
A Behavior cloning

We collected trajectories from Amazon Mechanical Turk. We removed trajectories that fell short of
the intended human-human trajectory length of T ≈ 1200 and very suboptimal ones (with reward
roughly below to what could be achieved by one human on their own – i.e. less than 220 for
Cramped Room, 280 for Asymmetric Advantages Ring, 150 for Coordination Ring, 160 for Forced
Coordination, and 180 for Counter Circuit). After removal, we had 16 joint human-human trajectories
for Cramped Room environment, 17 for Asymmetric Advantages, 16 for Coordination Ring, 12 for
Forced Coordination, and 15 for Counter Circuit.

We divide the joint trajectories into two groups randomly, and split each joint tra-
jectory ((s0, (a

1
0, a

2
0), r0), . . . , (sT , (a

1
T , a

2
T), rT)) into two single agent trajectories:

((s0, a
1
0, r0), . . . , (sT , a

1
T , rT)) and ((s0, a

2
0, r0), . . . , (sT , a

2
T , rT)). At the end of this pro-

cess we have twice as many single-agent trajectories than the joint human-human trajectories we
started with, for a total of approximately 36k environment timesteps for each layout.

We then use the two sets of single-agent human trajectories to train two human models, BC and
HProxy, for each of the five layouts. We evaluate these trained behavior cloning models by pairing
them with themselves averaging out reward across 100 rollouts with horizon T = 400.

In each subgroup, we used 85% of the data for training the behavior cloning model, and 15% for
validation. To learn the policy, we used a feed-forward fully-connected neural network with 2 layers
of hidden size 64. We report the hyperparameters used in Table 1. We run each experiment with 5
different seeds, leading to 5 BC and 5 HProxy models for each layout. We then manually choose
one BC and one HProxy model based on the heuristic that the HProxy model should achieve slightly
higher reward than the BC model – to make our usage of HProxy as a human proxy more realistic (as
we would expect BC to underperform compared to the expert demonstrator).

Behavior cloning, unlike all other methods in this paper, is trained on a manually designed 64-
dimensional featurization the state to incentivize learning policies that generalize well in spite of
the limited amount of human-human data. Such featurization contains the relative positions to each
player of: the other player, the closest onion, dish, soup, onion dispenser, dish dispenser, serving
location, and pot (one for each pot state: empty, 1 onion, 2 onions, cooking, and ready). It also
contains boolean values encoding the agent orientation and indicating whether the agent is adjacent
to empty counters. We also include the agent’s own absolute position in the layout.

To correct for a tendency of the learnt models to sometimes get stuck when performing low level
action tasks, we added a hardcoded the behavior cloning model to take a random action if stuck in the
same position for 3 or more consecutive timesteps. As far as we could tell, this does not significantly
affect the behavior of the human models except in the intended way.

Behavior cloning hyperparameters
Parameter Cramped

Rm.
Asym.
Adv.

Coord.
Ring

Forced Co-
ord.

Counter
Circ.

Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3
Epochs 100 120 120 90 110
Adam epsilon 1e-8 1e-8 1e-8 1e-8 1e-8

Table 1: Hyperparameters for behavior cloning across the 5 layouts. Adam epsilon is the choice of the ε for the
Adam optimizer used in these experiments.

B Self-play PPO

Unlike behavior cloning, PPO and other DRL methods were trained with a lossless state encoding
consisting of 20 masks, each a matrix of size corresponding to the environment terrain grid size. Each
mask contains information about a specific aspect of the state: the player’s own position, the player’s
own orientation, location of dispensers of various types, location of objects on counters, etc.

In order to speed up training, we shaped the reward function to give agents some reward when placing
an onion into the pot, when picking up a dish while a soup is cooking, and when picking up a soup

13

with a dish. The amount of reward shaping is reduced to 0 over the course of training with a linear
schedule.

We parameterize the policy with a convolutional neural network with 3 convolutional layers (of sizes
5 × 5, 3 × 3, and 3 × 3 respectively), each of which has 25 filters, followed by 3 fully-connected
layers with hidden size 32. Hyperparameters used and training curves are reported respectively in
Table 2 and Figures 8.

We use 5 seeds for our experiments, with respect to which we report all our standard errors.

PPOSP hyperparameters
Parameter Cramped

Rm.
Asym.
Adv.

Coord.
Ring

Forced Co-
ord.

Counter
Circ.

Learning Rate 1e-3 1e-3 6e-4 8e-4 8e-4
VF coefficient 0.5 0.5 0.5 0.5 0.5
Rew. shaping horizon 2.5e6 2.5e6 3.5e6 2.5e6 2.5e6
Minibatches 6 6 6 6 6
Minibatch size 2000 2000 2000 2000 2000

Table 2: Hyperparameters for PPO trained purely in self-play, across the 5 layouts. For simulation, we used 30
parallel environments. Similarly to the embedded human model case, parameters common to all layouts are:
entropy coefficient (= 0.1), gamma (= 0.99), lambda (= 0.98), clipping (= 0.05), maximum gradient norm
(= 0.1), and gradient steps per minibatch per PPO step (= 8). For a description of the parameters, see Table 3.

(a) Cramped Room (b) Asymmetric Advantages (c) Coordination Ring

(d) Forced Coordination (e) Counter Circuit

Figure 8: PPOSP self-play average episode rewards on each layout during training.

C PPO with embedded-agent environment

To train PPO with an embedded human model we use the same network structure as in the PPOSP

case in Appendix B and similar hyperparameters, reported in Table 3. As in the PPOSP case, we use
reward shaping and anneal it linearly throughout training.

Empirically, we found that – for most layouts – agents trained directly with competent human models
to settle in local optima, never developing good game-play skills and letting the human models collect
reward alone. Therefore, on all layouts except Forced Coordination, we initially train in pure self-play,
and then anneal the amount of self-play linearly to zero, finally continuing training purely with the
human model. We found this to improve the trained agents’ performance. In Forced Coordination,
both players need to learn game-playing skills in order to achieve any reward, so this problem doesn’t
occur.

14

Training curves for the training (BC) and test (HProxy) models are reported respectively in Figures 9
and 10.

PPOBC and PPOHProxy
hyperparameters

Parameter Cramped
Rm.

Asym.
Adv.

Coord.
Ring

Forced Co-
ord.

Counter
Circ.

Learning Rate 1e-3 1e-3 1e-3 1.5e-3 1.5e-3
LR annealing factor 3 3 1.5 2 3
VF coefficient 0.5 0.5 0.5 0.1 0.1
Rew. shaping horizon 1e6 6e6 5e6 4e6 4e6
Self-play annealing [5e5, 3e6] [1e6, 7e6] [2e6, 6e6] N/A [1e6, 4e6]
Minibatches 10 12 15 15 15
Minibatch size 1200 1000 800 800 800

Table 3: Hyperparameters for PPO trained on an embedded human model environment, across the 5 layouts. LR
annealing factor corresponds to what factor the learning rate was annealed by linearly over the course of the
training (i.e. ending at LR0/LRfactor). VF coefficient is the weight to assign to the value function portion of
the loss. Reward shaping horizon corresponds to the environment timestep in which reward shaping reaches
zero, after being annealed lineraly. Of the two numbers reported for self-play annealing, the former refers to the
environment timestep we begin to anneal from pure self-play to embedded human model training, and the latter
to the timestep in which we reach pure human model embedding training. N/A indicates that no self-play was
used during training. # Minibatches refers to the number of minibatches used at each PPO step, each of size
minibatch size. For simulation, we used 30 parallel environments. Further parameters common for all layouts
are: entropy coefficient (= 0.1), gamma (= 0.99), lambda (= 0.98), clipping (= 0.05), maximum gradient
norm (= 0.1), and gradient steps per minibatch per PPO step (= 8). For further information, see the OpenAI
baselines PPO documentation [8].

(a) Cramped Room (b) Asymmetric Advantages (c) Coordination Ring

(d) Forced Coordination (e) Counter Circuit

Figure 9: PPOBC average episode rewards on each layout during training over 400 horizon timesteps, when
pairing the agent with itself or with BC in proportion to the current self-play annealing.

D Population Based Training

We trained population based training using a population of 3 agents, each of which is parameterized
by a neural network trained with PPO, with the same structure as in C.

During each PBT iteration, all possible pairings of the 3 agents are trained using PPO, with each
agent training on a embedded single-agent MDP with the other PPO agent fixed. PBT selection was
conducted by replacing the worst performing agent with a mutated version of the hyperparameters.
The parameters that could be mutated are lambda (initialized = 0.98), clipping (initialized = 0.05),
learning rate (initialized = 5e− 3), gradient steps per minibatch per PPO update (initialized = 8),

15

(a) Cramped Room (b) Asymmetric Advantages (c) Coordination Ring

(d) Forced Coordination (e) Counter Circuit

Figure 10: PPOHProxy average episode rewards on each layout during training over 400 horizon timesteps,
when pairing the agent with itself or with HProxy in proportion to the current self-play annealing.

entropy coefficient (initialized = 0.5), and value function coefficient (initialized = 0.1). At each
PBT step, each parameter had a 33% chance of being mutated by either a factor of 0.75 or 1.25 (and
clipped to the closest integer if necessary). For the lambda parameter, we mutate by ± ε

2 where ε is
the distance to the closest of 0 or 1, to ensure that it will not go out of bounds.

As for the other DRL algorithms, we use reward shaping and anneal it linearly throughout training,
and evaluate PBT reporting means and standard errors over 5 seeds. Hyperparameters and training
reward curves are reported respectively in Table 4 and Figure 11.

PBT hyperparameters
Parameter Cramped

Rm.
Asym.
Adv.

Coord.
Ring

Forced Co-
ord.

Counter
Circ.

Learning Rate 2e-3 8e-4 8e-4 3e-3 1e-3
Rew. shaping horizon 3e6 5e6 4e6 7e6 4e6
Env. steps per agent 8e6 1.1e7 5e6 8e6 6e6
Minibatches 10 10 10 10 10
Minibatch size 2000 2000 2000 2000 2000
PPO iter. timesteps 40000 40000 40000 40000 40000

Table 4: Hyperparameters for PBT, across the 5 layouts. PPO iteration timesteps refers to the length in
environment timesteps for each agent pairing training. For simulation, we used 50 parallel environments. The
mutation parameters were equal across all layouts. For further description of the parameters, see Table 3.

E Near-optimal joint planner

As mentioned in 4.3, to perform optimal planning we pre-compute optimal joint motion plans for
every possible starting and desired goal location for each agent. This enables us to quickly query the
cost of each motion plan when performing A∗ search.

We then define the high-level actions: “get an onion”, “serve the dish”, etc, and map each joint
high-level action onto specific joint motion plans. We then use A∗ search to find the optimal joint
plan in this high-level action space.

This planner does make some assumptions for computational reasons, making it near-optimal instead
of optimal. In order to reduce the number of required joint motion plans by a factor of 16, we only
consider position-states for the players, and not their orientations. This adds the possibility of wasting
one timestep when executing certain motion plans, in order to get into the correct orientation. We

16

(a) Cramped Room (b) Asymmetric Advantages (c) Coordination Ring

(d) Forced Coordination (e) Counter Circuit

Figure 11: Average episode rewards on each layout during training for PBT agents when paired with each other,
averaged across all agents in the population.

have added a set of additional conditions to check for such a case and reduce the impact of such an
approximation, but they are not general.

Another limitation of the planning logic is that counters are not considered when selecting high
level action, as it would increase the runtime of A∗ by a large amount (since the number of actions
available when holding an item would greatly increase). This is not of large importance in the two
layouts we run planning experiments on. The use of counters in such scenarios is also minimal in
human gameplay.

Another approximation made by the planner is only considering a 3 dish delivery look-ahead.
Analyzing the rollouts, we would expect that increasing the horizon to 4 would not significantly
impact the reward for the two layouts used in Section 5.

F Near-optimal model-based planner

Given a fixed partner model, we implement a near-optimal model-based planner that plays with the
fixed partner. The planner uses a two-layered A∗ search in which:

1) on a low level we use A∗ in the game state space with edges being basic player joint actions (one
of which is obtained by querying the partner model). To reduce the complexity of such search, we
remove stochasticity from the partner model by taking the argmax probability action.

2) on a higher level we useA∗ search in the state space in which edges are high level actions, similarly
to those of the near-optimal joint planner described in Appendix E. Unlike in that case, it is unfeasible
to pre-compute all low-level motion plans, as each motion plan does not only depend on the beginning
positions and orientations of the agents, but also on other features of the state (since they could
influence the actions returned by the partner model).

G Planning experiments

Due to computational constrains, when evaluating planning methods (such as in Figure 5), we
evaluated on a horizon of 100 timesteps, and then multiplied by 4 to make the environment horizon
comparable to all other experiments. This is another source of possible suboptimality in the planning
experiments.

When observing Figure 5, we see that PBC+HProxy performs much worse than the red dotted line
(representing planning with respect to the actual test model HProxy). This is due to the fact that in
the planning experiments all agents are set to choose actions deterministically (in order reduce the

17

planning complexity – as mentioned in appendix F), leading the agents to get often stuck in loops
that last the whole remaining part of the trajectory, leading to little or no reward.

H Human-AI experiments

Figure 12: The results are mostly similar to those in Figure 6, with the exception of larger standard errors
introduced by the non-cooperative trajectories. The reported standard errors are across the human participants
for each agent type.

Figure 13: Accuracy of various models when used to predict human behavior in all of the human-AI trajectories.
The standard errors for DRL are across the 5 training seeds, while for the human models we only use 1 seed. For
each seed, we perform 100 evaluation runs.

The human-AI trajectories were collected with a horizon of 400 timesteps. The agents used in this
experiment were trained with slightly different hyperparameters than those in the previous appendices:
after we had results in simulation and from this user study, we improved the hyperparameters and
updated the simulation results, but did not rerun the user study.

After manually inspecting the collected human-AI data, we removed all broken trajectories (human
not performing any actions, and trajectories shorted than intended horizon). We also noticed that in
a large amount of trajectories, humans were extremely non-cooperative, not trying to perform the
task well, and mainly just observing the AI agent and interacting with it (e.g. getting in its way).
Our hypothesis was that these participants were trying to "push the boundaries" of the AI agents
and test where they would break – as they were told that they would be paired with AI agents. We
also removed these non-cooperative trajectories before obtaining our results. Cumulatively across all
layouts, we removed 15, 11, and 15 trajectories of humans paired with PBT, PPOSP , and PPOBC

agents respectively.

In Figure 12 we report human-AI performance without these trajectories removed. Performing an
ANOVA on all the data with agent type as a factor and layout and player index as a covariates showed
a significant main effect for agent type on reward (F (2, 250) = 4.10, p < .01), and the post-hoc
analysis with Tukey HSD corrections confirmed that PPOBC performed significantly better than for
PBT (p < .01), while fell just short of statistical significance for SP (p = .06).

18

We also report the results of using various agents as predictive models of human behavior in Figure 13.
This is the same setup as in Figure 7, except we are reporting accuracies here instead of cross-entropy
losses.

Another thing to note is that in order to obtain Figure 7, to prevent numerical overflows in the
calculation of cross-entropy for the PBT and PPOSP models, we lower-bounded the probability
outputted by all models for the correct action to ε = 1× 10−3. This reduces the loss of all models,
but empirically affects PBT and PPOSP the most, as they are the models that are most commonly
confidently-incorrect in predicting the human’s action. We chose this ε as it is about 1 order of
magnitude smaller than the smallest predictions assigned to the correct actions by the human models
(i.e. the worst mistakes of the human models).

19

