
A Appendix

A.1 Details of numerical experiments

All our experiments were performed in PyTorch (35) (version 1.0) on a Linux workstation with 64GB
of RAM and a GeForce GTX 1080 Ti NVIDIA graphic card. The code to compute the ID estimates
with the TwoNN method and to reproduce our experiments is available at this repository. The data is
downloadable at this link.

A.1.1 Datasets

Custom dataset A dataset of 1400 images developed for a neurophysiological study (20). The
dataset consisted of 40 three-dimensional (3D), computer graphics models of both natural and man-
made objects, each rendered in 36 different views, obtained by combining in-plane and in-depth
rotations of the 3D models with horizontal translations and size variations. As a result, the image set
encompassed a spectrum of object identities, poses and low-level features (e.g., luminance, contrast,
position, size, aspect ratio, etc.), but without reaching the size, complexity and variety of shapes and
identity-preserving transformations that are typical of naturalistic image sets, such as ImageNet.

A.1.2 Architectures

We describe the architectures used in order of appearance in the main text.

VGG-16-R We removed the last hidden layers (the last convolutional and all the dense layers) of
a VGG-16 network (19) pre-trained on ImageNet (11) and substituted it with randomly initialized
layers of the same size except for the last hidden layer, in order to match the correct number of
categories (40) of the custom dataset described in A.1.1. We then fine-tuned it on the ' 85% of
the data. More specifically we used 30 images for each category as training set and we tested on
the remaining 6 images for each category. We called this network VGG-16-R (where R stands for
restricted, with reference to this small dataset). For the fine-tuning, we used a SGD with momentum
0.9, and a learning rate of 10−4 in the last convolutional layer and of 10−3 in the dense layers. The
other layers were kept frozen. The generalization performance after 15 epochs was ≈ 88% accuracy
on the test set.

Standard architectures pre-trained on ImageNet We instantiated fourteen pre-trained networks
that are representative of the state-of-the-art models used in visual object recognition and image
understanding: AlexNet (11), eight models belonging to the VGG class (11,13,16 and 19 with and
without batch normalization) (19)), and five models belonging to the ResNet class (18,34,52,101,152)
(18). All these models are available for download in Pytorch (35) at torchvision/models.html.

Small convolutional network for the experiments on the MNIST dataset We trained a small
convolutional network on the MNIST dataset (36). The sequence of layers is: a convolutional layer
with 1 input channel, 32 output channels and a kernel size of 3; a max pooling layer of kernel size
2; a convolutional layer with 32 input channels, 64 output channels and a kernel size of 3; a max
pooling layer of kernel size 2; a fully connected layer with 1600 inputs and 128 outputs; a fully
connected layer with 128 input and 10 output units; a softmax. We used ReLU non-linearity after
each convolutional, pooling and fully connected layer. The stride is always set to zero. The network
has been trained for 200 epochs with a small learning rate (lr = 0.0004) and zero momentum on the
original dataset, for 5000 epochs lr = 0.0001 and momentum 0.9 on MNIST? and for 500 epochs
lr = 0.0005 and momentum 0.9 on MNIST†.

VGG-16 adapted for CIFAR-10 We used the VGG-16 model adapted for CIFAR-10 available at
github.com/kuangliu/pytorch-cifar in two series of experiments. In our experiment on the dependency
of the ID (in the last hidden layer) on random initialization (results are in Sec. A.1.4) we trained the
network for 300 epochs starting with a learning rate of 0.1 and reducing it by a factor 0.1 after every
100 epochs. L2 regularization was applied with a weight decay set at 5× 10−4. In two experiments
on dynamics we used the same configuration (see Fig. 9A) and one with a smaller learning rate
lr = 0.005 (Fig. 9B,C), in order to elucidate better the early phases of the dynamics.

12

https://github.com/ansuini/IntrinsicDimDeep
https://figshare.com/s/8a039f58c7b84a215b6d
https://pytorch.org/docs/stable/torchvision/models.html
https://github.com/kuangliu/pytorch-cifar

Checkpoints In each experiment we defined architecture-specific checkpoints from where to extract
and analyze the representations. The only exception was in the case of the network used for MNIST,
where we extracted the representations and performed the analysis in all the layers, in the experiments
described in sections 3.4, 3.5. As a general rule, we always extracted representations at pooling
layers after a convolution or a block of consecutive convolutions, and at fully connected layers. In the
experiments with ResNets, we extracted the representations after each ResNet block (18) and the
average pooling before the output. Depending on the computational demands of our experiments,
we extracted and analyzed data samples of different sizes, we describe this in the following section
A.1.3.

A.1.3 Estimating intrinsic dimension

Experiments with the custom dataset In this experiment (Fig. 2A,B), we fine-tuned the last
layers of a VGG-16 network pre-trained on ImageNet using the ≈ 80% of the 1440 images of the
dataset in (20) (30 images for each category in the training set, the remaining 6 images for each
category as test set). The whole dataset was used to estimate the ID of the representations across the
layers of the network. The values of the ID reported in our analysis are the averages resulting from
randomly sampling 20 times the 90% of the activations at each checkpoint layer. The error bars are
the standard deviations across these estimates. In the decimation analysis (Fig. 2B) we proceeded as
described in (16). After a random shuffling, we splitted the dataset X in a k-fold way, with k ranging
from 20 to 1. The k-fold splits yielded k ID estimates at each layer on roughly N/k of the data. The
k ID estimates were then averaged and the standard deviation were computed.

Experiments with ImageNet In the experiments with the pre-trained state-of-the-art networks, we
performed two kinds of analysis. In the first one (Fig. 3A,B), we sampled randomly 500 images from
each of the 7 most populated ImageNet categories: “koalas”, “shih-tzu”, “rhodesian”, “yorkshire”,
“vizsla”, “setter”, “butterfly”. These 7 sets were kept fixed in all the subsequent analysis. Let us
call Xi the i-th set. We then estimated the ID of the resulting object manifolds across the layers
of the networks, independently for each category. For each i, we randomly subsampled from the
representations of Xi at each checkpoint layer the 90% of the data (450 data points) for 5 times and
we computed their IDs. We then averaged these 7 values obtaining a category-specific estimate of
the ID at each layer. We finally averaged the IDs obtained for the 7 categories and computed their
standard deviations. In the second analysis (Fig. 4A,B), we randomly sampled 2000 images for 5
times from the ImageNet training set. Let us call Xi the i-th of these samples. We computed their
representations Rlast hidden

i in the last hidden layer, then we randomly subsampled, in each Rlast hidden
i ,

the 90% of the data (consisting of 1800 data points) for 20 times and we computed their IDs. We
then pooled together all these 100 ID estimates, computed their average and their standard deviation:
these are respectively our final ID estimate and its error. Notice that, in this case, the ID estimates
refer to random mixtures of all possible object categories of ImageNet.

Experiments with MNIST In these experiments (Fig. 6B, black line), we randomly sampled a set
of 2000 images from the test set; this set - called X in the following - was kept fixed. We extracted the
activations Rl at each layer l of the trained network described in A.1.2. For l = 0 the representations
are the original images. For each layer l we randomly subsampled from Rl the 90% of the data (1800
data points) for 50 times and we computed their IDs. We then averaged these ID values and computed
their standard deviation: these are respectively our final ID estimate and its error.

Experiments with VGG-16 adapted for CIFAR-10 In these experiments (Fig. 9) we randomly
sampled 500 images from each of the 10 CIFAR-10 classes; this set was kept fixed. Then we
proceeded similarly to the MNIST case described above.

13

A.1.4 Further results

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

koalas
shih-tzu
rhodesian
setter
butterfly

relative depth

ID

vizsla

yorkshire

Figure 8: The ID variation across lay-
ers is generally consistent across object
classes. This figure refers to AlexNet in
Fig. 3, where the average across classes
is reported.

Variability of the ID across object categories In sec-
tion 3.1, we showed that, across layers, the ID displays a
typical ‘hunchback’ profile. In particular, the average of
seven class-specific ID profiles is shown in Fig. 3A,B and
their standard deviation is reported in Fig. 3A. To give
a better intuition of how consistent this trend was across
image categories, the ID profile of the seven individual
object classes across the layers of AlexNet is reported in
Fig. 8.

Variability of the ID across random initializations In
section 3.2, we showed a correlation between ID in the
last hidden layer and test accuracy across a wide variety of
architectures. Based on this result, one could wonder if this
correlation is also present within a specific model retrained
with different random initializations of the weights. To
address this question, we estimated the variability of the ID
in the last hidden layer of a VGG-16 adapted for CIFAR-
10 across 50 different trainings, finding no correlation with
accuracy (r=-0.003), likely because of the little variation in accuracy produced by different random
weight initializations. This suggests that differences in accuracy across well-trained networks (see
Fig. 4) are mostly due to differences in the architecture.

Dynamics In section 3.3, we observed that, during training, the ID of intermediate layers and the
last hidden layer undergo opposite trends. To explore more carefully this finding, we monitored
the evolution of the ID profile during training of a VGG-16 network with CIFAR-10. We found
qualitative confirmation of the observations reported in Fig. 5C, including a flat ID profile in the
untrained network (see Fig. 9A, black thick curve). Moreover, when we inspected more closely
the early phase of the dynamics (by slowing down the learning rate and augmenting the ‘temporal’
resolution of our observations), we found that in the last hidden layer the evolution of the ID is
non-monotonic, even in presence of negligeable overfitting (see Fig. 9B,C). Differently from what
reported by (15), this suggests that the ID in the last hidden layer of a deep network is not always
a reliable predictor of the onset of overfit, and whether this is the case may depend on the specific
architectures and data used.

A

ID

0

10

20

30

40

50

60

relative depth

0.0 0.2 0.4 0.6 0.8 1.0

EPOCH 1

EPOCH 2

EPOCH 3
00

C

4

6

8

10

12

14

ID

0 500 1000 1500 2000 2500 3000
iterations (n. of mini-batches)

0

10

20

30

40

50

60

70

80

90

ac
cu

ra
cy

 (%
)

ID last hidden layer
training accuracy
test accuracy

EPOCH 0

EPOCH 1

EPOCH 3

EPOCH 4

EPOCH 5

EPOCH 6

EPOCH 7

EPOCH 2

4

6

8

10

12

14

10 20 30 40 50 60 70 80 90
error (%)

EPOCH 0

EPOCH 1EPOCH 2

EPOCH 3
EPOCH 4

EPOCH 5

EPOCH 6

EPOCH 7

ID

B

0

100

200

300

UNTRAINED
EPOCH 6

0

0

20

40

60

Figure 9: Dynamics of the ID on a VGG-16 trained on CIFAR-10. A Dynamics of the ‘hunchback’
shape for a typical training history. The black thick line refers to the untrained network. The color
codes for the training epochs. B Training and test accuracy (dashed red and blue curves respectively)
and ID in the last hidden layer in the early phases. The dynamics of the ID is non-monotonic; at the
same time there is no substantial overfitting. C ID vs. test error (same data as in B).

14

