of the two. For each α, we averaged the learning curves of
the agent. It seems clear to us that using equally spaced particles to represent the prior yields better
results.
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Figure 6: Effects of the initialization of the particles in Particle WQL. 10 runs.

C.2 Deep RL

C.2.1 Experimental Setup

We test the algorithms using the Arcade Learning Environment (ALE). Each step of the agent
corresponds to four steps of the emulator, where the same action is repeated. The reward values
observed by the agents are clipped between -1 and 1 for stability. We evaluate our agents and report
performance based upon the raw scores and not the discounted scores. As it is common in literature,
we do not show the online performance of the agent during training. We show the scores collected,
when exploiting the greedy policies derived from the Q-function after each training period.

The convolutional part of the network used is identical to the one used in [30]. The input to the
network is 4× 84× 84 tensor with a rescaled, grayscale version of the last four observations. The
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first convolutional layer has 32 filters of size 8 with a stride of 4. The second layer has 64 filters of
size 4 with stride 2. The last layer has 64 filters of size 3. We split the network beyond the final
layer into M = 10 distinct heads, each one is fully connected and identical to the network in [30].
This consists of a fully connected layer to 512 units followed by another fully connected layer to
the Q-Values for each action. The fully connected layers all use Rectified Linear Units (ReLU) as a
non-linearity. We trained the networks with RMSProp optimizer. The discount was set to γ = 0.99,
the number of steps between target updates was set to τ = 10000 steps. The agents were evaluated
every 1M frames.

The experience replay contains the 1M most recent transitions. We update the network every 4 steps
by randomly sampling a minibatch of 32 transitions from the replay buffer to use the exact same
minibatch schedule as Bootstrapped DQN.

C.2.2 Network Initialization

An important problem we had to deal with was how to initialize the heads of the deep network. In the
tabular case, we initialized the particles equally spaced in the interval [qmin, qmax]. We found it is not
equally simple to extend this in the deep RL setting. We initialized the networks heads near the same
interval by setting the bias of the last layer to the desired values.
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