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Abstract

The supplementary material consists of three parts. In the first part, we prove
all the mathematical results of the kernelized graph matching formulation. We
also provide additional technical discussions. In the second part, we prove all the
mathematical results of the entropy-regularized Frank-Wolfe algorithm. In the third
part, we describe the implementation details and give more experimental results.

1 Proofs of the mathematical results of kernelized graph matching

1.1 Proving Corollary 1

Corollary 1. VXY e R, U0 X oY =90 (XY),andY o (X 0oW¥)=(YX)0oU.
Proof.
(D).
Vi,j=1,2,....,n,the (i,j) elementof ¥ ® X O Y is
[‘IJ OX 0o Y]z] = Z ‘IIX zkYk] Z Yk] Z \I,chak
k=1 a=
=" Xar Vi) Z Uio[ XYy =[O (XY (1)
a=1 k=1 a=1
Therefore, ¥ © X 0Y = ¥ 6 (XY).
2).
Vi, j =1,2,...,n,the (i,7) element of Y © (X ® ¥) is
Y o (X0 ®); ZmX\I' Zmzxka o 2)
k=1 a=
= (D YuXia)Woj =D [YX|iaWo; =[(YX)O U], (3)
a=1 k=1 a=1
Therefore, Y © (X 0 ¥) = (Y X)© P. O
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1.2 Proving Proposition 1

Proposntlon 1. Define thefuncnon () VFy t HYX™ X HYX™ — R such that (¥, E)p,, = tr(P7T «
E)=>" i =1 (Wi, Bij)n, VE, B € ’H"X" Then (-, -)r,, induces an inner product on H"™*".

Proof. Tt is sufficient to show that the function (-, -)p,, satisfies the following properties.

1. [Conjugate symmetry]:

<‘I’75>FH = Z <‘I’1ja—'1]>?-[ = Z <Em7 ‘1’2]>H = <'—'7 ‘II>FH7 (4)
2,j=1 ,j=1
2. [Linearity in the first argument]:
(%, B)p, = > (0¥, Eij)u = Y a{Wij, By = a(¥, B)p,, ®)
i,j=1 i,j=1
n n
_ 1 1) = (2) =
<\I,(1) + \11(2)7'=‘>F9-L = Z <\Il( ) + ‘II’EJ)"_‘ZJ>H Z <\IIEJ)7'_'U 7‘[ + Z 'Lj)7'_‘1J
7,5=1 1,=1 3,j=1
(6)
= (oW =p, + (P =)p, (7)
3. [Positive-definiteness]:
(O, W), = Z (W5, @) > 0. (8)
i,j=1
(T, ¥)p,, =0 <= Vi,j=1,2,..,n,¥;; =0 <= ¥ =0. 9)
O
1.3 Proving Corollary 2
Corollary 2. (¥ © X, E)p,, = (T, E0 X, and (X 0 ¥, E)p,, = (¥, X1 0 E)p,,.
Proof.
1@).
(POX E)r, =) > (POX]yEiu=_ > (O YuXu Eij)u
i=1j=1 i=1 j=1 k=1
=222 (Wi XsBi)w = DD (Wi > XuiZis)n
i=1 j=1k=1 i=1 k=1 j=1
=S N (Wi [E0 X i) = (L.EO X )p,, (10)
=1 k=1
(2).
n n n n n
(X0 B)p, =Y Y (XU, Ej)n=> > > Xin®i,Zi)x (11)
=1 j5=1 1=1 j=1 k=1
n n n n n n
=D D (W, XaBihn = )Y (W, Y XuBij)w  (12)
=1 j=1 k=1 j=1k=1 =1
=3 S (4, [XT 0 Blg)n = (9, XT © F)r, (13)
j=1k=1
O




1.4 Computing the gradient

VIa(X) = (1—20)[(TD + )X + X(T@ + @] — 200D 0 X))« 8@ — KN (14)
where Vi,j = 1,2,..,n, [TW « W], = ze%k’e}cjegl B(qh. qt,); Ya,b = 1,2,...m
(@) 5 W@y = S o cp, kP (@, q%); and Vi,a = 1,2,..n, (8D © X) « ¥, =
Ze}ke&,egae& XkckE((jillw q?a)'

We first present two useful lemmas.
Lemmal. (.20 X)p, = (ET"« ¥, X)p, and (¥, X 0 E)p, = (T+E", X)p.

Remark 1. In our paper, we only consider the kernel values. That is, the inner product values are
real numbers. So (), p)3 = {(p, V)3, Vb, 0 € H.

Proof.
).
(‘Il, EO X>F’H = ZZ<‘I’ZJ7 [= © X}m>7—l = Z Z<‘I'Uv Z ‘—'Zka]>
=1 j=1 i=1 j=1 k=1
= ZZZ<‘I’U’“2]€X’€J ZZXICJZ 1]7'—'zk>7{
i=1 j=1 k=1 k=1j=1 =1
— Z[ET*‘I’]’CJX]W = < *‘I’,X> (15)
k=1j=1
2).
(U, X 0B)p, = > > (Wi, [X ©Ely)n S (@Y XuE
i=1 j=1 i=1 j=1 k=1
- ZZZ<‘I’13;X1k'—'k3 H = szz zgv'—'kj H
i=1 j=1k=1 i=1 k=1 j=1
=> > [WxETp X = (BB X) (16)
i=1 k=1
O

Lemma2. P+ (E0X)=(T*xE)X, (XOU)*xE = X(Tx+E),and P+ (XOE) = (TOX)xE.

Proof. The proof procedure is very similar with Corollary [T} O
Now we prove the equality (T4).
Proof.
@).
We first rewrite the function J, (X)) as
Jo(X) = ~(K", X)p + (1 - a) J1(X) — a2 (X),
where J1(X) =4[ TM 0 X - X 0 TP |2 and Jo(X) = 3[TD 0 X + X 0 |3
We first compute the gradient of .J; (X'). We employ the following fact:
JI(X +tE) — J1(X
VE € R, (VJ)(X), E)p = lim (X +HE) = (X)) (17)

t—0 t



(X +tE) — Ji(X)
1

=51TW O (X +1B) — (X +1B) 0 V||, ~ ||\1:<1>@X X ow?|P) (18)
thQII‘I'”@E Eov?Z +1(0WoX -Xo0u® ¥WoE-Eo ),

Immediately, (VJ,(X), BE)p = (TH o0 X - X 0¥ $W o E - E0 ¥®)p,
We can rewrite the above formula as

@V oX-Xo0¥? vWeoE-Eow®)

=0V eoX-Xov? ¢V eoE), —(¥VoX -Xo0v?® Ecv®),,
=W (W o X)W« (X 0?) E)p — (TV 0 X))+« ¥? - (X0 0?)x0® E)p,
=TV« TN X — 20V 0 X))« ¥? 4 X (TP « 0?) E)p,
(19)

where the 3rd equality holds because of Lemma and both ¥(1) and ¥(?) are symmetric, and the
last equality holds because of Lemma 2] Therefore,

V(X)) = (W« W)X — 2080 0 X))« 0?4 X(¥@ 0@,
Similarly, we have
V(X)) = (W« M) X 4 208W 0 X))« 0@ + X (8@ 5« @),

Finally, substituting V.J; (X)) and VJ5(X) into VJ,(X) = ~ K~ +(1—a)VJ1(X) —aVJy(X),
we obtain the result (T4).
2).
For the first term () x (1 we have
(@O @] =S @l ey = N (@) @) e = Y. K@ dy)-
k=1 e}k,eijegl e}k,e}cjegl

(20

For the second term ¥(2) s« ¥ () we have similar explanations.

For the third term (&) © X)) « ¥(2), we have

(TW 6 X)« @], = (80 60 X, ®2), =Y | Z X, w2,
c=1 c=1 k=
=33 X, ¥y, = Z X ((Gh), (%)) 1
c=1 k=1 k€£1 e 2 EE2
= Y Xk (dh d5) @D

e%k €&y,e2, €82

1.4.1 Gradients in compact matrix multiplication forms

In this section, we rewrite the terms of (I4) in compact matrix multiplication forms, providing a
convenient way to compute gradients. We first give some necessary definitions.

1. Given a graph G = {A,V, P,E,Q} of n nodes and m edges. We define the Head-
incidence matrix G € {0, 1}"*™ and the Tail-incidence matrix H € {0, 1}"*"™. For any
edge e;; € &, we arbitrarily assign a direction on e;;, e.g., v; — v; or v; — v;. Suppose
that the artifically assigned direction of e;; is v; — v;, then the items G(vj,e;;) =1and
H (v, e;;) = 1. A toy example is shown in Fig. [}
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Figure 1: (a) A toy Graph Gy, and its Head-incidence matrix G and Tail-incidence matrix H7; (b) A
toy Graph Gs, and its Head-incidence matrix G5 and Tail-incidence matrix Ho.

2. Given two graphs G = {A1, V1, P1,&1,Q1} of ny nodes and m; edges, and Gy =
{A2, Vs, P2, &, Q2} of ny nodes and my edges, let K € Rmixmi KE ¢ Rm2xmz,
and K, € R™*™2 be three kernel matrices induced by the kernel k¥ (the edge affinity
function). They are defined such that

[Kll]( 21]17612J2) = kE(qlljl’q12j2> lf 621]17 1212 € 51, (22)
(K3)(e2 b, ea0n,) = K@ b, @onsy)s i ea1b17 a2b2 € &, (23)
[K12]( €ij, € ab) = kE(q_‘iljvéZb)? if 6 i € gla €ab € 527 24

Let G and H;, and G5 and H, be the Head-incidence matrix and the Tail-incidence matrix of
graph G; and G (see Fig. [I), respectively. Then the terms in (T4) can be written as

v = H (GTGy o KEYHT + H\(GTH, 0 KE)GY
+G1(H1TG2OKﬁ)HzT'f‘Gl(HlTHZOKU) (25)
v 9® = H(GTGy 0o KE)HT + H(GTH, 0 KE)GT
+ G (HI'Gyo KEYHT + G, (H H, 0 KE)GY, (26)

and (TW © X))« ®? = H(GT XG0 KE)H! + H (GT X H, 0o KE)GY
+G(HTXGy 0o KE)HT + Gi(HT XH, 0 KE)GT,  (27)

where o denotes the Hadamard product between matrices.

Proof.

1).

We first prove the equality (27). It suffices to show that the (4, @) term in the left part equals to the
(i,a) term in the right part.

Let ¢jy, , €]y, - €]y, be the edges incident to the node v; in graph G;, where D" is the degree of

the node v;. Wlthout loss of generality, we assume the assigned directions of these edges are, for
some 1 < s < D*,

Vi = Vkys Vi = Vhyy oo V4 — Vg, @A Vg, —> Vi, Vg — Vi, oy Uk = V. (28)



Considering the ith row, G (v;, :) and H; (v;, :), of the matrix G; and Hy, we have

Gl(vi,e,}kl) = Gl(viaeilkz) =..= Gl(vi,e}ks) = 1, (29)
and H(vi,el, )= Hl(v,;,e}ksu) =..= Hl(vi,e%km) =1. (30)

s+1
Any other item in the ith row of the matrix G, and Hj is zero.
Let €2 41 €605 -+ €0y o DE the edges incident to the node v, in graph Gy, where D* is the degree

of the node v,. Without loss of generality, we assume the assigned directions of these edges are, for
some 1 <t < D%,

VC, — Vas VCy = Vay s V0, —> Vg ald Vg = V0y4y,Va — VC,yyns -+ Va — VCpa - 31D
Considering the ath row, G2 (vg, :) and H(vg, :), of the matrix G5 and H, we have

G2(”av€a+1a) = G2(v(17620t+2a) =..= G2(Ua,620ma) =1, (32)

and  Hj(vq, €3, ,) = Ha(va, €3,,) = ... = Ha(vg, €,,) = 1. (33)

Any other item in the ath row of the matrix G5 and Hs is zero.

We first consider the first term H; (GT X Gy o KE)HT in (¥W © X) « @ (see 7)),
1 12)413

[H1(G{ XG50 K{5)Hj |;q (34)
=[H, (v;,)](G] XG5 0 K{3)[Hy(va,:)]" (35)
D? D@
=Y "> Hi(vi,e}y )Ha(va,€3,,)[GT XGa 0 Kf3](e)y, €2,,) (36)
a=1p=1
Dt t
= Z Z[GITXGQ o K{j](efy,. e%Ba) By the definition of H; (30), H2(33) (37)
a=s+1pB=1
D* t
= > D IGTXGy(ely, ed,q) x [Ki)(ely, e&,0) (38)
a=s+1pB=1
D" t
= > D IKBl(elh, et,0) [Gi el ) X Gal:yed,,)] (39)
a=s+1p=1
D" t
= > ) X [Kl(el, €2,0), (40)
a=s+1p=1
s D¢
=3 Xnooh (@, G0s0): (41)
a=1 p=t+1

where G (:, ej;, ) is a column of G, corresponding to the edge ej;, , and G (:, 620ﬁa) is a column of
G, corresponding to the edge e%ﬂa. By the definition of G; (29) and G2 (32), G4 (vka , e}ku) =1,
since the direction of edge ezlka is assigned as vy, — v;, fora =s+ 1,5+ 2,.., D*. We also have
Gg(vcﬂ,e%w) = 1, since the direction of edge 620ﬁa is assigned as vo, — v,, for § = 1,2, ..., t.
All the other terms in G'1(:, ]}, ) and Ga(:, e%ﬂ .) are zero. The above discussion explains why the
equality holds.



Similarly, we can prove that

D? D*
[H\(GI XHy 0 K{5)G3lia= Y > Xioo,k®(d@h. @5,0), (42)
a—s+157t+1

[G1(H{ XG2 0 K{3)Hj i Z Zxk sk (@i s @epa): (43)
a=1p=1

S

[Gi(H XH; 0 K{3)Glia =) Z X 05k (@ @rpa)- (44)
a=1 p=t+1

Adding (34), @2), (@3), and {@4)), we can obtain
[Hi(GT X G20 K)H] + Hi(GT XH> 0 K{3)G3 + Gi(H{ XG>0 K{3)H +

Gi(H{ XHyo K5)G3], = Y XukP(@, ) = [(TW 0 X))« @), @)
kegle 652

where the equality holds because of the fact that e}, € &, o = 1,2,...,D’, and eQCﬂa € &,
8=1,2 .. D"

We finish the proof of the equality (27)!
Q).
For proving the equality and (26)), we can write

O oW = (@O on«®® and @« 0@ = (¥® o 1) ¥, (46)

and directly apply the proved equality 7). O

2 Proofs of the theoretical results of the EnFW algorithm

The EnFW algorithm is used to solve the following optimization problem

min - Fo(X) = Jo(X) + AH(X) X €D, (47)

where .J,,(X) is a quadratic function with respect to X, H(X) = >"1" | Z?Zl X;log(Xi;), A >0,
and D, = {X € R7*"|X1=11,X71 = 11}. Note that H(X) is convex with respect to X.
Write the quadratic function J, (X + s(Y — X)) as

Jo (X +5(Y = X)) = Jo(X) +5(VJo(X), Y—X>F+%vec(Y—X)TV2Ja(X)vec(Y—X)32
Define the coefficient of the quadratic term with respect to s as
QIX,Y)= %vec(Y —- X))V, (X)vec(Y — X) = %(VJQ(Y - X),Y - X)p. (48)
Define the gap function g(X) as
9(X) = (Va(X), X} + AH(X) = guin (VI(X), V)r + AH(Y). (49

The algorithm is detailed as

2.1 Proving proposition 2

Proposition 2. [f X* is an optimal solution of @7), then g(X*) = 0.




Algorithm 1 The EnFW optimization algorithm for minimizing F,, @7)

1: Initialize X, € D,,

2. while not converge do

3:  Compute the gradient V.J, (X;)(T4),

4:  Obtain the optimal direction Y;, i.e., Y; = argminy cp_ (VJo(X:),Y)r + AH(Y),
5:  Compute G, = g(X;) and Q; = Q(X;,Y),

6: Determine the stepsize s;: If Q; < 0; sy = 1, else s; = min{G;/(2Q;), 1},

7:  Update X;11 = X; + s:(Y: — Xy).
8: end
9: Output the solution X*.

Proof. 1t is sufficient to show that
(VJo(X*), X"V p + AH(X ") = Ymin (VIo(X¥),Y)r + AH(Y).

n

For any Y € D,,, we have that X* + s(Y — X*) € D, Vs € [0, 1], because D,, is a convex set.
Since X * is an optimal solution of , we have

Jo( X )+ AH(XY) <Jo( X"+ s(Y = X))+ AH(X" + (Y — X)) (50)

< (X" +s(Y = X))+ A1 —s)H(X™) + sH(Y)], (51)

where the inequality holds because H (X)) is a convex function. We reorder the above inequality, and

get
Jo(X* 4 s(Y — X*)) — Jo(X*)

S >AH(X") = AH(Y). (52)

Taking the limit s — 0 of (32)) yields
(VI (X¥),Y — X*)p > AH(X™*) = AH(Y). (53)

Reordering the above equality yields
VY € Dy, (VJo(X™), X" )p + AH(X™) < (VJo(X7),Y)r + AH(Y) (54)
— (VJ (X)), X"+ \H(X") = YHé%ln<VJa(X*)7 Y)r + A H(Y). (55)
O

2.2 Proving Theorem 1

Theorem 1. The generated objective function value sequence, {F,(X¢)}i—o, will decreasingly
converge. The generated points sequence, {X:}i—o C D, C R™*™ will weakly converge to the
first-order stationary point, at the rate O( \/tlﬁ) ie,

. 2max{Ag,\/LAo/n}
in, 9(Xe) < T+l
<t< +1

where N\g = F,(Xo) — minyep, Fo(X), and L is the largest absolute eigenvalue of V?J,(X).

(56)

Before we prove Theorem (1} we introduce a lemma.
Lemma 3. The generated objective function value sequence, { Fo,(X) }+—o, satisfies

L
Fo(Xr41) < Fa(X0) = (Gr = —s)s, Vs € [0,1] (57)

Proof. Since H(X) is convex, we have
Vs € [0, 1], \H (X, + s(Y; — X1)) < AH(X}) + s(AH(Y;) — AH(X). (58)
Write the quadratic function J, (X + s(Y; — X)) as
Ja( X+ 5(Yy — Xi)) = Jo(Xe) + 5(VIa(X0), Vi — Xo)r + Q(Xy, Vi)™ (59



Adding (58) and (59), and reordering the resulting inequality, we have

Fo(Xi+35(Yi— X)) < Fol(X)+s[AH(Y) —AH (X)) +(VJa(Xt), Y — Xo)r | +Q(Xy, Y7) 5%

(60)
Since NH(Y3) + (VJo(X3), Ye)r = minyep, (VJo(Xy),Y)r + AH(Y) (See the 4th line in
Algorithm([T), we have

Gy =g(Xy) = —[AH(Yy) = MH(X,) + (VJo(X4), Yy — Xo)p], (61)
which is based on the definition of g(X) {@9) and G (See the 5th line in Algorithm |I). Substituting

(67) into (60), we have
Vs € [0,1], Fa (X + s(Y; — X)) < Fal(X:) — (Gy — Q5)s. (62)
Set s = s; (See the 6th and 7th line in Algorithm [I)), we have
Fo(Xiy1) < Fo(X:) — (Ge — Qrst) st
Now we consider the function

A(s) = (Gy — Qs)s, s € [0,1].

We discuss the maximizer of A,(s) for s € [0, 1]. Considering that G; is nonnegative (this is because
of the definition of g(X)), we have

I. If Q; <0, then A;(s) achieve its maximum at s = 1,

2. If Q; > 0, then A(s) achieve its maximum at s = min{G,/(2Q:), 1}.

Therefore, our stepsize s; is just the maximizer of A;(s). That is

Fo(Xi41) S Fo(Xi41) SFA(Xy) — (Gy — Quse)se = Fo(Xy) — Sma (Gy — Qys)s

€[0,1] (63)
<F,(X:) — (Gt — Qis)s Vs €0,1].
Since
1 T2 L 2
Qi =Q(X,Y;) = §VeC(Yt — X)) VoI (X )vee(Y; — X;) < §||Xt - Y%,
and 5
||X - YH%‘ < 77VX7Y € Dn7
n
we have Q; < %
Combining (63) and the fact Q; < %, we obtain the desired result. O

Now we prove Theorem 1

Proof. We consider the inequality (57) in Lemma 3]
If Gy > 2E, then (G — Ls)s is maximized at s = 1. So

L G
FOZ(Xt+1) S Fa(Xt) - (Gt — g) S Fa(Xt) — Tt’
where the last equality holds because % < %
If Gy < 2E, then (G, — Ls)s is maximized at s = nGi Qo

2L
Gt nGt
< — (22
Fo(Xiq1) < Fo(Xy) (2 ) 5T

In summary,

Fo(Xpa1) < Fa(Xy) — S min1, ”T%

5 } (64)



(I.) Since G; > 0 by definition @9), we have F,,(X;y1) < Fo(Xy), ie,, {Fu(Xi)}hi=o is a
decreasing sequence. F,,(X) is continuous on the compact region D,,, which implies that F,,(X) is
bounded below. So the sequence { Fi, (X:)}+—o will converge [3].

(IL.) Taking the sum of (64) over ¢t = 0,1, 2, ..., T, we obtain,

T

G G
Fo(Xr41) = FalXo) < =) 2t min{1, 2?‘} (65)
t=0

Let

Gr = omtl<nT Ge = onim G(Xo).

Considering the additional fact that —Ag £ F,,(X*) — F,(Xo) < Fo(X711) — Fa(Xo), we have

T
Gy . Gin G; . G%n
Ng > — 1, —}}>T+1 1 .
(@) If %72 > 1, then g > (T + 1) G <= G < 280 < jTATl
(b) If %57 < 1,then Ao > (T4 1)(G5) "k = G <\ /74558,
% 2max{Ag,\/LAo/n}
In summary, we have G7, < Tt . O
2.3 Proving Theorem 2
Theorem 2. If J,(X) is convex, we have Fo(Xr) — Fo(X*) < 1iphyy-

Before we prove Theorem 2} we introduce a lemma.

Lemma 4. [f J,(X) is convex, and let X* is a global minimizer of problem 7)), then g(X;) >
Fo(Xy) — Fo(XH).

Proof.
9(Xy) = (VJo(Xy), Xi)r + AH (X}) — Yﬂé%l (VJo(X),Y)r + AH(Y). (66)
= anax {(VJa(X0), X = ¥)r + MH(X)) — MH(Y) | 67)
> (VJo(X1), Xe — X")r + AH(X) — AH(X™) (68)
> Jo(Xy) = Jo(X7) + AH(Xy) — AH(XT) (69)
where the inequality (69) holds because J,, (X)) is convex. O

Now we prove Theorem [2|
Proof. We still need the inequality (57) in Lemma [3]

FaXi01) < Fal X)) — (G~ T9)s

L
< Fo(Xy) — [Fa(Xy) — Fo(X™)]s + ESQ, Vs € [0,1], (71)
where the inequality holds because of Lemmad] Reordering yields
L
[Fa(Xip1) = Fa(XT)] < (1= 8) [Fa(X0) = Fu(X7)] + =57, (72)

10



t(t41)

We set s = —=, and multiply on both sides. Then we have

417 2
t(t+1) t(t—1) L 2t
Fo (X —F (X" < F.,(X,) - F,(X* Z =
3 [FalXin) = FalX)] < T2 [Fal(X) = FalX9)] + 205
tt—1 .o 2L
< WD [mx) - pax] + 22 73)
Taking the sum of (73) over t = 1,2, ..., T, we have
T(T +1) 2TL AL
— | F, (X —F (X" < — F,(X —F (X)) < —r. 74
S [Fa(Xri) - Fu(X7)] = FulXrn) = Fa(X') < s 04
We obtain the desired result. O

3 Experiments

In the first part, we present the implementation details of the experiments in the paper, including the
description of Sinkhorn—Knopp algorithm, and convergence criterions for EnFW.

3.1 Implementation details
The Sinkhorn-Knopp algorithm [4] [1] is used to solve the problem

min (D, X)r +AH(X) st X >0, X1, =d, and X71,, = b, (75)
where G and b satisfy 3" @ = Y}, b; = L. Inourcase @ = 21, and b = 11,,.

The algorithm is shown in Algorithm 2] The detailed derivations can be found in [I]]. In our

Algorithm 2 The Sinkhorn-Knopp optimization algorithm for minimizing

1: Initialize ¥ = %fn, t = 0, and RelativeError = 1, and write C = exp(—%) (pointwise).
2: while t < MaxNumginxhorn and RelativeError > Tolerance do

P = L L3107 .

R P
IEE

w

RelativeErro

t=t+1
end
§=(11,)./(CT7), X* = diag(F)Cdiag().
Output the solution X *.

PR A

experiments, we set MaxNumsiykhorn = 10000, and set Tolerance = 1076,

Convergence
fied for continuing the iterations in Algorithm T}

1. The maximal number of iterations is set to be 1000, i.e., t < 1000;

2. The tolerance of relative error between X, and X is set to be 1078, ie, W >
1078.

3. The gap G; = g(X:) should be greater than eps to avoid numerical error, where eps is the
spacing of floating point numbers of Matlab.

3.2 Experimental results

We re-implement the experiments in Section 6.1 in the paper, for comparing the matching performance
of different algorithms. Here, we test the performance of KerGM; on synthetic datasets. That is, we
use the exact edge affinity kerneﬂ and compute the gradients by using the formulas in (23)), (26)), and
(27). We still consider the same parameter settings:

'Note that in the paper, we test the performance of KerGMi; on synthetic datasets. We in fact use the Fourier
random features 2] to approximate the kernel.
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Figure 2: Comparison of graph matching algorithms on synthetic datasets

1. We change the number of outlier nodes, 14y, from 0 to 50 while fixing the noise, o = 0,
and the edge density, p = 1.

2. We change ¢ from 0 to 0.2 while fixing n,,; = 0 and p = 1.
3. We change p from 0.3 to 1 while fixing n,yt = 5 and 0 = 0.1.

We repeat the experiments 100 times, and report the average matching accuracies and objective
function values. In Fig. 2} we show the results. It can be seen that our KerGM; still consistently
outperforms the baselines.
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