
Appendix

A Optimal Attacker Report

Lemma 12. Suppose (ĉ, î) is an SSE on attacker type θ. The following holds:

(i) If ĉi < 1 for all i ∈ T , then {i ∈ T : ĉi > 0} ⊆ BRθ(ĉ) and
∑
i∈T ĉi = m.

(ii) If ĉi = 1 for some i ∈ T , then there exists j ∈ BRθ(ĉ) such that ĉj = 1.

Proof. Since (ĉ, î) is an SSE, by definition, we have î ∈ BRθ(ĉ), and ud(ĉ, î) ≥ ud(c, i) for all
c ∈ C, i ∈ BRθ(c). We claim that ĉ is the optimal solution to the following linear program:

maxc ud(c, î) (4)

s.t. ua
θ(c, i) ≤ ua

θ(c, î) for all i ∈ T \ {̂i} (4a)∑
i∈T ci ≤ m (4b)

0 ≤ ci ≤ 1 for all i ∈ T (4c)

To see this, note that, first ĉ is a feasible solution because it satisfies all the constraints above: (4a) is
equivalent to î ∈ BRθ(c), and (4b) and (4c) combined are equivalent to c ∈ C. Second, ĉ is optimal
because if it is not, there would exist another feasible solution z 6= ĉ, such that ud(z, î) > ud(ĉ, î);
this contradicts the assumption that (ĉ, î) forms an SSE.

By the Karush-Kuhn-Tucker (KKT) conditions, ĉ is an optimal solution only if there exists constants
(i.e., KKT multipliers) αi, β, γi and δi, each corresponding to an inequality constraint in (4a)–(4c),
such that for all i ∈ T (let wa

i = pθi − rθi and wd
i = rd

i − pd
i for each i below):{

− wa
i · αi − β + γi − δi = 0 for all i 6= î

wd
î

+ wa
î
·
∑
i6=î αi − β + γî − δî = 0

(by stationarity4) (5)

αi, β, γi, δi ≥ 0 (by dual feasibility) (6)
αi ·

(
ua
θ(ĉ, i)− ua

θ(ĉ, î)
)

= 0

β ·
(∑

j∈T ĉj −m
)

= 0

γi · ĉi = 0

δi · (ĉi − 1) = 0

(by complementary slackness5) (7)

Now we show (i) and (ii) in the statement of the lemma separately.

Part (i). Since ĉi < 1 for all i ∈ T , we have δi = 0 for all i ∈ T by the last equation in (7).
Suppose towards a contradiction that

∑
i∈T ĉi < m. We would have β = 0 by the second equation in

(7); and further, by the second equation in (5), wd
î
+wa

î
·
∑
i 6=î αi+γî = 0, which is a contradiction as

wd
î

= rd
î
− pd

î
> 0, wa

î
= ra

î
− pa

î
> 0, and αi, γi ≥ 0 for all i by (5). Thus, β > 0 and

∑
i∈T ĉi = m.

Similarly, if we suppose ĉt > 0 for some t ∈ T , but t /∈ BRθ(ĉ), we would have ua
θ(ĉ, t) <

maxi∈T u
a
θ(ĉ, i) = ua

θ(ĉ, î). Thus, γt = 0 and αt = 0 by the third and the first equations in (7), and
then β + δt = 0 by the first equation in (5) (note that t 6= î since î ∈ BRθ(ĉ)), which contradicts
β > 0 and δi = 0 for all i ∈ T as we show above.

4A solution x satisfies stationarity if∇f(x) = λ1 · ∇g1(x) + · · ·+ λ` · ∇g`(x), where f is the objective
function (minimization), each gi corresponds to an inequality constraint (in the form gi(x) ≤ 0), and each λi is
a KKT multiplier.

5A solution x satisfies complementary slackness if λi · gi(x) = 0 for each KKT multiplier λi and their
corresponding inequality constraint function gi.
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Part (ii). Suppose that ĉi = 1 for some i ∈ T , but ĉj < 1 for all j ∈ BRθ(c) (in particular, ĉî < 1).
Thus, i /∈ BRθ(ĉ), so ua

θ(ĉ, i) < maxt∈T u
a
θ(ĉ, t) = ua

θ(ĉ, î). We have γi = 0 and αi = 0 by (7),
which then implies β + δi = 0 by (5); thus, β = 0. In addition, ĉî < 1 implies δî = 0 by (7). Again,
by (5), we end up with the contradiction that wd

î
+ wa

î
·
∑
i 6=î αi + γî = 0.

Lemma 13. Suppose c is a maximin strategy of the defender, i.e., c ∈ arg maxc∈C mini∈T u
d(c, i).

Then (c, i) forms an SSE in a zero-sum game for any i ∈ BRβ(c), where β = (−pd,−rd).

Proof. Suppose (c, i), i ∈ BRβ(c), is not an SSE. Thus, there exists z ∈ C and t ∈ BRβ(z), such
that ud(z, t) > ud(c, i); equivalently, ua

β(z, t) < ua
β(c, i) as β makes the game zero-sum. Since

i ∈ BRβ(c) and t ∈ BRβ(z) are the attacker’s best responses, we have ua
β(c, i) = maxj∈T u

a
β(c, j)

and ua
β(z, t) = maxj∈T u

a
β(z, j); thus, maxj∈T u

a
β(z, j) < maxj∈T u

a
β(c, j). This leads to the

following contradiction:

max
c∈C

min
j∈T

ud(c, j) = min
j∈T

ud(c, j) = −max
j∈T

ua
β(c, j) < −max

j∈T
ua
β(z, j) = min

j∈T
ud(z, j).

Corollary 14. Suppose c is a maximin strategy of the defender and c is fully mixed, i.e., 0 < ci < 1
for all i ∈ T . Then (c, i) forms an SSE in a zero-sum game for all i ∈ T , and ud(c, i) =
minj∈T u

d(c, j) for all i ∈ T .

Proof. By Lemma 13, (c, i) forms an SSE on attacker type β = (−pd,−rd) with any i ∈ BRβ(c).
Since c is fully mixed, T = {i ∈ T : ci > 0}, and by Lemma 12 (i), T ⊆ BRβ(c) ⊆ T .
Thus, BRβ(c) = T , so (c, i) forms an SSE on attacker type β (which makes the game zero-sum)
with any i ∈ T ; we have ua

β(c, i) = maxj∈T u
a
β(c, j). It follows that ud(c, i) = −ua

β(c, i) =

−maxj∈T u
a
β(c, j) = minj∈T u

d(c, j).

Lemma 15. Suppose c is a maximin strategy of the defender and c is fully mixed, i.e., 0 < ci < 1
for all i ∈ T . Then c is the only maximin strategy of the defender.

Proof. Suppose z = arg maxc∈C mini∈T u
d(c, i) is a maximin strategy and z 6= c. Thus, either: (i)

zi ≥ ci for all i ∈ T , and this is strictly satisfied by some i; or (ii) zi < ci for some i ∈ T . We show
either of them leads to a contradiction.

Since c is a maximin strategy, it is also an SSE defender strategy in a zero-sum game by Lemma 13;
and by Lemma 12 (i),

∑
i∈T ci = m. Thus, in Case (i), it follows immediately that

∑
i∈T zi >∑

i∈T ci = m, which contradicts z ∈ C. In Case (ii), we have ud(z, i) < ud(c, i) by monotonicity
of ud(·, i), which implies minj∈T u

d(z, j) ≤ ud(z, i) < ud(c, i) = minj∈T u
d(c, j), where the last

equality follows by Corollary 14. This contradicts the assumption that z is a maximin strategy.

A.1 Proof of Theorem 3

Proof. Let c be a maximin strategy of the defender and u be the corresponding maximin utility, i.e.,
c ∈ arg maxc∈C mini∈T u

d(c, i) and u = mini∈T u
d(c, i). Consider the following solution (β, z, t):

• zi = max
{

0,
u−pd

i

rd
i−pd

i

}
for all i ∈ T ; (8)

• t ∈ BRθ(z) is an arbitrary best response of a type-θ attacker; (9)

• β = (r,p), where ri =

{
−pd

i , if i 6= t

−min{pd
t , u}, if i = t

, and pi = −rd
i for all i ∈ T . (10)

We show that (i) z is a maximin defender strategy, (ii) (β, z, t) is a feasible solution of Program (3)
and (iii) it is optimal.

We first focus on the case when pd
t ≤ u, and will show how the proof can be modified to show

the same results when pd
t > u. When pd

t ≤ u we have (ri, pi) = (−pd
i ,−rd

i ) for all i ∈ T by the
specification in (10), so for any c ∈ C,

ua
β(c, i) = −ud(c, i). (11)
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Now we show (i)–(iii).

(i) Maximin. For all i ∈ T , since zi = max
{

0,
u−pd

i

rd
i−pd

i

}
≥ u−pd

i

rd
i−pd

i
, we have

ud(z, i) ≥ ud
(
u− pd

i

rd
i − pd

i

, i

)
=

u− pd
i

rd
i − pd

i

· rd
i +

(
1− u− pd

i

rd
i − pd

i

)
· pd
i = u. (12)

It follows that
min
i∈T

ud(z, i) ≥ u ≥ min
i∈T

ud(c, i)

for all c ∈ C, so z is indeed a maximin strategy. We still need to make sure that z is feasible, i.e.,
z ∈ C. Observe that when zi > 0, (12) becomes an equality, so we have ud(z, i) = u ≤ ud(c, i)
which implies zi ≤ ci by monotonicity. Thus,

∑
i∈T zi ≤

∑
i∈T ci ≤ m. It remains to show that

0 ≤ zi ≤ 1 for all i. Trivially, by (8), zi ≥ 0 for all i. To see that zi ≤ 1, it suffices to show that
u−pd

i

rd
i−pd

i
≤ 1. Indeed, this holds as u = minj∈T u

d(c, j) ≤ ud(c, i) ≤ rd
i .

(ii) Feasibility We show that (β, z, t) satisfies all the constraints of Program (3). Clearly, (3b) is
satisfied because ri ≥ −pd

i > −rd
i = pi for all i ∈ T by (10). To see that it also satisfies (3a), first

observe that when pd
t ≤ u we have

ua
β(z, t) = ua

β

(
u− pd

t

rd
t − pd

t

, t

)
=

(
1− u− pd

t

rd
t − pd

t

)
· (−pd

t) +
u− pd

t

rd
t − pd

t

· (−rd
t ) = −u. (13)

Combining this with (11) and (12) gives, for all i,

ua
β(z, t) = −u ≥ −ud(z, i) = ua

β(z, i). (14)

Thus, t ∈ BRβ(z).

Now that t ∈ BRβ(z) and in (i) we have shown that z ∈ C, if we suppose (3a) is not satisfied, we
would have ud(z′, t′) > ud(z, t) for some z′ ∈ C and t′ ∈ BRβ(z′). Applying (11), we find the
following for all i:

ud(z′, i) = −ua
β(z′, i) ≥ −ua

β(z′, t′) = ud(z′, t′),

where the inequality is due to the fact that t′ ∈ BRβ(z′). Thus,

ud(z′, i) ≥ ud(z′, t′) > ud(z, t) ≥ min
i∈T

ud(z, i) = u. (15)

It follows that
min
i∈T

ud(z′, i) > u = max
c∈C

min
i∈T

ud(c, i),

which is a contradiction given that z′ ∈ C.

(iii) Optimality. Suppose that (β, z, t) is not optimal. Thus, there exists a feasible solution
(β′, z′, t′) such that ua

θ(z
′, t′) > ua

θ(z, t). By 9, t ∈ BRθ(z), so we have ua
θ(z, t

′) ≤ ua
θ(z, t) <

ua
θ(z
′, t′), which implies z′t′ < zt′ by monotonicity. Since it is defined zt′ = max

{
0,

u−pd
t′

rd
t′−p

d
t′

}
, now

that zt′ > z′t′ ≥ 0, it must be that z′t′ < zt′ =
u−pd

t′
rd
t′−p

d
t′

. Substituting this into the defender’s utility
function gives

ud(z′, t′) < ud
(
u− pd

t′

rd
t′ − pd

t′
, t′
)

=
u− pd

t′

rd
t′ − pd

t′
· rd
i +

(
1− u− pd

t′

rd
t′ − pd

t′

)
· pd
i

= u = max
c∈C

min
i∈T

ud(c, i) ≤ max
c∈C,i∈BRβ(c)

ud(c, i).

Thus, (β′, z′, t′) violates (3a), contradicting the assumption that (β′, z′, t′) is a feasible solution.

It remains to deal with the case when pd
t > u. The only difference in this case is that now rt =

−u > −pd
t by (10), so (11) only holds for i 6= t. In our proof above, the arguments that rely on the

assumption that pd
t ≤ u and (11) are the equations in (13), (14), and (15), where the latter two now

only hold for all i 6= t. However, observe the following:
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• When pd
t > u, we have u−pd

t

rd
t−pd

t
< 0 and thus zt = 0 by (8). It follows that ua

β(z, t) =

ua
β(0, t) = rt = −u, so (13) holds as well.

• (14) holds trivially for i = t.

• When pd
t > u, we have ud(z′, t) ≥ pd

t > u, thus establishing (15) for i = t as well.

Therefore, (i)–(iii) hold when pd
t > u and the proof is completed.

A.2 Proof of Theorem 4

Proof. In Theorem 3, we have shown the existence of an optimal solution containing a maximin
strategy of the defender. By Lemma 15, c is the only maximin strategy if it is fully mixed. Thus,
there exits an optimal solution that contains c. We fix c in Program (3), and show that in the resultant
program, an optimal solution (β′, t′) is such that β′ = (−pd,−rd) and t′ ∈ arg maxi∈T u

a
θ(c, i).

In fact, now that c is fixed, the optimality of (β′, t′) follows directly from the specification t′ ∈
arg maxi∈T u

a
θ(c, i). It remains to show that (β′, t′) is feasible. Since the game with attacker type β′

is a zero-sum game, by Lemma 13, (c, t′) forms an SSE on type β′. Thus, Constraint (3a) is satisfied,
and (β′, t′) is feasible. Therefore, (β′, c, t′) is an optimal solution to Program (3).

Now we show the first part of the theorem, i.e., the uniqueness of the induced defender strategy.
Suppose for a contradiction that there exists an SSE (ĉ, î) on attacker type β, such that ĉ 6= c.
Consider the two possibilities under this condition.

Case (i). ĉi ≤ ci for all i ∈ T , and this is strictly satisfied for some i. It follows that
∑
i∈T ĉi <∑

i∈T ci ≤ m, which contradicts Lemma 12 (i).

Case (ii). ĉj > cj for some j ∈ T . If it is also the case that ĉi < 1 for all i ∈ T , by Lemma 12 (i), we
have j ∈ BRβ(ĉ); If otherwise ĉi = 1 for some i ∈ T , by Lemma 12 (ii), there exists j′ ∈ BRβ(ĉ)
such that ĉj′ = 1 > cj′ . In both cases, we find some j ∈ BRβ(ĉ) such that ĉj > cj ; hence,
ud(ĉ, j) > ud(c, j) by monotonicity of ud(·, j). We have

ud(ĉ, î) = max
i∈BRβ(ĉ)

ud(ĉ, i) ≥ ud(ĉ, j) > ud(c, j) = ud(c, î),

where the last equality follows by Corollary 14. Thus, by the monotonicity, we have ĉî > cî and, in
turn, ua

θ(ĉ, î) < ua
θ(c, î). This gives

ua
θ(ĉ, î) < ua

θ(c, î) ≤ max
i∈T

ua
θ(c, i) = ua

θ(c, t
′),

so (β′, c, t′) is a better solution than (β, z, t) and this contradicts the assumption in the statement of
the theorem.

Both cases lead to contradictions. This completes the proof.

B The EoP Measure

B.1 Proof of Proposition 5

Proof. Let (z, j) = π(β), which is the outcome a type-β attacker would get if he reports truthfully.
By definition, j ∈ BRβ(z). By Lemma 13, c as the defender’s maximin strategy is exactly her SSE
strategy in a zero-sum game and (c, t) forms an SSE for any t ∈ BRβ(c). Thus, ud(z, j) ≤ ud(c, t)
and ua

β(c, t) = maxi∈T u
a
β(c, i). Since β makes the game zero-sum, ua

β(c, i) = ud(c, i) for any c
and i. It follows that

ua
β(z, j) = −ud(z, j) ≥ −ud(c, t) = ua

β(c, t) = max
i∈T

ua
β(c, i) = −min

i∈T
ud(c, i) = −u.

Now suppose towards a contradiction that ud(π(γ)) > u. Then we have

ua
β(π(γ)) = −ud(π(γ)) < −u ≤ ua

β(z, j) = ua
β(π(β)),

so the attacker would be strictly better-off reporting β. This contradicts the assumption that γ is an
optimal reporting strategy of a type-β attacker.
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B.2 Proof of Proposition 7

Proof. Clearly, EoP(π) ≥ 0 as the payoffs are shifted to be non-negative. We show that EoP(π) ≤ 1.

Let û(θ) = maxc∈C,i∈BRθ(c) u
d(c, i) denote the defender’s utility in an SSE on attacker type θ, and

let β be an attacker type that provides the best defender utility in an SSE, i.e., β ∈ arg maxθ∈Θ û(θ).
Consider the best reporting strategy γ of a type-β attacker in response to π. For the out-
come (z, t) = π(γ) to be feasible, we must have t ∈ BRγ(z); thus, ud(π(γ)) = ud(z, t) ≤
maxc∈C,i∈BRγ(c) u

d(c, i) = û(γ) ≤ û(β). It follows that

EoP(π) = min
θ∈Θ

EoPθ(π) ≤ EoPβ(π) =
ud(π(γ))

û(β)
≤ 1.

C Correctness of Algorithm 1

Lemma 16. Let (ĉ, î) be an arbitrary SSE on an attacker type θ ∈ Θ. For any policy π, truthful
report guarantees a type-θ attacker his SSE utility, i.e., ua

θ(π(θ)) ≥ ua
θ(ĉ, î).

Proof. Suppose towards a contradiction that ua
θ(π(θ)) < ua

θ(ĉ, î). Let π(θ) = (z, t). For π to be
feasible, t must be a best response of a type-θ attacker to z. Thus, ua

θ(z, t) ≥ ua
θ(z, i) for all i ∈ T ;

in particular, ua
θ(z, t) ≥ ua

θ(z, î). We have

ua
θ(ĉ, î) > ua

θ(π(θ)) = ua
θ(z, t) ≥ ua

θ(z, î).

Since ua
θ(c, î) changes continuously with respect to cî, the above inequality implies the existence of

a number φ ∈ (ĉî, zî], such that ua
θ(φ, î) = ua

θ(z, t).

Consider a defender strategy z′ with z′
î

= φ and z′i = zi for all i ∈ T \ {̂i}. We have 0 ≤ zi ≤ 1 and∑
i∈T z

′
i ≤

∑
i∈T zi ≤ m, so z′ ∈ C. In addition, ua

θ(z, i) = ua
θ(z
′, i) for all i ∈ T \ {̂i}. Thus,

ua
θ(z
′, î) = ua

θ(φ, î) = ua
θ(z, t) ≥ ua

θ(z, i) = ua
θ(z
′, i),

which means î is a best response of a type-θ attacker to z′, i.e, î ∈ BRθ(z
′). This gives rise to the

following contradiction:

max
c∈C,i∈BRθ(c)

ud(c, i) ≥ ud(z′, î) = ud(φ, î) > ud(ĉ, î) = max
c∈C,i∈BRθ(c)

ud(c, i),

where ud(φ, î) > ud(ĉ, î) since φ ∈ (ĉî, zî].

C.1 Proof of Lemma 9

Proof. We will write π = (cθ, iθ)θ∈Θ. Let β ∈ Θ be an optimal report of a type-θ` attacker in
response to π, i.e., ua

θ`
(π(β)) ≥ ua

θ`
(π(β′)) for all β′ ∈ Θ. We first show a couple of useful

observations.

Claim 1. ua
θ`

(h, iβ) ≥ ua
θ`

(π(β)), i.e., a type-θ` attacker (weakly) prefers outcome (h, iβ) to π(β).

Proof of Claim 1. suppose towards a contradiction that ua
θ`

(h, iβ) < ua
θ`

(π(β)) =

ua
θ`

(cβ , iβ). By monotonicity of ua
θ`

(·, iβ), we have cβ
iβ

< hiβ =

max

{
0,

ξ·û(θ`)−pd
iβ

rd
iβ
−pd

iβ

, maxθ∈{θ1,...,θ`−1}
ua
θ(π(θ))−rθ

iβ

pθ
iβ
−rθ

iβ

}
. Since cβ

iβ
≥ 0, we have hiβ > 0,

so either (i) cβ
iβ
< hiβ =

ξ·û(θ`)−pd
iβ

rd
iβ
−pd

iβ

, or (ii) cβ
iβ
< hiβ =

ua
θ(π(θ))−rθ

iβ

pθ
iβ
−rθ

iβ

for some θ ∈ {θ1, . . . , θ`−1}.
We show that both cases lead to contradictions.

Case (i). cβ
iβ
<

ξ·û(θ`)−pd
iβ

rd
iβ
−pd

iβ

. It follows by monotonicity of ud(·, iβ), that ud(π(β)) = ud(cβ , iβ) <

ud
(
ξ·û(θ`)−pd

iβ

rd
iβ
−pd

iβ

, iβ
)

= ξ · û(θ`); thus, EoP(π) ≤ EoPθ`(π) = ud(π(β))
û(θ`)

< ξ, which contradicts the

assumption that π is a satisfying policy.
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Case (ii). cβ
iβ
<

ua
θ(π(θ))−rθ

iβ

pθ
iβ
−rθ

iβ

for some θ ∈ {θ1, . . . , θ`−1}. It follows by monotonicity (decreasing)

of ua(·, iβ), that ua
θ(π(β)) = ua

θ(c
β , iβ) > ua

θ

(
ua
θ(π(θ))−rθ

iβ

pθ
iβ
−rθ

iβ

, iβ
)

= ua
θ(π(θ)), so a type-θ attacker

would be strictly better-off reporting type β in response to π, contradicting the assumption that π is
(`− 1)-compatible.

Claim 2. ht ≤ ĉθ`t ; and hence, zt = min{ĉθ`t , ht} = ht.

Proof of Claim 2. By definition, t ∈ BRθ`(h), so

ua
θ`

(h, t) = max
i∈T

ua
θ`

(h, i) ≥ ua
θ`

(h, iβ). (16)

Since β is the optimal report of a type-θ` attacker, we have ua
θ`

(π(β)) ≥ ua
θ`

(π(θ`)); further, by
Lemma 16, ua

θ`
(π(θ`)) ≥ ua

θ`
(ĉθ` , îθ`); thus,

ua
θ`

(π(β)) ≥ ua
θ`

(π(θ`)) ≥ ua
θ`

(ĉθ` , îθ`). (17)

Combining (16), Claim 1, and (17) gives:

ua
θ`

(h, t) ≥ ua
θ`

(h, iβ) ≥ ua
θ`

(π(β)) ≥ ua
θ`

(ĉθ` , îθ`). (18)

It follows that ua
θ`

(h, t) ≥ ua
θ`

(ĉθ` , î) = maxi∈T u
a
θ`

(ĉθ` , i) ≥ ua
θ`

(ĉθ` , t). By monotonicity of
ua
θ`

(·, t), we have ht ≤ ĉθ`t .

Next, we show the following parts to complete this proof: (i) (z, t) is indeed feasible as an outcome
prescribed for report θ`, i.e., z ∈ C and t ∈ BRθ`(z); (ii) π̃ is `-compatible; (iii) EoP(π̃) ≥ ξ.

Part (i). Since (ĉθ` , iθ`) is an SSE, by definition, ĉθ` ∈ C and
∑
i∈T ĉ

θ`
i ≤ m. Since zi =

min{ĉθ`i , hi} ≤ ĉ
θ`
i for all i ∈ T , we have 0 ≤ zi ≤ 1 and

∑
i∈T zi ≤

∑
i∈T ĉ

θ`
i ≤ m. Thus, z ∈ C.

To see that t ∈ BRθ`(z), suppose towards a contradiction that it does not hold. Thus, ua
θ`

(z, i∗) >
ua
θ`

(z, t) for some i∗ ∈ T . By Claim 2, zt = ht, so we have

ua
θ`

(z, i∗) > ua
θ`

(z, t) = ua
θ`

(h, t) = max
i∈T

ua
θ`

(h, i) ≥ ua
θ`

(h, i∗),

which implies that zi∗ < hi∗ by monotonicity of ua
θ`

(·, i∗). Hence, zi∗ = min{ĉθ`i∗ , hi∗} = ĉθ`i∗ , and

ua
θ`

(ĉθ` , î) = max
i∈T

ua
θ`

(ĉθ` , i) ≥ ua
θ`

(ĉθ` , i∗) = ua
θ`

(z, i∗) > ua
θ`

(z, t).

This leads to the following contradiction:

ua
θ`

(z, t) = ua
θ`

(h, t) ≥ ua
θ`

(ĉθ` , î) > ua
θ`

(z, t),

where the first two (in)equalities follow by Claim 2 and 18, respectively.

Part (ii). We show that it is optimal for every type-θ attacker, θ ∈ {θ1, . . . , θ`}, to report truthfully
in response to π̃.

First we consider the case for a type-θ` attacker and show that ua
θ`

(π̃(θ`)) ≥ ua
θ`

(π̃(β′)) for all
β′ ∈ Θ \ {θ`}. Observe the following:

ua
θ`

(z, t) = ua
θ`

(h, t) ≥ ua
θ`

(h, iβ) ≥ ua
θ`

(π(β)) ≥ ua
θ`

(π(β′)),

where the first three (in)equalities follow by Claim 2, (16), and Claim 1, respectively; and the
last is due to the assumption that β is the optimal reporting strategy of a type-θ` attacker. By
definition, π̃(θ`) = (z, t) and π̃(β′) = π(β′) for all β′ ∈ Θ \ {θ`}, so ua

θ`
(π̃(θ`)) = ua

θ`
(z, t) and

ua
θ`

(π̃(β′)) = ua
θ`

(π(β′)). It follows that

ua
θ`

(π̃(θ`)) = ua
θ`

(z, t) ≥ ua
θ`

(π(β′)) = ua
θ`

(π̃(β′)),
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which is the desired result.

Next, consider the case for each type θ ∈ {θ1, . . . , θ`−1}. By Claim 2, we have zt = ht ≥
maxθ∈{θ1,...,θ`−1}

ua
θ(π(θ))−rθt
pθt−rθt

. Thus, we have

ua
θ(π̃(θ)) = ua

θ(π(θ)) = ua
θ

(
ua
θ(π(θ))− rθt
pθt − rθt

, t

)
≥ ua

θ(z, t) = ua
θ(π̃(θ`)).

Since π is (`− 1)-compatible, ua
θ(π(θ)) ≥ ua

θ(π(β′)) for all β′ ∈ Θ, so for those β′ 6= θ` we have

ua
θ(π̃(θ)) = ua

θ(π(θ)) ≥ ua
θ(π(β′)) = ua

θ(π̃(β′)).

Therefore, ua
θ(π̃(θ)) ≥ ua

θ(π̃(β′)) holds for all β′ ∈ Θ; it is optimal for a type-θ attacker to report
truthfully.

Part (iii). We show that EoPθ(π̃) ≥ ξ for every type θ ∈ Θ, which will imply EoP(π̃) =
minθ∈Θ EoPθ ≥ ξ and complete the proof.

Since we have shown that π̃ is `-compatible, truthful report is incentivized for every type in
{θ1, . . . , θ`}. Thus, for every θ ∈ {θ1, . . . , θ`}, we have EoPθ(π̃) ≥ ud(π̃(θ))

û(θ) . (The reason we
have an inequality here is due to the optimistic tie-breaking assumption in Definition 6.) For type θ`,
since zt = ht ≥ ξ·û(θ`)−pd

t

rd
t−pd

t
by Claim 2, we have

EoPθ`(π̃) ≥ ud(π̃(θ`))

û(θ`)
=
ud(π̃(z, t))

û(θ`)
≥
ud
(
ξ·û(θ`)−pd

t

rd
t−pd

t
, t
)

û(θ`)
=
ξ · û(θ`)

û(θ`)
= ξ.

For types θ ∈ {θ1, . . . , θ`−1}, we have

EoPθ(π̃) ≥ ud(π̃(θ))

û(θ)
=
ud(π(θ))

û(θ)
= EoPθ(π) ≥ EoP(π) ≥ ξ.

For the other types θ′ ∈ {θ`+1, . . . , θλ}, if their optimal report remains the same as under π, for the
same argument above, EoPθ′(π̃) = EoPθ′(π) ≥ EoP(π) ≥ ξ. Otherwise, since π̃ and π differs only
in the outcomes prescribed for type θ`, if the attacker’s optimal reporting strategy changes under π̃, it
will only change to θ`, in which case we have

EoPθ′(π̃) =
ud(π̃(θ`))

û(θ′)
≥ ud(π̃(θ`))

û(θ`)
= EoPθ`(π̃) ≥ ξ,

where the first inequality holds because Algorithm 1 orders attacker types in a way such that
û(θ′) ≤ û(θ`) for all θ′ ∈ {θ`+1, . . . , θλ}.

D Complexity of Computing Optimal Policy in General Stackelberg Games

We show the complexity of computing the optimal leader policy in general Stackelberg games where
payoff parameters of each player (or player type) are given by a matrix, with no restriction on the
values. We let uL ∈ Rm×n denote the leader’s payoff matrix, and uF

θ ∈ Rm×n denote a type-θ
follower’s payoff matrix for each follower type θ ∈ Θ, where m and n denote the numbers of the
leader’s and the follower’s actions (i.e., pure strategies), respectively. The entries ud(i, j) and ua

θ(i, j)
are, respectively, the utilities of the leader and a type-θ follower, when the leader plays her i-th action
and the follower plays his j-th action. In an SSE, the leader plays a mixed strategy x ∈ ∆m and the
follower best responds to x with a pure strategy j, yielding leader utility uL(x, j) =

∑m
i=1 xi ·uL(i, j)

and follower utility uF(x, j) =
∑m
i=1 xi · uF(i, j). All other definitions and notation are the same as

in Section 2. In contrast to the tractability of computing the optimal defender policy in an SSG, the
problem is hard in general Stackelberg games.
Theorem 17. It is NP-complete to decide whether there exists a leader policy π with EoP(π) ≥ ξ.

Proof. The NP membership of the problem is straightforward as for any given policy π, we can
efficiently verify whether EoP(π) ≥ ξ. For the NP-hardness, we show a reduction from the VERTEX
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1F 2F 3F

∀i 1 0.5

leader

1F 2F 3F

∀i ∈ {av1 , av2} 0.9 0.9 1

a0 0.4 0.4

otherwise 0.9 1

flw. type θe
(e = {v1, v2} ∈ E)

1F 2F 3F

∀i 1

flw. type θ`
(` = 1, . . . , k)

1F 2F 3F

a0 1

∀i 6= a0 1 1

flw. type θ0

Figure 2: Payoff parameters (blank entries are all 0).

COVER problem, which is well-known to be NP-complete. A vertex cover V ′ of an undirected graph
G = (V,E) is a subset of V such that v1 ∈ V ′ or v2 ∈ V ′ for every edge {v1, v2} ∈ E. An instance
of the VERTEX COVER problem is given by a graph G = (V,E) and an integer k ≤ |V |. It is a
yes-instance if there exists a vertex cover of G of size at most k.

For a VERTEX COVER instance, we construct the following game and show that the VERTEX COVER
instance is a yes-instance if and only if there exists a leader policy π, EoP(π) ≥ 1. In the game, the
leader has |V | + 1 actions {av : v ∈ V } ∪ {a0}. The follower has three actions {1F, 2F, 3F}. The
set of possible follower types is Θ = {θ1, . . . , θk} ∪ {θe : e ∈ E} ∪ {θ0}. The payoffs are given in
Figure 2.

We first make several observations about the SSEs of this game (in the truthful situation). Below
we let ûL(θ) denote the leader’s utility in an SSE when she plays against a type-θ follower, i.e.,
ûL(θ) = maxx∈∆m,j∈BR(x) u

L(x, j).

• The leader’s utility only depends on the follower’s action, with 3F being the most detrimental
action the leader would anyhow avoid the follower to choose, followed by 2F, and 1F is the
most preferred follower action.

• The only SSE strategy of the leader when she plays against a type-θe follower, e ∈ E,
is the pure strategy a0. When a0 is played, the follower finds his best responses to be
BRθs(a0) = {3F, 1F} and breaks the tie in favor of the leader, playing 1F; the leader obtains
uL(a0, 1

F) = 1, which is obviously the highest possible utility she can obtain; hence,
(a0, 1

F) forms an SSE and ûL(θe) = 1. To see that this is the only SSE, observe that if the
leader plays any other pure strategy with some probability, the follower would strictly prefer
3F to 1F and would not respond by playing 1F, in which case the leader cannot get utility 1.

• Every leader strategy is an SSE strategy when the follower she plays against has type θ`,
` = 1, . . . , k, because the follower will always respond by playing 1F irrespective of the
strategy the leader plays, which always gives the leader utility 1. We have ûL(θ`) = 1.

• Every mixed leader strategy over pure strategies i 6= a0 is an SSE strategy of the leader
when the follower she plays against has type θ0. When such a strategy is played, the follower
finds his best response set to be {3F, 2F} and breaks the tie in favor of the leader, playing 2F;
this is the best the leader can hope for because a type-θ0 follower will never play 1F as it is
strictly dominated by 3F. We have ûL(θ0) = 0.5.
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Suppose that there exists a vertex cover V ′ = {v′1, . . . , v′k} ⊆ V of size k. The following leader
policy π achieves EoP 1.

π(θ) =


(a0, 1F), for each θ ∈ {θe : e ∈ E};
(av′` , 1F), for each θ = θ` ∈ {θ1, . . . , θk};
(av′1 , 2F), for θ = θ0.

Clearly, all the outcomes prescribed are feasible, so π is a feasible policy. Further, it can be verified
that when the leader commits to π, the optimal reporting strategy of the follower is the following.

• For every type-θe follower, e ∈ E, it is optimal to report a type θ` with v′` ∈ V ′ bing an end
point of e. Such a θ` always exists given that V ′ is a vertex cover. The leader obtains utility
1 when θ` is reported, so EoPθe(π) ≥ 1

û(θe)
= 1.

• For every type-θ` follower, ` ∈ {1, . . . , k}, it is optimal to report truthfully. The leader
obtains utility 1 when θ − ` is reported, so EoPθ`(π) ≥ 1

û(θ`)
= 1.

• For a type-θ0 follower, it is optimal to report truthfully. The leader obtains utility 0.5 when
θ0 is reported, so EoPθ0(π) ≥ 0.5

û(θ0) = 1.

Therefore, EoP(π) = minθ∈Θ EoPθ(π) = 1. (We have EoP(π) ≤ 1 by Proposition 7; in fact,
EoPθ(π) is also upper-bounded by 1 for types θe and θ` above.)

Conversely, suppose that there exists a policy π with EoP(π) = 1. We show that there exists a vertex
cover of G of size at most k. For EoP(π) = 1, we need EoPθ(π) ≥ 1 for all θ ∈ Θ. Thus, the actual
utility the leader obtains must be: at least 1 on each θe and θ` (` 6= 0), and at least 0.5 on θ0.

Now consider the reporting strategy of a type-θ0 follower in response to π; let β ∈ Θ be the optimal
reporting strategy of a type-θ0 follower, and let π(β) = (xβ , jβ). For the leader to obtain actual
utility at least 0.5 on type θ0, we need jβ ∈ {1F, 2F}. Observe that a type-θ0 follower gets utility 0 if
jβ = 1F, in which case he would be better-off reporting truthfully to avoid being induced to “best”
respond by playing 1F. Thus, the only possibility is jβ = 2F. Now that jβ = 2F, it must also be
that xβa0 = 0 since otherwise the follower obtains less than 1 by reporting β and would, again, be
better-off reporting truthfully (in which case he is guaranteed utility 1 by the best response 3F).

Given this, a type-θe follower, e = {v1, v2} ∈ E, is able to obtain utility 0.9 by reporting β. Let
γ be the type a type-θe follower is incentivized to report, and π(γ) = (xγ , jγ); we therefore have
uF
θe

(xγ , jγ) ≥ 0.9. For the leader to obtain utility at least 1 on type θe, we need jγ = 1F, in which
case uF

θe
(xγ , jγ) ≥ 0.9 only if xγav1 + xγav2 = 1 (i.e., only the first row of the payoff matrix of

θe is chosen), so we have xγa0 = 0. Therefore, γ /∈ {θe′ : e′ ∈ E}, because this would lead to
BRγ(xγ) = {3F} 63 1F given that xγa0 = 0. For the same reason, we also have γ 6= θ0, so the
remaining possibility is that γ = θ` for some ` ∈ {1, . . . , k}.
Let V γ = {v ∈ V : xγav ≥ 0}, and let v′γ be the first vertex in V γ in lexicographical order. Since
xγav1 + xγav2 = 1, we have v′γ ∈ e, and moreover, {v′θ` : ` = 1, . . . , k} ∩ e 6= ∅ given that γ = θ`
for some `. This holds for all e ∈ E. Thus, V ′ = {v′θ` : ` = 1, . . . , k} forms a vertex cover of G,
and |V ′| ≤ k.

E Additional Experiment Results

EoP Comparison Figures 3 and 4 show additional results of the EoP comparison. In both figures,
(a)–(c) show the variance of EoP with respect to ρ, with type sets of different scales (λ = 10, 100,
and 1000, respectively); (d)–(f) show the variance of the EoP with respect to the scale of the game,
under different target-resource ratios ( nm = 10, 5, and 2, respectively). In Figure 3, attacker types are
generated with the covariance model, while in Figure 4, the zero attacker type is always included in
Θ in addition to types generated by the covariance model.
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Figure 3: Comparison of the EoP. Other parameters are set to n = 50, m = 10 in (a)–(c); and ρ = 0.5, λ = 100
in (d)–(f).
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Figure 4: Comparison of the EoP when the zero-sum attacker type is always included in Θ in addition to types
generated by the covariance model. Other parameters are specified in the same way as in Figure 3.
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Algorithm Runtime Figure 5 shows results of the runtime test of our algorithms. All results are
obtained on a platform with a 2.60 GHz CPU and a 8.0 GB memory. The time for computing SSEs is
excluded in the results as this is handled by an existing algorithm, the performance of which is not
our focus. Both our algorithms for computing the optimal policy and the QR policy exhibit good
scalability, capable of solving problems of 5000 attacker types and 500 targets in a reasonable amount
of time. The computation of QR policy is extremely efficient thanks to its simplicity.

(a) Optimal policy

n : 100 200 300 400 500

λ : 1000 3.54 7.45 10.65 14.26 17.96

2000 14.84 30.81 46.84 75.99 78.75

3000 32.42 63.50 96.92 126.96 161.37

4000 57.47 115.05 171.00 228.20 288.19

5000 88.84 184.77 273.51 365.91 480.54

(b) QR policy

n : 100 200 300 400 500

λ : 1000 0.00 0.02 0.02 0.03 0.03

2000 0.01 0.03 0.04 0.06 0.10

3000 0.02 0.05 0.07 0.10 0.12

4000 0.03 0.06 0.09 0.12 0.16

5000 0.04 0.08 0.10 0.16 0.20

Figure 5: Algorithm runtime (seconds).
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