
Supplementary material for “Multilabel reductions:
what is my loss optimising?”

A Proof of results in body

Proof of Lemma 1. By definition, and linearity of expectation,

Prec@k(f) = E
x
E
y|x

[
1

k
· |rel(y) ∩ Topk(f(x))|

]

= E
x
E
y|x


∑

i∈[L]

1

k
· yi · Ji ∈ Topk(f(x))K


 (12)

= E
x


 ∑

i∈Topk(f(x))

1

k
· E
y|x

[yi]




= E
x


 ∑

i∈Topk(f(x))

1

k
· P(yi = 1 | x)


 .

Proof of Lemma 3. By definition, and linearity of expectation,

Rec@k(f) = E
x
E
y|x

[ |rel(y) ∩ Topk(f(x))|
|rel(y)|

]

= E
x
E
y|x

[∑
i∈[L] yi · Ji ∈ Topk(f(x))K

∑
j∈[L] yj

]
(13)

= E
x
E
y|x


 ∑

i∈Topk(f(x))

yi∑
j∈[L] yj




= E
x


 ∑

i∈Topk(f(x))

E
y|x

[
yi∑

j∈[L] yj

]
 .

Let us now observe that5

E
y|x

[
yi∑

j∈[L] yj

]
= E

yi

E
y¬i|x,yi

[
yi∑

j∈[L] yj

]

= P(yi = 1 | x) · E
y¬i|x,yi=1

[
1

1 +
∑

j 6=i yj

]
+

(1− P(yi = 1 | x)) · E
y¬i|x,yi=0

[
0

0 +
∑

j 6=i yj

]

= P(yi = 1 | x) · E
y¬i|x,yi=1

[
1

1 +
∑

j 6=i yj

]
.

(14)

The result follows.

Proof of Corollary 4. The fact that the Bayes-optimal scorers have the stated form follows identically
to the proof of the optimal scorers for the precision@k from Wydmuch et al. [2018], except that we
now use the probabilities P(y′i = 1 | x) in place of the marginals.

5We have also used here the assumption that P(0L | x) = 0.
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We now demonstrate that the ordering of the two probabilities may be different. In fact, the proof
of this result is implicit in Wydmuch et al. [2018], who showed the inconsistency of the pick-one-
label reduction for precision; we explicate it here. Consider the case of L = 3, and a distribution
concentrated on a single x ∈ X, and just two possible y:

P(y = (1, 1, 0) | x) = p

P(y = (0, 0, 1) | x) = 1− p,
for some p ∈

(
1
2 , 1
)
. Clearly, the marginal probabilities are (p, p, 1− p), and so the first two labels

have higher marginal relevance.

Observe now that

P(y′i = 1 | x) = E
y|x

[
yi∑

j∈[L] yj

]
=





p · 1
2 if i = 1

p · 1
2 if i = 2

(1− p) · 1
1 if i = 3.

Now suppose p ∈
(

1
2 ,

2
3

)
. Then, we have 1 − p > p

2 . Consequently, the ordering of the two
probabilities will not be the same. In particular, the Bayes-optimal predictor for the recall@1 will
favour the label y3, even though it has lowest marginal probability.

Proof of Proposition 5. We provide proofs for each of the reductions in turn.

OVA. For the one-versus-all reduction in Equation 6, observe that for a given x ∈ X with f(x) ∈ RL,

E
y|x

[`OVA(y, f(x))] = E
y|x


∑

i∈[L]

`BC(yi, fi(x))




=
∑

i∈[L]

E
y|x

[`BC(yi, fi(x))]

=
∑

i∈[L]

E
yi|x

[`BC(yi, fi(x))].

Consequently,
ROVA(f) =

∑

i∈[L]

E
(x,yi)

[`BC(yi, fi(x))] .

PAL. For the pick-all-labels reduction, observe that for a given x ∈ X with f(x) ∈ RL, the loss in
Equation 7 has expectation

E
y|x

[`ML(y, f(x))] =
∑

i∈[L]

E
y|x

[yi · `MC(i, f(x))]

=
∑

i∈[L]

P(yi = 1 | x) · `MC(i, f(x))

= N(x) · E
z|x
`MC(z, f(x)),

where N(x)
.
=
∑

i∈[L] P(yi = 1 | x) is a normaliser, being the expected number of labels per

instance. Here, z is a discrete random variable taking values in [L], with P(z = i | x)
.
= P(yi=1|x)

N(x) .
Consequently,

RPAL(f) = E
(x,z)

[N(x) · `MC(z, f(x))] .

OVA-N. For the normalised one-versus-all reduction in Equation 8, observe that

E
y|x

[`ML(y, f(x))] =
∑

i∈[L]

E
y|x

[
yi∑

j∈[L]yj

· `BC(1, fi(x)) +

(
1− yi∑

j∈[L]yj

)
· `BC(0, fi(x))

]

=
∑

i∈[L]

P(y′i = 1 | x) · `BC(1, fi(x)) + (1− P(y′i = 1 | x)) · `BC(0, fi(x))
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=
∑

i∈[L]

E
y′i|x

[`BC(y′i, fi(x))] ,

where in the third line we used the definition of P(y′i = 1 | x) (Equation 5) and Equation 14.
Consequently,

ROVA−N(f) =
∑

i∈[L]

E
(x,y′i)

[`BC(y′i, fi(x))] .

PAL-N. For the normalised pick-all-labels reduction observe that for a given x ∈ X with f(x) ∈ RL,
the loss in Equation 9 has expectation

E
y|x

[`ML(y, f(x))] =
∑

i∈[L]

E
y|x

[
yi∑

j∈[L] yj
· `MC(i, f(x))

]

=
∑

i∈[L]

P(y′i = 1 | x) · `MC(i, f(x))

=
∑

i∈[L]

P(z′ = i | x) · `MC(i, f(x))

= E
z′
`MC(z′, f(x)),

where in the second line we used the fact that P(z′ = i | x)
.
= P(y′i = 1 | x) is a valid mul-

ticlass distribution, as previously noted in Wydmuch et al. [2018] and evident from Equation 14.
Consequently,

RPAL−N(f) = E
(x,z′)

[`MC(z′, f(x))] .

POL. The result here trivially follows from the fact that POL is a stochastic version of PAL.

Proof of Lemma 6. By Proposition 5, we have

RPAL(f) = E
(x,z)

[N(x) · `MC(z, f(x))]

= E
x


∑

i∈[L]

N(x) · P(z = i | x) · `MC(i, f(x))




= E
x


∑

i∈[L]

P(yi = 1 | x) ·



`BC(1, fi(x)) +

∑

j 6=i

`BC(0, fj(x))








= E
x


∑

i∈[L]

P(yi = 1 | x) ·



`BC(1, fi(x))− `BC(0, fi(x)) +

∑

j∈[L]

`BC(0, fj(x))








= E
x


∑

i∈[L]

P(yi = 1 | x) · {`BC(1, fi(x))− `BC(0, fi(x))}


+

E
x




∑

i∈[L]

P(yi = 1 | x)


 ·


∑

j∈[L]

`BC(0, fj(x))






= E
x


∑

i∈[L]

P(yi = 1 | x) · {`BC(1, fi(x))− `BC(0, fi(x))}


+

E
x


N(x) ·


∑

j∈[L]

`BC(0, fj(x))





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= E
x


∑

i∈[L]

P(yi = 1 | x) · `BC(1, fi(x)) + P(yi = 0 | x) · `BC(0, fi(x))− `BC(0, fi(x))


+

E
x


N(x) ·


∑

j∈[L]

`BC(0, fj(x))






=
∑

i∈[L]

E
x,yi

[`BC(yi, fi(x))] + E
x


(N(x)− 1) ·


∑

j∈[L]

`BC(0, fj(x))




 .

Proof of Corollary 7. We provide proofs for each of the reductions in turn.

OVA. For the one-versus-all reduction, we may compute each f∗i (x) independently. When `BC is a
strictly proper loss, these will by definition be equal P(yi = 1 | x).

PAL. For the pick-all-labels reduction, the factor N(x) only modifies the marginal distribution of x.
Since N(x) > 0, this weighting factor will not affect the Bayes-optimal solution. Thus, since `MC is
strictly proper, the Bayes-optimal prediction will by definition be P(z = i | x) = P(yi=1|x)

N(x) .

OVA-N. For the normalised one-versus-all reduction, since `BC is a strictly proper loss, by definition
f∗i (x) = P(y′i = 1 | x).

PAL-N. For the normalised pick-all-labels reduction, since `MC is a strictly proper loss, and we have
a multiclass risk, by definition f∗i (x) = P(z′ = i | x) = P(y′i = 1 | x).

POL. The result here trivially follows from the fact that POL is a stochastic version of PAL.

Proof of Corollary 8. Observe first that, by (12),

k · Prec@k(f) =
∑

i∈[L]

E
(x,yi)

[yi · Ji ∈ Topk(f(x))K]

=
∑

i∈[L]

E
(x,yi)

[yi · (1− `top−k(i, f(x)))]

=
∑

i∈[L]

E
yi

[yi]− E
(x,yi)

[yi · `top−k(i, f(x))]

= constant−
∑

i∈[L]

E
(x,yi)

[yi · `top−k(i, f(x))]

= constant− E
(x,y)


∑

i∈[L]

yi · `top−k(i, f(x))




= constant−RPAL(f).

Similarly, by (13),

Rec@k(f) = E
(x,y)


∑

i∈[L]

yi∑
j∈[L] yj

· Ji ∈ Topk(f(x))K




= E
(x,y)


∑

i∈[L]

yi∑
j∈[L] yj

· (1− `top−k(i, f(x)))




= E
(x,y)


∑

i∈[L]

yi∑
j∈[L] yj


− E

(x,y)


∑

i∈[L]

yi∑
j∈[L] yj

· `top−k(i, f(x))



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= constant− E
(x,y)


∑

i∈[L]

yi∑
j∈[L] yj

· `top−k(i, f(x))




= constant−RPAL−N(f).

Proof of Proposition 9. For clarity, we will explicate here the dependence of all quantities on the
type of risk (multiclass or multilabel reduction), and the base loss. For simplicity, we will assume the
existence of a surrogate regret bound for the top-k risk: that is, we assume that for every scorer, the
surrogate loss `MC satisfies

regMC(f ; `top−k) ≤ Ψ (regMC(f ; `MC))

for some function Ψ such that limz→0+ Ψ(z) = 0, where regMC(f ; `MC) denotes multiclass regret
for a scorer using a loss `MC. This clearly implies consistency.

We provide bounds for the precision and recall in turn.

Precision bound. By Corollary 8,

Prec@k(f) = Constant− 1

k
·RPAL(f ; `top−k).

Thus,

reg(f ; P@k) =
1

k
· regPAL(f ; `top−k)

where regPAL(f ; `MC)
.
= RPAL(f ; `MC) − infg : X→RRPAL(g; `MC) is the regret under the PAL

reduction, using a base multiclass loss of `MC.

By Proposition 5, for any multiclass loss `MC,

RP
PAL(f ; `MC) = C · E

(x̄,z)
[`MC(z, f(x̄))] = C ·RP̄

MC(f ; `MC),

where, if x has distribution with density p(x) with respect to base measure µ, x̄ has distribution with
density p̄(x)

.
= C−1 · p(x) ·N(x), and C .

=
∫
X
p(x′) ·N(x′) dµ(x). Note that C ≤ L < +∞ since

N(x) ∈ [0, L] for every x ∈ X. Note also that the above explicates the dependence of the risks on
the underlying distributions, as they are distinct in the LHS and RHS.

The above implies that the multilabel PAL risk given a distribution P(x, z) is expressible as a constant
times a standard multiclass risk over a distribution P̄(x̄, z). Thus, a Bayes-optimal scorer for the PAL
risk must satisfy

f∗ ∈ argmin
f : X→R

RP
PAL(f ; `MC) = argmin

f : X→R
RP̄

MC(f ; `MC).

Consequently, if f∗ denotes the Bayes-optimal scorer for the PAL risk, we have

regP
PAL(f ; `MC) = C · E

(x̄,z)
[`MC(z, f(x̄))− `MC(z, f∗(x̄))]

= C · regP̄
MC(f ; `MC).

We have thus reduced the multilabel regret on the left-hand side to a multiclass regret on the right-hand
side. Further, in doing so, we have introduced a distribution P̄(x̄, z) whose marginal density p̄ is
distorted compared to the original p.

Now, since `MC is assumed to be a consistent surrogate to the top-k loss,

reg(f ; P@k) =
1

k
· regP

PAL(f ; `top−k)

=
C

k
· regP̄

MC(f ; `top−k)

≤ C

k
·Ψ
(

regP̄
MC(f ; `MC)

)
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=
C

k
·Ψ
(
regP

PAL(f ; `MC)
)
,

where we have used the fact that a surrogate regret bound holds for any distribution, even one where
the marginals are distorted. We thus have a surrogate regret bound for the precision@k.

Recall bound. By Corollary 8,

Rec@k(f) = Constant−RPAL−N(f ; `top−k).

Thus,

reg(f ; R@k) = regPAL−N(f ; `top−k).

By Proposition 5,

RPAL−N(f ; `top−k) = E
(x,z′)

[`top−k(z′, f(x))]

where P′(x, z′) is as per (11). That is, the multilabel PAN risk is a multiclass risk. Now, since `MC is
assumed to be a consistent surrogate to the top-k loss,

reg(f ; R@k) = regP
PAL−N(f ; `top−k)

= regP′
MC(f ; `top−k)

≤ Ψ
(

regP′(f ; `MC)
)

= Ψ
(
regP

PAL−N(f ; `MC)
)
.

We thus have a surrogate regret bound for the recall@k.

Proof of Proposition 10. Observe that by Lemma 3 and Corollary 7,

reg(f ; R@k) = E
x


 ∑

i∈Topk(f(x))

P(y′i = 1 | x)−
∑

i∈Topk(f∗(x))

P(y′i = 1 | x)




= E
x


 ∑

i∈Topk(f(x))

P(y′i = 1 | x)−
∑

i∈Topk(P(y′|x))

P(y′i = 1 | x)


 .

The first inequality thus follows exactly as per Wydmuch et al. [2018, Theorem 2]: we simply swap
P(yi = 1 | x) with P(y′i = 1 | x). Thus,

reg(f ; R@k) ≤ 2 · E
x

[
max
i∈[L]

|fi(x)− P(y′i = 1 | x)|
]
. (15)

The second inequality is a standard consequence of existing bounds for strongly proper losses [Agar-
wal, 2014]. By Proposition 5,

ROVA−N(f) =
∑

i∈[L]

E
(x,yi)

[`BC(yi, fi(x))]

=
∑

i∈[L]

RBC(fi),

where RBC denotes a binary classification risk. Since the risk decomposes across each i ∈ [L], the
Bayes-optimal scorers may be computed separately for i. The regret thus similarly decomposes as:

reg(f ; `OVA−N) =
∑

i∈[L]

reg(fi; `BC)

≥
∑

i∈[L]

λ

2
· E
x

[
(fi(x)− P(y′i = 1 | x))2

]
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=
λ

2
· E
x


∑

i∈[L]

(fi(x)− P(y′i = 1 | x))2




≥ λ

2
· E
x

[
max
i∈[L]

(fi(x)− P(y′i = 1 | x))2

]
by non-negativity of each term

=
λ

2
· E
x

[(
max
i∈[L]

|fi(x)− P(y′i = 1 | x)|
)2
]

≥ λ

2
·
(
E
x

[
max
i∈[L]

|fi(x)− P(y′i = 1 | x)|
])2

by Jensen’s inequality

≥ λ

2
·
(

max
i∈[L]

E
x
|fi(x)− P(y′i = 1 | x)|

)2

by Jensen’s inequality,

where in the second line, we used the fact that `BC is strongly proper, and Agarwal [2014, Theorem
13]; and in the fifth line, we used the fact that the maximum is over a sequence of L nonnegative
quantities, so that the maximum of their squares is the square of their maximum. We thus have

max
i∈[L]

E
x
|fi(x)− P(y′i = 1 | x)| ≤

√
2

λ
·
√

reg(f ; `OVA−N).

Applying this to (15), the claim follows.

Proof of Lemma 11. Observe that

Rtop−k(f) = P(z /∈ Topk(f(x)))

= E
x
E
z|x

Jz /∈ Topk(f(x))K

= E
x
E
z|x

[`top−k(z, f(x))]

= E
x


∑

i∈[L]

P(z = i | x) · `top−k(i, f(x))




= E
x


 ∑

i/∈Topk(f(x))

N(x)−1 · P(yi = 1 | x)


 ,

where in the last line we used the definition of P(z = i | x) from Equation 11.
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