A Details from Section 2]

Proof. (of LemmalI) Evaluating and rewriting Definition [T] gives

S exp(— Gy —gesl) T Ty
1 > < e »J .
jl;[l o <[ exp(-22 (gt

d
” +1g,.D) < [ exp(r;) = expler),
g5 — g ) 2 U !

j=1

where the first inequality follows from applying the triangle inequality for each j and the second
inequality follows from the assumption that |g; ;| < 1. O

Proof. (of Lemma [3) We will prove the result by induction. In a given round ¢ assume that
- E[Ei:l<ws7gs>] > E[F(— 22:1 gs)] holds. Now,

t41 t

_E[Z<w37gs>] :E[_<wt+17gt+1> - Z<wsags>]
> E[F,(- Zf)s) — (Wit1, Get1)]
>E[Fi1(= ) gs)l,

where the first inequality comes from the inductive hypothesis and the second inequality is
by the assumption that Fy_1(x) — (w,g¢) > Eg,[Fi(x — g.)] for all ¢. Now, by induction

—E[X1 (we, )] > E[Fr(— X1, g0l O

B Details from Section

Proof. (of Lemmafd) We start by rewriting the Lh.s.:

Elexp((v, @) — (v,2)%)] = Elexp(y(v, 2) — (v, 2)*)] exp(E[(v, )] — E[(v, z)]*).

where z =  — E[x] andy = 1 — 2E[{(v, x)]. z is a random variable with mean 0 and |y| < 1.4 due
to the restrictions on E[(v, z)]. By Lemma(7|Elexp(y(v, ) — (v, 2)?)] < 1. It remains to show that

exp(E[(v, z)] — E[(v,z)]?) < 1 + E[(v, x)], which holds for E[(v, z)] > —1 (Cesa-Bianchi and

Lugosil 2006, Lemma 2.4). O

Lemma 7. Let z € R? be a zero-mean symmetrical random variable. Then for |y| < 1.4 and
arbitrary v € R?

]E[exp(y(’u,z) - <’U,Z>2)] <L

Proof. Due to symmetry of z we can write

1 1

Elexp(y(v, z) — (v, 2))] =E[5 exp(-y(v, 2) — (v,2)*) + S exp(y(v, 2) — (v, 2)*)].

We continue by showing that the expression inside the expectation is smaller than 1:

S ep(—y(v, 2) — (0,2)%) + 5 exply(v, 2) — (v, 2)?) <1
In(cosh(y(v, 2))) — (v, z)? <0.

which holds because for |y| < 1.4 f(z) = In(cosh(yx)) — 22 is concave and maximized at x = 0,
which gives f(0) = 0. O
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Proof. (of Lemma Let £,(v) = vg; + (vG;)?

"M~
d
K‘D
]
’U

where the first equality is due to Tonelli’s theorem and the inequality is due to Lemma 4] which
applies due to the restrictions on v and E[g;]. Since Fy(z) = 0 the proof is complete. O

B.1 Regret Analysis for Proper Priors

Proof. (of Theorem [I). By Lemma 2] Lemma [3] and Lemma [5] we only have to compute the
convex conjugate of the potential function. We do the analysis for — ZtT: 1 G¢ = 0. The analysis
or 723:1 g: < 0 is analogous. We have — Z?:l wGy > Fr(— Zthl g:) > —1. Suppose

S G < \/2(5 0 32 4+ b), then E[Rp(u)] = B[S wege — ugi] < B[S, [ull S5 gil] +
1< |u|E[\/2(32]_, G2 + b)] + 1, which implies the result.

Now, suppose 3, G: > 1/2(321—, G2 + b). For the conjugate prior v/([1), 1]) = 17— and Z < %

T - 2 (T - D Dry 1 . .
In the case where — >, §¢ < 7= (>_,_1 i + D) set pu = m. Using Lemmawe obtain:
. 9 T 5 5 L 9 \V Zt 1 gt
F(u) < | 8lul [ D g7 +b ) In(16ful® (> g7 +b \/%— +1)+1. 9
t=1 t=1 Vb
In the case where — >°1_ | G, > <2 (30/_, §7 +b) setn = 55;)‘6/;5 and y = 3 to obtain:
5G
Fr(u) < 1GIul(n(u11G) — 1+ [ Y2EYT ) 41 (10)
4vb
Combining the expectations of (9) and (I0) completes the proof. O

Lemma 8. Suppose L > \/2(V +b). Let Fr(L) = E,~plexp(vL — v?V) — 1] with P as in (6). If
L < Z(V +0) then

Fi(u) < \J8Juf2(V + b) In(16Jul2(V + b)Ra([m, ) +1) + 1,

and

| € [m, 5] such that p, < ﬁ,

~ __z o L o 1
where Rt([n M) = Sy M= 20 T ey
f” v)dv. IfL> £ (V +b) then

u u :
i) < bt () — 1 Rl ) + 1

where [, 2] € [~ 565, 565] such that i < sy

Proof. The initial part analysis is parallel to the ana1y51s of Theorem 3 by Koolen and van Erven

(2015). Denote by B =V +b. Forv <7 = 2B ,vL — v?B is non- decreasing in v. Therefore, for
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[0, 1] C [~5& 56 such that p < #:

T =
Z 2/ ¢ v(v)exp(vL — v2B)dv — 1
1

_ 1
5G

>~ v([n, u]) exp(nL =" B) 1,

where v/( f " v(v)dv. First suppose that 7} < 5G Taken =1 — \/% which yields

() > M) (L2 5) 1= amiz) -1

A 4B 2

where g(z) = exp(z — 3 —In (m)) and m(z) = %. By Hiriart-Urruty| (2006, Theorem 2)
we have

* * : * u
Fr(u) < (g(m(w))” = iuf g°(y) +ym*(Z)
) A 1001, an
= inf yIn — =)+ —4|u|*B + 1.
1m0 e ([n,u])) ) gl e
Denote by S = ln(ﬁ) and H = 4|u|?B. Setting the derivative to 0 we find that 4 =

2H

W (T minimizes (TI), where W is the Lambert function. Plugging % in (TI) gives

H(2W (2H exp(S + 3)) — 1)
\/ZH (2H exp(S + 1))

Fi(u) < +1< \J2H(W(2H exp(S + ) + L.

Using W () < In(x + 1) (Orabona and Pil, 2016, Lemma 17) we obtain

1
Fr(u) < \/QH In(2H exp(S + 5) + 1) < v/8|ul2BIn(16]u|2B exp(S) + 1) + 1.
Now suppose that 7) > =, which is equivalent to 3GL > B . Then
v(|n, 5
Fe(p) = ) o - 22 0)0) -
The convex conjugate of this lower bound is well known and is an upper bound on F;:

Fiw) < - lzl5G<ln<nIZL‘ZG)_“FIH(V([HZMD)HL

which concludes the proof. O

B.2 Details From section 3.1

Proof. (of Lemmal[6) We have

+lul B

T
2
t=1
—E [Z@t,gt)(vﬁ = [lul)

S

t=1

=RY(lul) + [u|RF (IIZH>
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C Regret Analysis for the Improper Prior

Abbreviating By = 22;11 g3 Ly =— 22;11 gs,and C' = %, the predictions (3)) with the improper
prior are given by:

oot (2t (shg) ot (15) -t (1557)
2vB ‘

With the predictions in (I2) we can show the following result.

(12)

Theorem 3. Suppose §: is a symmetrical random variable with |E[g;]| < G for all t. The the

expected regret of algorithm|l|with the improper prior 22 = L satisfies
P g 8 proper p a0 o]

T T
R (u)] < max {[u]E ||| 83032 ( || mshur Yt + 0 +1) |
t=1 t=1

lu[11G(In(ju[11G In(2)) — 1) + In(2), (13)

lu|E[V2V] +1+E [m (1 +2\/W)} }

Proof. By Lemma 2] Lemma 3] and Lemma [5] we only have to compute the convex conjugate of
the potential function. The initial part analysis is parallel to the analysis Theorem 4 by |Koolen and

van Erven|(2015). Denote by L = — Zthl grandby V Zthl G2. We do the analysis for L > 0. The
analysis for L < 0 is analogous. We start by considering the case where L < +/2V. We have

(exp(—vL — v?*V) — 1) > —eL — €2V + In(5Ge),

SE

Fr(L) > /O L exp(—vL —02V) = 1) + /G

v

where we used exp(z) > 1 + . Choosing € = m gives —E[Zthl wegt) > E[Fr(L)] >
1~ Elln (1+2v2V)]. Now, E[Rr(w)] = E[S{; wige — ugi] < B[, [ullL]] + 1+
E[ln (1 + 2\/21/)] < |u|E[V2V] + 1 + E[ln (1 + 2\/2v)].

Now consider the case where L > +/2V. Forv < 7 = %, vL — 02V is non-decreasing in v.

Therefore, for [, u] C [0, z&] such that 1 < 7, we have:

Fr(L) :[ﬁ i(exp(vL —0?V) = 1)dv

a1 |y
5G

) " 56 1
>(exp(nL —n*V) — 1)/ ;dv - / ;dv
w

n

=(exp(nL —n°V) —1)In (’;) + In(5G ).

First, suppose that 7} < =&=. Set n = fjand = ) — \/% and use L > 2v/V to obtain

L 1 1 L
Fr(L) >exp (4V - 2) In (1_\/%7> +In (V)
e (E 1Y), 1 L (v
xp| ——z|In|—F—== | —zIn(—
=Pl T2 v )2\

o (3 (a5 1) ) -
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where the last inequality follows by using exp (3 (2% — 1)) > exp (3(z — 1)?) 2, -1 > _\/#7’ and
2
—In(1 — x) > x. Write exp (; (\/% — 1) ) —1 = g(m(z)), where g(z) = exp(z) — 1 and
2
m(z) = ( \/% — 1) . By Hiriart-Urruty| (2006, Theorem 2) we have
: u
Fr(u) < (g(m(u)))” = inf g*(y) + ym*(2)
v>0 Y
1 (14)

720

= inf yIn(y) — v + —4[u*V + 2[u|[V2V.
Y

Setting the derivative to 0 we find that 4 = exp (3 W (8|u?|V')) minimizes (T4), where W is the
Lambert function. Plugging 4 in (T4) gives

FA(u) < [ul/SVW (S[2]V) — 4 + 2[u|v2V.

Using W (z) < In(x + 1) (Orabona and P4l, [2016, Lemma 17) and dropping the negative term we

obtain
Fi(u) < |ul VBV (/InSuPV 1) +1).

Now suppose that 7 > é Using that %L >V, choosing pu =

1 _ 5—5 :
- and n = 55> we obtain

5

Fr(L) ><exp<(2<§§(;”) L)~ 1)In (1 - )

VB (15)
1
> — -1 .
>l 1 ) D) - D)
The convex conjugate of the last expression in (I3) is well known and given by
Fi(u) < u)11G(In(Jul11G1n(2)) — 1) + In(2).
Combining the above completes the proof. O
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