
Appendix A Experimental details

We give an overview of experimental details for the results presented in the paper. All experiments
were performed on Amazon’s EC2 P3 single GPU instances.

A.1 ResNet

We train ResNet using the SGD with momentum optimizer. L2 regularization is applied. A learning
rate decay factor is applied at predefined epochs. Training procedure and hyperparameters are adapted
from [25].

For CIFAR10 and CIFAR100 training, we adopt the hyperparameters optimized for training using
Batch Normalization. Performing a hyperparameter search for the network with Online Normalization
is expected to produce better results. We perform a logarithmic sweep from 1/2 through 4095/4096 to
set the forward and backward decay factors αf and αb. Then we perform five independent runs for
the network with Batch Normalization and Online Normalization. The results shown in Figure 7-8
are a median of the five independent results.

We conduct and report only a single experimental run for ImageNet training. When using Batch
Normalization, the optimal hyperparameters for training ImageNet are given in [2] where training was
done at batch size 256. We train our network using batch sizes appropriate for single GPU training.
The momentum and learning rate hyperparameters are adapted using the scaling rules found in
Appendix F. For training ResNet with Online Normalization we use the same hyperparameters used for
training with Batch Normalization and set decay factors based on CIFAR10 experiments. Performing
a hyperparameter search for all hyperparameters is expected to produce better performance.

All hyperparameters are summarized in Table 3.

Table 3: ResNet Training Hyperparameters.
Dataset ImageNet CIFAR10 CIFAR100
Network ResNet50 ResNet20 ResNet20

Epochs 100 250 250
Batch size 32 128 128
Learning rate (η) 0.01308 0.1 0.1
Optimizer momentum (µ) 0.98692 0.9 0.9
L2 constant (λ) 10−4 2× 10−4 2× 10−4

LR decay factor 0.1 0.1 0.1
LR decay epochs {30, 60, 80, 90} {100, 150, 200} {100, 150, 200}

Forward decay factor (αf ) .999 1023/1024 511/512

Backward decay factor (αb) .99 127/128 15/16

A.2 U-Net

U-Net is trained updating parameters at an update cadence of 25. Training is done for 40 epochs
using the SGD with momentum optimizer on a synthetic image dataset [28]. L2 regularization is
applied. A learning rate (LR) decay factor is applied at epoch 25. The dataset uses 2000 samples
in the training set and 200 samples in the validation set. Synthetic dataset generation and model
definition are adapted from [28]. U-Net is trained using no normalization, Batch Normalization
and Online Normalization. Normalization is added before each ReLU as in [27]. Learning rate,
η = m × 10−n, sweeps are performed on the network with no normalization and on the network
with Batch Normalization. m and n are swept in the ranges 0 to 9 and 0 to 5 respectively using
a step size of 1. We use Online Normalization as a drop-in replacement for Batch Normalization.
The network with Online Normalization uses the learning rate found to perform optimally in the
network with Batch Normalization. Logarithmic sweeps from 15/16 to 32767/32768 and 1/2 to 8191/8192

are performed to set the forward and backward decay factors respectively. All hyperparameters are
summarized in Table 4.
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For U-Net training, and subsequent examples, we observe relatively high run to run variability
because the datasets are small. Training the network without normalization produced a few outliers
which show poor average performance. We report the median of 50 runs (Figure 10); reporting
the mean would unfairly misrepresent the network without normalization as having poor expected
performance.

Table 4: U-Net Training Hyperparameters.
Normalizer ON BN -

Learning rate (η) 0.04 0.04 0.6
Optimizer momentum (µ) 0.9 0.9 0.9
L2 constant (λ) 10−6 10−6 10−6

LR decay factor 0.1 0.1 0.1
LR decay epoch 25 25 25

Forward decay factor (αf ) 63/64 - -
Backward decay factor (αb) 1/2 - -

A.3 Fully Connected

To test the Online Normalization technique on fully connected networks we use a three-layer dense
network, 500+300 hidden units (3-layer NN, 500+300 HU, softmax, cross entropy, weight decay
[29, 32]), with ReLU activation functions on the Fashion MNIST [30] classification task. The
network is trained using the SGD optimizer and L2 regularization. We consider three cases: without
normalization, using Batch Normalization, Layer Normalization and Online Normalization. A
learning rate sweep in the range 0.001 to 0.02 using a step size of 0.001 and the range 0.02 to
0.1 using a step size of 0.01 is performed for the network without normalization and with Batch
Normalization. The networks using Layer Normalization and Online Normalization use the same
hyperparameters found to be optimal for training when using Batch Normalization. A logarithmic
sweep from 1/2 to 8191/8192 is performed to set the forward and backward decay factors. The optimum
setting closely matched the hyperparameters used for ImageNet training. All hyperparameters are
summarized in Table 5.

Table 5: Fully Connected Network Training Hyperparameters.
Epoch 10
Batch size 32
Learning rate (η) 4× 10−2

L2 constant (λ) 10−4

Forward decay factor (αf ) 0.999
Backward decay factor (αb) 0.99

A.4 Recurrent Neural Network

For the recurrent network experiments we use single layer RNN and LSTM networks. The embedding
and decoder are "tied" to share parameters as described in [33]. The networks are trained using SGD
and L2 regularization. The sequence length is selected uniformly in the range [1, 128] to preclude the
network from learning a sequence length. The recurrent networks are trained in three settings: using
no normalization, Layer Normalization and Online Normalization. A linear sweep is done to set the
learning rate (Table 7-8). A logarithmic sweep is used to set the forward and backward decay factors
αf and αb (Table 7-8). All hyperparameters are summarized in Table 6.

A.5 Gradient bias experiment

We used a simple network to quantify gradient bias for Batch Normalization (Section 3.2, Figure 3).
The weights are held fixed to decouple learning rate changes from the bias. In our setup a single
convolution layer with a normalizer is followed by ReLU feeding into a fully connected layer and
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Table 6: Recurrent Network Training Hyperparameters.
Recurrent Unit Type RNN LSTM

Normalization type - LN ON - LN ON
Learning rate (η) 0.5 0.95 1.7 3.5 3.25 6.5
Embedding size 200 200
Hidden state size 200 200
Epochs 40 25
Batch size 20 20
L2 constant (λ) 10−6 10−6

Forward decay factor (αf ) 16383/16384 8191/8192

Backward decay factor (αb) 127/128 31/32

Table 7: RNN Network Hyperparameter Sweeps.
Normalization type - LN ON
Learning rate (η) 0.5 0.95 1.7
η sweep range 0.05 to 0.7 0.05 to 2 0.05 to 2
η sweep step size 0.075 0.05 0.075

Sweep range for αf
511/512 to 32767/32768

Sweep range for αb
3/4 to 4095/4096

Table 8: LSTM Network Hyperparameter Sweeps.
Normalization type - LN ON
Learning rate (η) 3.5 3.25 6.5
η sweep range 2.5 to 10 1.25 to 5.75 1 to 10
η sweep step size 0.5 1 0.5

Sweep range for αf
511/512 to 32767/32768

Sweep range for αb
3/4 to 4095/4096

softmax (Figure 13). We used the entire CIFAR-10 dataset to compute the ground truth gradient and
compared it to the gradient resulting from batched computations using batch sizes in powers of two.
The error shown represents the angle in degrees derived from cosine similarity of resulting gradients
and the ground truth averaged over ten runs.

Cross-
entropySoftmaxFully

connectedReLUNormConvCIFAR

Figure 13: Network used to quantify gradient bias.

A.6 Statistical Characterization of Experiment Reproducibility

The numerical values reported in Section 5 are median values for a set of runs. Figure 14 is a set of
box-plots which statistically characterize the reproducibility of the experiments. Experiments with a
single run are depicted using dashed lines. The run-to-run variability using Online Normalization is
comparable to that of other normalizers.

The sensitivity of Online Normalization to decay rates when training ResNet20 on CIFAR10 is shown
in Figure 15. For this fine-grained logarithmic sweep, the decay rates are expressed as the horizon
of averaging h = 1/(1− α). It shows that Online Normalization not highly sensitive to the chosen
decay rate since the region of near-optimal performance is broad. This allows for coarser sweeps
when generalizing the technique to different models and datasets.
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Figure 14: Reproducibility.
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Figure 15: Hyperparameter sweep.

Appendix B Gradient properties

The main part of the paper proved the expression of the gradient via projections (5) based on geometric
considerations (Section 3.1). It is also possible to derive this property without geometry. Here is an
alternative algebraic proof.
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Claim 1. In finite-dimensional spaces the backpropagation of the gradient of normalization (1) can
be represented as a composition of two orthogonal projections: ~x ′ = 1

σ

(
I− P~1

)
(I− P~y) ~y ′.

Proof. In the N -dimensional space transformation (1) becomes

µ =
1

N

∑

i

xi

σ2 =
1

N

∑

i

(xi − µ)
2

yi =
xi − µ
σ

.

(13)

The derivatives of the mean and variance with respect to the xj are:

∂µ

∂xj
=

1

N
(14)

∂σ

∂xj
=

1

2σN

∑

i

[
2 (xi − µ)

(
δij −

1

N

)]

=
1

Nσ

∑

i

[(xi − µ)δij ]−
1

N2σ

∑

i

(xi − µ)

=
xj − µ
Nσ

− 0

=
yj
N

,

(15)

where δij is the Kronecker delta function. The components of the Jacobian satisfy

Jij ≡
∂yi
∂xj

=
(δij − ∂µ

∂xj
)σ − (xi − µ) ∂σ∂xj

σ2

=
(δij − 1

N )− yi ∂σ∂xj

σ

=
(δij − 1

N )− yiyj
N

σ

=
(Nδij − 1)− yiyj

Nσ
.

(16)

The j-th component of the gradient passing through normalization is

x′j =
∂L

∂xj

=
∑

i

∂L

∂yi

∂yi
∂xj

=

∑
i (y′i [(Nδij − 1)− yiyj ])

Nσ

=
Ny′j −

∑
i y
′
i − yj

∑
i(y
′
iyi)

Nσ

=
y′j
σ
−
∑
i y
′
i

Nσ
− yj

∑
i(y
′
iyi)

Nσ

=
1

σ

[
y′j −

∑
i y
′
i

N
− yj

∑
i(y
′
iyi)

N

]

(17)

and

~x ′ =
1

σ

[
~y ′ − (~y ′,~1)

N
~1− (~y ′, ~y)

N
~y

]
, (18)
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where (·, ·) is the inner product in N dimensions.

Because ‖~1‖2 = N and

‖~y‖2 =
∑

i

y2
i

=
∑

i

N (xi − µ)
2

∑
j (xj − µ)

2

= N ,

(19)

we can express (18) in terms of the projections

~x ′ =
1

σ

[
~y ′ − (~y ′,~1)

(~1,~1)
~1− (~y ′, ~y)

(~y, ~y)
~y

]

=
1

σ

(
I− P~1 − P~y

)
~y ′ .

(20)

From this expression and because ~y is orthogonal to ~1, we can see that resulting gradient ~x ′ is
orthogonal to both ~1 and ~y.

Orthogonality of ~y and ~1 also implies that P~1P~y = 0 and therefore

~x ′ =
1

σ

(
I− P~1 − P~y + P~1P~y

)
~y ′

=
1

σ

(
I− P~1

)
(I− P~y) ~y ′ .

(21)

This proves equation (5) algebraically. Note that orthogonality conditions (4) follow from this
representation.

Appendix C Weights and gradients equilibrium conditions

For the weight update shown in Figure 5 we have

|w|2 − (ηE|w′|)2
= (|w| − ηλ|w|)2

= |w|2 − 2ηλ|w|2 + η2λ2|w|2
(22)

(ηE(|w′|))2 = (2− ηλ)ηλ|w|2

≈ 2ηλ|w|2 .
(23)

Solving for equilibrium norm of the weights |w| we get

|w| =
√

η

2λ
E|w′| (24)

and correspondingly
∆w

|w| =
ηw′√
η
2λE|w′|

=
√

2ηλ
w′

E |w′|

(25)

matching equations (6) and (7).

17



Appendix D Properties of Online Normalization

In this section we prove the properties of Online Normalization presented in Section 4. We focus on
per-feature normalization in steps (8) and (11) and do not discuss layer scaling steps (9) and (10).

For simplicity in subsequent derivations we only consider the case of scalar samples. A generalization
to multi-scalar samples is straightforward but clutters the equations. Under this simplification the
forward process (8) can be rewritten as

yt =
xt − µt−1

σt−1
(26a)

µt = αµt−1 + (1− α)xt (26b)

σ2
t = ασ2

t−1 + α(1− α) (xt − µt−1)
2
. (26c)

This process is a standard way to compute mean and variance of the incoming sequence x via
exponentially decaying averaging:

µt = (1− α)

t∑

j=0

αt−jxj (27)

σt = (1− α)

t∑

j=0

αt−j(xj − µt)2 . (28)

We start with an observation that the computation of the mean in (26) can be equivalently performed
as a control process:

Claim 2. Control process
ŷt = xt − (1− α)εt−1

εt = εt−1 + ŷt.
(29)

is equivalent to estimator process (26b)

ŷt = xt − µt−1

µt = αµt−1 + (1− α)xt
(30)

with the accumulated control error εt proportional to the running mean µt

µt = (1− α)εt . (31)

Proof. The equivalence of the first lines is obvious. From (29) and (31) we also have

µt = (1− α)εt
= (1− α)(εt−1 + ŷt)

= µt−1 + (1− α)(xt − (1− α)εt−1)

= µt−1 + (1− α)(xt − µt−1)

= αµt−1 + (1− α)xt ,

(32)

which matches (30).

To proceed we make an assumption that the input to the normalizer is bounded:

Assumption 1. We assume that inputs x are bounded: |xt| < Cx ∀t.
Claim 3. Under this assumption, the accumulated output of process (30) is uniformly bounded by

∣∣∣∣∣∣

t∑

j=0

ŷj

∣∣∣∣∣∣
<

1

1− αCx ∀t . (33)
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Proof. Second line of (29) implies that
t∑

j=0

ŷj = εt . (34)

From representation (27) and equality (31) we have∣∣∣∣∣∣

t∑

j=0

ŷj

∣∣∣∣∣∣
= |εt|

=
|µt|

1− α

=

∣∣∣∣∣∣

t∑

j=0

αt−jxj

∣∣∣∣∣∣

< Cx

∞∑

j=0

αj

=
Cx

1− α .

(35)

Process (26) is identical to process (30) except scaling with σ

yt =
ŷt
σt−1

. (36)

To extend the result of Claim 3 to (26) we assume that there is nonzero variability in the input.
Assumption 2. Variance of the input stream x computed via exponentially decaying averaging (26c,
28) is uniformly bounded away from zero after initial N steps:

σ2
t > C2

σ > 0 ∀t ≥ N . (37)

Note that this assumption only requires that there is sufficient variability in the input for successful
normalization. The first N steps correspond to the warmup of the process when the approximated
statistics may experience high variability.
Claim 4. Arbitrarily long accumulated sum of output of the process (26) starting with time step N is
uniformly bounded by ∣∣∣∣∣∣

t∑

j=N+1

yj

∣∣∣∣∣∣
<

1

1− α
2Cx
Cσ

∀t . (38)

Proof. From the bound (35) and equivalence (36) for any t have∣∣∣∣∣∣

t∑

j=N+1

yj

∣∣∣∣∣∣
=

∣∣∣∣∣∣

t∑

j=N+1

ŷj
σt−1

∣∣∣∣∣∣

<
1

Cσ

∣∣∣∣∣∣

t∑

j=N+1

ŷj

∣∣∣∣∣∣

≤ 1

Cσ



∣∣∣∣∣∣

N∑

j=0

ŷj

∣∣∣∣∣∣
+

∣∣∣∣∣∣

t∑

j=0

ŷj

∣∣∣∣∣∣




<
1

Cσ

2Cx
1− α .

(39)
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This uniform bound implies that the average of the normalized stream yj generated by (26) asymptot-
ically approaches zero as the window of averaging increases.
Claim 5. After initial N steps (Assumption 2), the output y generated by generated by (26) satisfies

lim
t→∞

µt(y) ≡ lim
t→∞


1

t

N+t∑

j=N+1

yj


 = 0 , (40)

We can construct a similar result for the variance of y.
Claim 6. Output y generated by (26) satisfies

lim
t→∞

σ2
t (y) ≡ lim

t→∞


1

t

N+t∑

j=N+1

(yj − µt(y))
2


 =

1

α
(41)

Proof. Based on the equality σ2(y) = µ(y2)− µ(y)2 and Claim 5 we observe that

lim
t→∞

σ2
t (y) = lim

t→∞


1

t

N+t∑

j=N+1

y2
j


− lim

t→∞

(
1

t
µt(y)

)2

= lim
t→∞


1

t

N+t∑

j=N+1

(xj − µj−1)2

σ2
j−1


 .

(42)

From (26c) we have (xj − µj−1)2 = (σ2
j−ασ2

j−1)/(α(1−α)), and therefore

lim
t→∞

σ2
t (y) = lim

t→∞


1

t

N+t∑

j=N+1

σ2
j − ασ2

j−1

α(1− α)σ2
j−1




= lim
t→∞


1

t

N+t∑

j=N+1

σ2
j − σ2

j−1 + (1− α)σ2
j−1

α(1− α)σ2
j−1




= lim
t→∞


1

t

N+t∑

j=N+1

σ2
j − σ2

j−1

α(1− α)σ2
j−1


+

1

α

=
1

α
.

(43)

Note that the resulting asymptotic variance approaches 1 as α approaches 1 (in our experiments
α ≈ 0.999). Additionally, any fixed asymptotic variance in all features will be absorbed in subsequent
layer scaling bringing resulting variance to 1.

Combined, the previous two claims prove the following property.
Property 1. Output y generated by the forward pass of Online Normalization (26) is asymptotically
mean zero and unit variance.

Now we analyze the stability of the algorithm with respect to imperfect estimates µ and σ.
Claim 7. Derivatives of the output y generated by (26) with respect to µ and σ are bounded.

Proof. We first observe that under previous assumptions y is bounded

|yt| =
∣∣∣∣
xt − µt−1

σt−1

∣∣∣∣

≤
∣∣∣∣

1

σt−1

∣∣∣∣ (|xt|+ |µt−1|)

<
2Cx
Cσ
≡ Cy .

(44)
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The derivatives of y are ∣∣∣∣
∂yt
∂µt−1

∣∣∣∣ =

∣∣∣∣
1

σt−1

∣∣∣∣

<
1

Cσ

(45)

and ∣∣∣∣
∂yt
∂σt−1

∣∣∣∣ =

∣∣∣∣
xt − µt−1

σ2
t−1

∣∣∣∣

=

∣∣∣∣
yt
σt−1

∣∣∣∣

<
Cy
Cσ

.

(46)

Because normalized output y is a continuous function of running estimates of µ and σ with bounded
derivatives, errors in the estimates have a bounded effect on the result.

Property 2. The deviation of the output of Online Normalization (26) from normal distribution is a
Lipschitz function with respect to errors in estimates of mean and variance of its input.

In particular, it means that with sufficiently small learning rate, the normalization process is guaranteed
to produce generate outputs with mean and variance arbitrarily close to zero and one even when the
network parameters are changing.

Now we turn our attention to the corresponding backward pass (11-12), which in the case of single
scalar per sample becomes

x̃′t = y′t − (1− α)ε
(y)
t−1yt

ε
(y)
t = ε

(y)
t−1 + x̃′tyt

(47)

and

x′t =
x̃′t
σt−1

− (1− α)ε
(1)
t−1

ε
(1)
t = ε

(1)
t−1 + x′t .

(48)

We can formulate the counterpart of Claim 2 for this process. for (47) is

Claim 8. Control process (47) is equivalent to estimator process

x̃′t = y′t − µ(y)
t−1yt

µ
(y)
t = (1− (1− α)y2

t )µ
(y)
t−1 + (1− α)y′tyt

(49)

with
µ

(y)
t = (1− α)ε

(y)
t . (50)

Proof. Similarly to the proof of Claim 2 we have

µ
(y)
t = (1− α)ε

(y)
t

= (1− α)(ε
(y)
t−1 + x̃′tyt)

= µ
(y)
t−1 + (1− α)

(
y′t − (1− α)ε

(y)
t−1yt

)
yt

= µ
(y)
t−1 + (1− α)

(
y′t − µ(y)

t−1yt

)
yt

= (1− (1− α)y2
t )µ

(y)
t−1 + (1− α)y′tyt ,

(51)

which matches (49).
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Assumption 3. The incoming gradient y′t is bounded:

y′t < Cy′ ∀t (52)

and that exponentially decaying average of normalized output y2
t is bounded away from zero:

(1− α)

t∑

j=0

αt−jy2
t > Cy2 > 0 ∀t > N . (53)

The last condition is natural given that yt is the result of forward normalizations and we have shown
that it is asymptotically mean zero and 1/α variance.
Assumption 4. The decay factor α for the backward pass is sufficiently close to one to satisfy

Cy >
1

1− α . (54)

Claim 9. Error accumulator ε(y)
t in (47) is bounded.

Proof. Because of the equivalency shown in Claim 8 it is sufficient to prove the statement only for
µ

(y)
t in (49). For t > N we have

µ
(y)
t = (1− (1− α)y2

t )µ
(y)
t−1 + (1− α)y′tyt

µ
(y)
t = (1− (1− α)y2

t )
[
(1− (1− α)y2

t−1)µ
(y)
t−2 + (1− α)y′t−1yt−1

]
+ (1− α)y′tyt

= . . .

= (1− α)

t∑

k=0



k−1∏

j=0

(
1− (1− α)y2

t−j+1

)

 y′t−kyt−k ,

(55)

and

|µ(y)
t | < (1− α)NCyCy′ + (1− α)CyCy′

t−N∑

k=0



k−1∏

j=0

(
1− (1− α)y2

t−j+1

)

 . (56)

If individual values of y2
t were bounded below, the summation would be done over a geometric

progression converging to a bounded value. But individual values of y2
t can be zero so we cannot

directly bound the sum by a converging geometric series. Instead, we’ll use the property that the
exponentially averaged y2

t is bounded away from zero to show that it implies that the arithmetic
average of any sufficiently long consecutive sequence of y2

t is bounded away from zero and use that
to bound µ(y).

First we notice that we can replace the last term in (56) by a power of arithmetic average using the
convexity property

k−1∏

j=0

(1− αj) ≤


1− 1

k

k−1∑

j=0

αj



k

if αj ∀j (57)

that can be proven inductively starting with k = 2. Then, after substituting αj ← (1 − α)y2
t−j+1,

inequality (56) becomes

|µ(y)
t | < (1− α)NCyCy′ + (1− α)CyCy′

t−N∑

k=0


1− (1− α)


1

k

k−1∑

j=0

y2
t−j





k

. (58)

Finally, if we show that the averages in (58) are bounded from below by a nonzero positive constant
then the resulting geometric sum with the fixed base less than one will be bounded.

For α < 1 the series (1− α)
∑
αk is converging and therefore we can find K such that the tail of

this series is less than a fixed value Cy2/2Cy+:

(1− α)

∞∑

k=K

αk <
Cy2

2Cy+
. (59)
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This is true when

αK < (1− α)
Cy2

2Cy

K logα < log
(1− α)Cy2

2Cy

K =

⌈
log

(1− α)Cy2

2Cy

/
logα

⌉
.

(60)

Combining (54) and (59) for all n > N we get a lower bound for the top K terms in (53)

(1− α)

t∑

k=t−K+1

αt−ky2
k = (1− α)

t∑

k=0

αt−ky2
k − (1− α)

t−K∑

k=0

αt−ky2
k

> Cy2 − (1− α)Cy

∞∑

k=K

αk

> Cy2 −
Cy2

2

=
Cy2

2
.

(61)

Then for all t > N we can bound from below the arithmetic average of the K corresponding terms of
y.

1

K

K−1∑

k=0

y2
t−k >

1

αK−1

K−1∑

k=0

αky2
t−k

>
Cy2

2(1− α)αK−1
≡ Cy > 0 .

(62)

That shows that after the first N terms, the average of any consecutive K-sequence of y exceeds a
fixed constant. For any t and K ′ > K we can apply this property to

⌊
K ′/K

⌋
K-chunks to get

1

K ′

K′−1∑

k=0

y2
t−k >

⌊
K ′

K

⌋
K

K ′
Cy

>
Cy
2
.

(63)

Combining (58) and (63) we get the bound

|µ(y)
t | < (1− α)(N +K)Cy′Cy + (1− α)Cy′Cy

t−N∑

k=K


1− (1− α)


1

k

k−1∑

j=0

y2
t−j





k

< (1− α)(N +K)Cy′Cy + (1− α)Cy′Cy

t−N∑

k=K

(
1− (1− α)

Cy
2

)k

< (1− α)(N +K)Cy′Cy + (1− α)Cy′Cy
2

(1− α)Cy

= Cy′Cy

(
(1− α)(N +K) +

2

Cy

)
≡ Cµy ,

(64)

and because of the equivalency (50) between µ(y)
t and ε(y)

t

|ε(y)
t | <

Cµy

1− α ≡ Cεy . (65)
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Claim 10. x̃′t in process (47), (49) is uniformly bounded.

Proof. From (49) and bounds on

|x̃′t| = |y′t − µ(y)
t−1yt|

≤ |y′t|+ |µ(y)
t−1||yt|

= Cy′ + CµyCy .

(66)

The second stage of the backward pass (48) is the same is the process (29) with input x̃′t/σt−1 that is
bounded: ∣∣∣∣

x̃′t
σt−1

∣∣∣∣ <
Cy′ + CµyCy

Cσ
. (67)

We can reuse the earlier results to conclude that both the output of (48) x′t and accumulated error
ε

(1)
t =

∑
x′t are bounded:

|x′t| < Cx′ (68)

and
|ε(1)
t | < Cε1 . (69)

These observations together with (65) can be restated as properties.
Property 3. The backward pass of Online Normalization (11)-(12) generates uniformly bounded
gradients x′t.

Property 4. Accumulated errors ε(y)
t and ε(1)

t that track deviations from orthogonality conditions (5)
in Onine Normalization (11)-(12) are bounded.

Appendix E Emulation of Online Normalization on GPU

While Online Normalization offers a normalization technique that does not rely on batching, some
hardware architectures benefit from batched execution of compute-intensive linear operations. For
fast GPU execution we reformulated the algorithm to operate on tensors with the batch dimension
and still generate results equivalent to true online processing. Of course this forces the weight updates
to be performed on batch boundaries, which the original algorithm does not require.

Let’s assume that we are computing the exponentially decaying mean of a sequence of inputs xt
(26b)

µt = αµt−1 + (1− α)xt , (70)

which is equivalent to (27)

µt = (1− α)

t∑

j=0

αt−jxj

= (1− α)

t∑

j=0

αjxt−j .

(71)

We also assume that inputs xt arrive in groups of n elements

Xt−n = (xt−n, . . . , xt−1)

Xt = (xt, . . . , xt+n−1) ,
(72)

where Xt−n is a previously processed group with resulting values

Mt−n = (µt−n, . . . , µt−1) (73)

matching (71) and Xi is the current batch that we need to process and generate

Mt = (µt, . . . , µt+n−1) . (74)
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We will use the superscript to refer to a specific element of the the group

M l
t ≡ µt+l = (1− α)

t+l∑

j=0

xt+l−jα
j . (75)

We will also use a n-vector of powers of α

A =
(
1, α, . . . , αn−1

)
(76)

and a (2n− 1)-long concatenation of two adjacent X batches (with the very first element removed):

Xt−n,i = (xt−n+1, . . . , xt, . . . , xt+n−1) . (77)

Multiplying previously computed batch by αn we get

αnM l
t−n = αnµt−n+l

= (1− α)

t−n+l∑

j=0

xt−n+l−jα
j+n

= (1− α)

t+l∑

j=n

xt+l−jα
j .

(78)

This matches our target expression (75) except the summation starts from n instead of zero. We can
cover the missing summation range by applying a 1D convolution with filter (76) to (77):

(Xt−n,i ~A)
l

=

n∑

j=0

X l+n−j
t−n,t A

j

=

n∑

j=0

xt+l−jα
j .

(79)

Therefore we can generate target values (75) as

M l
t = µt+l

= (1− α)

t+l∑

j=0

xt+l−jα
j

= αnM l
t−n + (1− α) (Xt−n,t ~A)

l
.

(80)

The resulting group-level expression is

Mt = αnMt−n + (1− α) (Xt−n,t ~A) , (81)

where Mt−n is the previously computed batch of results, Xt−n,t is the concatenation of the previous
and current batches of x (without the very first element), A is the vector of n powers of α, and ~
is the 1D convolution. In the limit case of n = 1 this expression matches the origingal method.
With n > 1 and X and M initialized to zero tensors the resulting procedure will match (in exact
arithmetic) the values of the streaming process (26b) with standard initialization.

The generalization of this method to the computation of variance (26c) and to the procedure (47-48)
in the backward pass can be found in the accompanying code [3].

Appendix F Hyperparameter scaling rules

In our studies we performed experiments with different batch sizes. For momentum training

ν = µν + (1− µ)g

w = w − ην , (82)
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we applied scaled the learning rate linearly with batch size b:

ηnew =
bnew
bold

ηold, (83)

while keeping the weight decay parameter unchanged. This effectively leads to a square root scaling
rule for training (Section 3.4).

To scale the momentum µ in (82) we equate per-sample decay

µnew
1

bnew = µold
1

bold , (84)

which results in
µnew = µold

bnew
bold . (85)

Note that some deep learning frameworks implement momentum as outlined in [34]:

ν = µν + g

w = w − ην , (86)

This is equivalent to (82) except the gradient is not multiplied by (1− µ). To apply hyperparameter
updates to momentum optimizers implemented by these deep learning frameworks, we apply another
scale to the learning rate:

η∗new =
1− µnew

1− µ ηnew . (87)
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