
Appendix

A Experimental details
A.1 AlexNet
The AlexNet architecture was used in the visualization section and in the distillation section. In both
cases, it was trained on the CIFAR-10 dataset. We split the training set into training and validation
(40k/10k) and results are shown in the validation set. Our implementation is based on the public
available code in 2 and 3 without exponential weight averaging. The mini-batch size is 128 and we
train for 390k iterations with stochastic gradient descent, starting with learning rate 0.1 and droping
by a factor of 10 every 130k steps. We multiply the cross-entropy term by 3 and use weight decay of
0.04 in the last two dense layers. Five different seeds were used for each point shown in the figure
and we show min/average/max. For visualization of representations of CIFAR-10 a total of 300
examples were used (100 per class). For the distillation results, β is set to 1 so distillation is done
fully with teacher targets. Note that we use the same training procedure for: training the student
without distillation (variable label smoothing), training the student to mimic the teacher trained with
hard targets and temperature scaling, and training the student to mimic the teacher trained with
variable label smoothing. In the end, the only difference is the targets used. Additionally, when
β = 1, the temperature of the teacher is important to soften the targets, but the temperature of the
student ends up to be just a scalar multiplying the logits and can be learned, therefore we set the
student soft-max temperature to 1 for all experiments. For distillation with teacher trained with hard
targets, the temperatures tested were 1.0, 2.0, 3.0, 4.0, 8.0, 12.0 and 16.0. The label smoothing values
used were 0.0 to 0.75 with steps of 0.15.

A.2 ResNet
The ResNet architecture was used in the visualization, calibration and distillation sections. In all
cases, it was trained on the CIFAR-10 and CIFAR-100 datasets4. We split the training set into training
and validation (40k/10k) and results are shown in the validation set. Our implementation uses the
public available model in 5. The mini-batch size is 128 and we train for 64k iterations with stochastic
gradient descent with Nesterov momentum of 0.9, starting with learning rate 0.1 and dropping by a
factor of 10 at 32k and 48k steps. We multiply the cross-entropy term by 3 and use weight decay
of 0.0001. Compared to the implementation in tensor2tensor library, we include gradient clipping
of 1.0 and to create a deep network of 56 layers, we set the number of blocks per layer to 9 for the
three blocks. We also set the kernel size to 3 instead of 7 to resemble the original ResNet architecture
for CIFAR-10 dataset. For visualization of representations of CIFAR-100 a total of 300 examples
were used (100 per class). For the calibration experiment, all 10k examples on the validation set were
used to calculate the ECE and reliability diagram. The label smoothing values used when training
the teacher in the distillation section were 0.0 to 0.75 with steps of 0.15. For the mutual information
results we pick the classes "airplane" and "dog", and calculate the mutual information using 300
examples from the training set of each class. To calculate the average logit per example, we use 5
Monte Carlo samples and estimated mutual information is calculated every 4k training steps. For
data augmentation we used random crops and left-right flips as in 6(cifar_image_augmentation).

A.3 Transformer
The Transformer architecture was used in the calibration section. We reuse the public available imple-
mentation by the original authors described in 7. The dataset can be found in 8(TranslateEndeWmt32k
for around 32k tokens). We used the hyper-parameters provided by the authors of original paper
for single GPU training (transformer_base for label smoothing of 0.1, and transformer_ls0 for label
smoothing of 0.0). Compared to the original paper, we train for 300k steps instead of 100k and we do
not use weight averaging of checkpoints. For the calibration experiment, around 10k tokens of the

2https://www.tensorflow.org/tutorials/images/deep_cnn
3https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10.py
4https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/cifar.py
5https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/resnet.py
6https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/image_utils.py
7https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
8https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/translate_ende.

py

11



validation set were used to calculate the ECE and reliability diagram. For calculation of BLEU score
(uncased), we use the full validation set 9.

A.4 Inception-v4
The Inception-v4 architecture was used in the visualization and calibration sections. We reuse a
public implementation of the model which be can found at 10. We modified this code to use a scale
parameter for the batch normalization layer, as we found it improved performance. We used a batch
size of 4096 and trained the model using stochastic gradient descent with Nesterov momentum of
0.9 and weight decay of 8× 10−5. We took an exponential average of the weights with decay factor
0.9999, and selected the checkpoint that achieved the maximum accuracy during a separate training
run where approximately 50,000 images from the ImageNet training set were used for validation.

A.5 Fully-connected
For the distillation results on MNIST we use fully connected networks with 2 layers. 1200 neurons
per layer is used on the teacher and 800 layers in the student. For training the teacher, we use α = 0.1,
random image shifts of plus or minus 2 pixels in both x and y axis (i.e. 25 equiprobable centerings
for each case). The initialization distribution is Gaussian with variance 0.03. Learning rate is set
1, except for last layer which is set to 0.1. We used gradient smoothing corresponding to 0.9 times
previous gradient plus 0.1 the current one. Finally the learning rate drops linearly to 0 after 100
epochs and no weight decay is used. For training the student during distillation, no data augmentation
is used. We used β = 0.6, so the original cross-entropy with hard-targets is multiplied by 0.4 and we
match the teacher logits with half the squared loss multiplied by 0.6. Note that optimizing for the
squared loss is equivalent to picking a high temperature.

B Penultimate layer representation for translation
Below, we show visualizations for the English-to-German translation task. The results are similar
to the previous image classification visualization results. Next-token prediction is equivalent to
classification. In image classification we maximize the likelihood p(y|x) of the correct class given an
image, whereas in translation, we maximize the likelihood p(yt|x, y0:t−1) of next token given source
sentence and preceding target sequence. However, there are differences between the tasks that affect
visualization and distillation.

• The image classification datasets we examine have balanced class distributions, whereas token
distributions in translation are highly imbalanced. (This could potentially be addressed with
unigram label smoothing.)
• For image classification, we can get near-perfect training set accuracy and still generalize (interpo-

lation regime); in this case, label smoothing erases information, whereas hard-targets preserves
it. In the translation task, next-token accuracy on the training set is around 80%. Therefore,
visualizations show errors in both the training and validation sets (tending to tight clusters as
expected). For distillation, this means a student may learn from the teacher’s errors. Since teachers
trained with and without label smoothing will both have errors that the student can learn from, it is
unclear which will perform best.
• For image classification, the penultimate layer dimension is usually higher than the number of

classes, so templates can lie on a regular simplex (i.e. equidistant to each other). In translation, we
have a ~30k token alphabet in 512 dimensions, so a simplex is not possible.

In this work, for visualization and distillation, we concentrate on the image classification case to
simplify intuition and experimental design. The visualization results below demonstrate that some
features of the image classification visualization also hold for translation. We leave analysis of
distillation for translation for future work.

9https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/bin/t2t_bleu.py
10https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py

12



Figure 7: Visualizations of penultimate representations of Transformer trained to perform English-to-
German translation.

13


