A Proofs for Section 3

A .1 Technical Lemmas

i.4.d

Lemma 1 (Theorem 1 of [CPMSTI3]). Suppose {(X;, X))}, "~ p(-,-), assume that || f Qg||co <

Lforall f © g € H x Hwith || f @ gllay,5 < 1. Then with probability at least 1 — 6

E KX, X)K(Y,Y 21og(1/8
||Hpﬂp||7—txﬂ§2\/ (X.Y) | (n )KL )]Jr OgT(L/)

Proof. See [LPMST15]| for detailed proof.

Lemma 2. Under Assumption 1, the projection matrix

P / 7 (2)p(y) B () B(y)T derdy

has rank at most r.
Proof. We define N x 1 vectors i and ¥y, as:

k= /Tr(x)uk(x)d)(x)dac,
= [ )@y,

Then under Assumption 1, we can write:

1

Lemma 3. Suppose that K (z,u) = ®(z)T®(u), K(y,v) = ®(v)T D(y). With P given by

P / p(,9)®(2) ()T ddy.

We can represent KME of joint distrubution i, (u,v) as:

o) = / K (2, u) K (y, v)p(u, v)dudv = B(z)TPB(y).

Proof. By definition of KME for p(u, v) into 7 x H, we have:

pp(x,y) = /K(m,u)f((y,v)p(u, v)dudv.

(D
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3)

“4)
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We then write kernels in terms of features and get K (z, u) = ®(z)T ®(u), K (y,v) = ®(v)Td(y).

Plugging this into the definition of KME we get:

o) = [ K K, v)ptu,)dudo
= [ B 2w ) 2w, v)dudo

— ()T ( / p(u,v)fl)(u)ti)(v)Tdudv) B(y)
= o(z)"PO(y).

(6)
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Lemma 4. Consider the KME of p(-|-) into H x H where H has kernel K(z,y) and
H has kernel K(z,y), K(z,y) = &@)T®(y) and K(z,y) = &(z)T®(y). Let
Vi = Exy)p@X)2(X)TKY,Y)] and Vo = E(xy)up K(X, X)O(Y)(Y)T], X =
max{Amax(V1); Amax(V2)}. Let 7(€) := min{t | TV(P!(-|z),7(-)) < €,Vx € Q} denote the
mixing time. Let € > 0, a(€) = T(5z=— A =5—) + 1, then:

max max

R e
P(|[P —P| > €) < 2a(e)N exp ( T ea{f)K /6) 10)

Forany 0 < 6 < 1, we have

. tmia M08 (2lmiz N/0) | tmizKmax 108(2tmia N
P — P sc(\/ mizA Og(n miglV/0) | tmiaKome ‘;i( miz /5)> (11)
with probability at least 1 — 0, where C' is an universal constant.
Proof. Letng = |n/a]. Define
P, =d(X, )®(X)T fort=2,3,...,n
and the “thin” sequence:
PY =Py — E(Pra+i|P k—1)ati)- (12)
We first bound ||Pjq|:
[Prasil = sup v'Prayu (13)
vile,<1
lalle, <1
N ~
= S > vi®i(Xear1-1)®) (Xkar)u; (14)
Vilea Sty =1
<19
< Kmaa- 15)
In the last inequality we use the fact that for any vector v with ||v||,, < 1,
sz i(@) < Vlle|@@)lle < VE(z,2) < Kl (16)

where we used || ®(x)||7, = K(z,z) and the definition of K,,q,. Similar argument applies for
Z;V 1 ;P (x). Hence ||E(Pka+l\P(k Datt)]l < ]E(||Pm+lH|P(k Da+1) < Kinaz and we have:

PV < 2K s 17
Let p* (2|7 (4—1)a41) be the (o — 1)-step transition density starting from (;,_1)q4;. We use ““ - to

denote dot product of two vectors, then we have:
(]-Ska+l15£a+l)” = (Pka+l)[' ] (Pk‘a+l)[j,:] (18)

N
Z (Xhati—1)®; (Xkari—1)®5(Xkats)- 19)
Taking conditional expectation yields:
N

E(PMHPMHM . aH) / O;(x P (|7 (- 1)as1)P(yl7) Z y)dzdy  (20)
— [ ®@) @ oo I E p)dody. @)



We can write

E(}:)ka+lf’£a+l|x(kl)a+l> = (E<Pka+lf)£a+l|x(kl)a+l> —V1> + (V1) (22)

ij

ij

= [@);0) (pa<m<k_1)a+l> - w<x>)p<y|z>f%<y,y>dxdy

(23)
+ [ 0@ @) n()plole) K (v, ) dody. (24)
Therefore:

|E <f’ka+zf’£a+zlx(k_1)a+z) [ (25)
= <IE <Pka+zP£a+llx<k_1>a+l> - V1> + Vi (26)
< (E (Pka+lf)£a+l|x(kl)a+l> — Vil + [V (27)

= IVISZPSL/ vI0(2)] [u"®(2) | p™(@|2(k-1)ars — T(2))p(Yl2) K (y, y)dydz + | V1]. (28)

[lafle, <1

T

By (16) we have [|[vT ®||o, < K,ln/azx and similarly [|[u? ®||,, < K%fm, using definition of K, we
y y

have K (y,y) < Kaz, we bound the term 77 by:

Ty = sup /[VT@(SU)] [u"®()] (p* (@@ (k-1)at1) = 7(2))p(Yle) K (y, y)dedy  (29)

HVHZQ <1,

[lulley <1
<K2,, / P @l eryast) — ()| da (30)
<\, (31)

where in the last inequality we use the definition of a(¢). By definition of A we have ||[V|| < A,
therefore by (28) we get:

|E(Pka+lpga+l$(k—l)a+l) | <2 (32)
Similarly, we have:
IE(P£a+lpka+lx(k1)a+l) | < 2A. (33)
Combining the fact that:
0= E<pg><p,g>>T|pgzl> (34)

=E (Pka-l-lf)ga.l,_l |$(k1)a+z> -E <Pka+l |$(k1)a+z> E (Pka+l |ﬂ?(k1)a+z> (35)

IA

E (pka+l?£a+l|x(kl)a+l> ; (36)
we have

(B @LITBL, )1 < 18(Pras Pyl yars )| <20 @)



Similar argument yields:
I5(@O)TPORL, )i < 20 68)
Therefore for 1 < k <ng, 1 <l < a:
{15 (P0 @) B, ) (LT RRL, )i f < 20 3

The norm of predictable quadratic variation process of the matrix martingale {Pg)}zozl can be
bounded by:

||ZE< DT pt >||<Z||E< DT ph >||<2n0>\ (40)
||ZE< PPV Pl )||<Z||E< PPV Pl >||<2n0)\ (41)

By Matrix Freedman Inequality [[Trol1]], we have:

1 70 v(l) (6%0)2/8
P(||— E P >¢€/2) < 2N - - . 42
(Hno Pt il = e/2) < exp( 2ngA + €Kmaxno/6 (42)

Next we note that:

<]E(Pka+l|$(k—1)a+z) - P) = /@i(x)ij(y)p(ny) (0™ (@@ (f—1)at1) — m(2))dady, (43)

.3

HE(Pka-Hu(kfl)aJrl) - P||

= Ssup VT (E(pka+l|$(k—1)a+1) — P)u (44)
lIvlley <1
lafle, <1
= H ‘sl,up<1 / [vi®(z)] [uTi)(y)}p(y\:c) (pa(x|z(k_1)a+1) - w(x)) dzdy (45)
vile, <1,
[ulle, <1
Ko [ 7 (alomar) = 7o)l do (46)
<e/2, (47)

where we used definition of mixing-time v(€) to get last inequality. Then combining (@#2) and
we get:

(eng)?/8
P(|— S Pross — P|| > €) < 2N exp(— —— . 48
(g 32 Prass =Pl 2 9 < 2N expl—5 SR @
Using union bound we get:
A 1 o 1 no
P(|P—P|>e)=P([|=Y — Pray— Pl >e¢ (49)
« no
=1 0 k=1
1 no
<P — P Pl >
< (féllagxalln 231 katt — P 6) (50)
1 &
< - —P| >
_a<e>g%xaIP(nn0;Pm+l Pl 1) 51
2
< 2a(e)N exp(— ne’/8 ). (52)

25\&(6) + meaXa(e)/6



To get Eqn.(11)) from (10), we let u = log(§) and write € using u, then we need:

ne?/8
log (2 N) — - < u, 53
o8 (2(e)N) (&) (23 + K [6) — 43
using the fact that «(e) grows logarithmically (Lemma 5 in [ZW18]]) and solve the above inequality
for e, we get (TT). O

Lemma 5. Under Assumption 1, let V and V be the right singular matrix of P and P respectively,
then we have:

T tmi A 1 2t’m11N 0 tmv’,meax 1 2tm1 N 0
inf [vo-v| <% \/ oA log /9, 0B(miaN/O)) (54
0€0, o (P) n 3n

with probability at least 1 — 0, O is the set of all 7 X r orthogonal matrices.

Proof. By Lemma.l of [ZC18]], we know:

inf  [VO — V|| < v2sin©(V, V). (55)
0cO

TXT

Since V is also the right singular matrix of P, using Wedin’s lemma [Wed72l] we know:

: 3 P - P
OV, V)| < ———. 56
Jsin(V. V)l < 155 (56)
Combining above two inequalities and Eqn.(TT) finishes the proof. O

A .2 Proof of Theorem 1

Proof. We consider the KME u,,(-,-) € H x H where H x H is the product RKHS, K (z,y) =
®(x)T®(y) is the kernel of H and K (z,y) = ®(x)T ®(y) is the kernel of 1. Suppose that {®¢}M |

and {®9}M | are respectively the orthonormal bases of  and H. {®¢}M is an orthonormal basis
for H means

1, i=j
P> DY)y = ’ ’ 7
ORI 57
Then there exist matrices W € R¥*M and W € RN*M guch that
D)= WE(),  B() = WE(). (58)

Note that {®$}}, is an orthonormal basis of H implies that K (z,y) = [®°(z)]T[®°(y)], this is
because K (x,-) € H, so we can write it as:

M
K(z,-) =Y az:95(), (59)
i=1
where a ; is the coefficient that depends on z. By reproducing property and above identity:
®5(z) = (K(z,-), ®5(-))n (60)
M
= a,i (07, 5)n (61)
i=1
=0y (62)
Plug into (59):
M M
K(z,) =Y a::®(:) =Y &7 ()0 (). (63)
i=1 i=1



Note that K (z,y) = [®°(x)]” #°(y) and K(z,y) = [®(x)] ®(y) = [@°(z)]T WIW°(y),
therefore,

[2°()]" @°(y) = [#°(x)] W W°(y). (64)

We can take x1, o, ...,y € £ such that
®° = [@O(xl),@o(xg),~-~ ,<I>°(x1)]
is a non-singular matrix. Then (64)) implies
(@) @° = (@°) WIW°,
therefore,
WIwW =1,,. (65)

Similar arguments imply

WIW =1, (66)

If a matrix M € RV XY gatisfies M = WMC°W7 for some M° € RMXM, then

M5 =Tr (MTM) = Tr(WMEWT) T (WMEWT) ) 67)
=77 (M) (WTW)M°(WTW) ) (68)
=1r((M°)"'M°) (69)
=[|ne . (70)

Recall the inner product on H x # is given by the inner product on # and #: for any f; ®g; € HxH
and fo ® go € H X H,

<.f1 ®glaf2 ®92>H><7:[ = <f1>f2>7'l<g1392>7:['

It follows that
2

T T 2 _ o T X7 5O _ o T oFRO0
H[q;(.)] Mq)(')lﬂxﬁ _H[CD O] WIMW ()’Hxﬂ B H[q) O] M@ (')‘Hxﬂ 1
M M R M M R
(LS BOME .Y SOMEE,0) D
i=1 j=1 k=1p=1 HXH
M
=D > MM (®,97),,(95.9)) (73)
i,k=17,p=1
M M )
=22 (M) (74)
i=1 j=1
=™ [}, = M| (75)
We can conclude that _
[ @) MP()|5 = M- (76)

The matrix P in our paper satisfies

P= /Qxﬂpww@(m) [®(y)]" dudy = W(/

We also have

. p(x,y)®° (x) [é"(y)]wady) wT. an

B0 [B(X0)) = W (L o0 [E ] )W o



Therefore, U = WT for some T' € RM*N and V = WT for some T € RM*N It further implies

P=U%, V' =wW({Ix, )W (79)
Then using we know that:
1o = ol = IP = Plle < V2r|P - PJ, (80)

where the inequality follows the fact that P and P are both of rank at most 7 hence P — P has rank at
most 2r. According to Weyl’s inequality [Wey12], |P — P|| = 0,41 (P) < ||P — P||. It follows that

IP—P| <[P -P|+|P-P|<2(P-P|.
Using Eqn.(TI)) we finish the proof. O

B  Proof of Results in Section 4

B.1 Representation of p(:|-)
Lemma 6. Under Assumption 1-2, p(+|-) has following representation:
a1z
plyle) = 2(2)"CTTPC(y). 81

where P := [ m(z)p(y|z)®(x)®(y) " dady, C := diaglpy,--- , pn] and C := diag[py,-- -, pn]-

Proof. We know that Y(-) := C~/2®(-) is a vector of orthonormal functions in L2(r), and T(-) :=

1/2 =
¢ ®(-) is a vector of orthonormal functions in L?. Then the coefficient matrix of p(-|-) in
expansion under L?(7) x L? inner product is given by:

/ r(@)p(ylx)CV2B(2)B(y) "€ drdy = c*”( / w(w)p(yx)@(x)ci(y)%dy)é‘“
(82)
_c2pE?, (83)

Then we have:
1/22

p(ylz) = T(a;)TC_l/QPC_ T(y) (84)
= o(x)"C'PCB(y). (85)
O
B .2 Proof of Theorem 2
1/2

Proof. To simplify notation, denote R := c'\?2pC”

SVD of R. Similarly we use R = C71/2P671/2
o (P) o (P)

CLet UOBE (V)T = R be the

[1

with SVD UV S@) (V)T — R. Let R =
U f]ff_)__ﬂ (V'")T be the best rank r approximation of R. Use O, , to denote set of all 7 x 7
orthogonal matrices, let O € O.,.,., using triangle inequality we have:

@ (z) = ¥(z)|| = |O¥(x) - O¥(z)]|

<[0®(z) — ¥(z)|| + [T (x) — T(2)|| + [0OT(z) — T(2)]], (86)

this yields:
dist(z, z) — dist(z, ) = | ¥(z) — ¥ (2)| — |¥(z) — B(2)| (87)
< 0% (z) — U(z)| + 0T (2) — T(2)]]. (88)



Similarly we can get:

dist(z, z) — dist(z, z) = | (z) - ¥ (2)| - | (z) - ¥(2)] (89)
< [|0¥(z) — ¥(z)| + |0¥(2) — ¥(2)]. (90)
Therefore, taking infimum over O € ©,.»,. we have:
dist(z,z) - dist(z,2)| < _inf [0%(z) — ¥(2)]| +[0%(z) - ¥ (2)] o1
. _ -~ (p) &

= it IRTC OB 0705
e e 2ursy of - sl )| ©2)
<ot 2L UOER 07— 0D ) (93)
= Jnf 2112 |RVP0T - RV (94)
= nf 2L R(VVOT - v LR -R)V 95)

< inf L;{;(HRH VOOT -V + R - R ||V<”>||)
0€O,xr
(96)
. - (p) -
=t 2 (IRI VOOV R -RI) on
€Oy yr
<2012 (IR|V2||sin0 (V) V)| + R — R|) (98)
R— .
<oz, (VAR R g ) 99)
< 2LY2 (1++2k(R))|R —R|| (100)
<4LY? (1+v2k(R))|R —R|| (101)
—1/2
—4LY2 (1 +V2R(R))|CTV2 P - P)C (102)
L .
<4 W[1+ﬁm(R)} P —PJ|, (103)
PNPN

where from 1} to 1) we use Weyl’s inequality [Wey12] and the fact that rank of Ris 7 to get
or+1(R) < ||R — R||, therefore,

IR-R| < [R-R[|+|R-R[|=|R-R| +01(R) < 2HR— R|. (104)
{‘5 i()

Note that R is the coefficient matrix of p(y|z) in expansion with bases { N | using

\/7
L?(m) x L? inner product equlvalently it is coefficient matrix of \/7(x)p y\x in expansion with

bases { ‘()VW( W

X { }N , using L2 x L? inner product. By assumption 2, \/7(z)p(y|z) can
be represented using { — } vyxq ®:( )}2 1» therefore we have Ii(\/ﬂ' x)p(y|z) ) = k(R).
We conclude proof using Eqn. . O
B .3 Proof of Theorem 3

Proof. We show that ||p(:

) = ¢ 2 myxre = R — R|p. From Lemma@and definition of
p(y|x) we have:

o(z)TCPC ' d(y) = d(2)TCV2RE

1/2 =

D(y), (105)
D(y). (106)

=
=
8
S~—
[

o(z)"'CVRC

=
=
8
N—
Il



Then we have:

. - iy
p(yle) — plylz) = B(@)"CVAR -R)C " d(y). (107)
Recall that Y (-) := C~'/2®(-) is a vector of orthonormal functions in L2 () and T(-) := C_l/Qé(-)
is a vector of orthonormal functions in L. Then we have:
. - S 1/25
IpC1) = DC) L2 myxze = 1B()CT2R -R)C d(-)]| (108)
=TC)R —=R)Y() L2 (myxr2 (109)
=R~ R||r. (110)
Combining (T04) with (T10) yields
(1) = BC1) 2 (rye = IR = R (111)
< V7R —R|| (112)
<2V7|R-R] (113)
—2/Fc 2@ —P)C (114)
<2, /——|P-P|. (115)
PNPN
We conclude the proof upon using (IT]. O
C Proof of Results in Section 5
C.1 Technical Lemmas
Lemma 7. Under Assumption 1-2, for each q; (-), it can be written as:
q; ()= 2ikVk(*), (116)

k=1

where vy (-) are the right singular functions for p(-|-). Each ¢} (-) is a probability density function.

Proof. {4}, forms the best partition in terms of solving k-means problem. Then on each Q, we
must have g} (-) solves the problem

min [ w(a)lp(fo) - ()| d. (117)
a(eER Jar

This is solved by
0= oy |, Tl (118)

To show ¢} (+) is probability distribution, note that ¢} (y) > 0 for all y because p(y|z) > 0 for all y
and z. Furthermore, we have:

/ ¢ W)y = —55 // p(ylz)dzdy (119)
/ / p(y|z)dydx (120)

/ m(x)dx (121)

k3

-1 (122)



Without loss of generality, we assume that decomposition p(y|z) = >_7_, opux(x)vg () in Assump-
tion 1 is the SVD, i.e.,

12
o =30 w() = (UP)) C20(), w()=(V{)) € TR(),
To prove Eqn.(116), we plug in SVD of p(y|z) into Eqn.(118):
1
0= o, Tl (123)
T o
= QD) (@) ug () vk (-)da. (124)
k=1 @ i

Taking zik := sy Jor m(@)ug(x)dx, we finish the proof. O

Next lemma is key to prove Theorem 5. Before proving the lemma, we define a function 7°(-|-) that
represents the perturbation of p(-|x) from its closest probability distribution ¢ (-):

Zﬂm ( |z) —qz(>)- (125)

By definition of A% we know that:
ITCIMER (e 2 = AZ- (126)

Equivalently, one can rewrite the k-means problem in R" using the ¥ (-) coordinate as:

2
(91’ m) S1,0 skGIRTZ/ ”lIJ Si”lgdx-

We showed in Lemma 6 that s} = [2;1, - , 2|7, then we construct function E(-) : @ — R" by:
= lo: (2)(®(x) — [z, 2i0] ") (127)
i=1
It is easy to verify that
W(z) = Z0(x) + E(z), (128)
where Z = [zi;]rxm is given in Lemma 5, 0 := [lg:,--- ,HQ:L]T, moreover, since E(-) is the
counterpart of 7'(-|x) in R", we have:
IEC)Z2ny = A3 (129)
We further define following quantities which are useful for the statement of the lemma:
2 . . * k(|2 _ : _
O = minlgr — gillzz = min(|Z. — Zux|, (130)
U(x):=20(x) Zu=34, O) =Ly, - 1q.]" (131)

We use O« to denote the set of all  x 7 orthogonal matrices. For any O € O,.,., we define:

Sp(0®) := {z € QO : [|0O¥(z) — Zyy| > 0i/2}. (132)

For the ease of notation, we will use Sy, instead of Si.(OW). For a vector valued function A(-) : Q2 —
1/2
R, letits L2 () norm to be || A()|| () = ( Joym(@) | Az )\Iidw)

Lemma 8. With quantities defined above, for any O € O, we have:
2
S w8152 < 16(10%C) — ¥l 2 + 1 EC) o) (133)
k=1

(n)<
—16<\|U(p)2(”) ,0-U"s0 T]||F+A2) . (134)

10



In addition, if for any 1 < k < m we have:

(p)
0-U z[?r]nﬂm)

s
Then every data point on G := Uj,_, (Q \ Sk) is correctly classified.

16<HU(P)2EP) .

< m(Q). (135)

Proof. We follow the proof of Lemma 5.3 in [LR™15|]. By definition of S}, we have:

(S )02 <4Z/ 2)| 0¥ (z) — Z.i|Pdx (136)

=1
34/ 7(z)||0O¥(x) — ZO(z)|*dx (137)

Q
= 4] 0% () - za(-)||r;(ﬂ). (138)
To bound ||O¥(-) — Z9(-)HL2(W):
[0 () = Z6()| 2

<[OF() — 0F() o) +[0FC) Oy + [0) - 200 (139

=[®) - +0%() =¥ o,y +IEC (140)

‘il( ||L2(7r) HL2

(m)’
where we use the fact that ¥ (z) = Z6(x) + E(z). Because ¥(x) = Z0(-) solves the empirical
k-means problem,

[TC) =T 2y <[O7Z0C) = O oy = [1260C) = OB ()] 2,
<[|Z0(z) = @ )| gy + [OFC) = O o (141)
=[EO 2y + 10 () = O] 2
Plugging (T47) into (T40) gives
[OT () = ZO()|| oy < 210 (2) = V(@) L2() + 2| EC) 12 (r)- (142)
It follows from Eqn.(138) that
m . 2
> 7w (Sk)é; < 16(||0‘I’(x) = ()|l L2 + IIE(-)I\m(ﬂ)) (143)
k=1
A 2
= 16(J 0% () — ® (@) r2(r) + A2) (144)
We then show: 0% (z) — ®(x)[|2, ) = [[UVB{) 10— i 2(”) o l3
10 (2) — W (2) |72 = [1¥(2) — OF ¥ (2)[|72(r) (145)
= / r(2)@()TC2UsY) 00l )
Q
(U<f’>2f1) L0 - TS0 TC 1 20(2)dy (146)
(») »)
= Tr((U( Az 0-0"SY HUusE o-Uu"sl) ,])T>
(147)
= [U¥sy 0-07SP 3. (148)
Plug this back into Eqn.(T43)
m(S)e7 < 16(JuP'sp 0 - >0 T]||F+A2> . (149)
k=1

11



which finishes the proof of Eqn (133).

We then prove if condition (135) holds, then every data point on G := U} _, (€} \ Sk) is correctly
classified. From Eqn. @

N ~ 2
()82 < Z (500 < 16(JUS}) 10 - 00 ikt A,) (150)

k=1

If condition (135) holds, dividing 87 on both sides of Eqn.(150) gives:

160 (2) — () 20y + Do)
o
From this we know T}, := Q7 \ Sy, # 0 for all k. We then prove data on T}, are correctly classified
forany k. If x € Ty, y € T, for k # 1, we must have ¥ (x) # ¥ (y), otherwise we have
max(dx, ) < [|Zoar = Zualliy < | Zik — O (2)]| + | Zia — OV (y)|| < 0r/2+ 01/2
which is impossible. On the other hand, of z,y € T}, for some k, then we must have ¥(z) =

W(y), otherwise W(x) will take more than m values which is impossible due to is definition in
Eqn.(T31). 0

W(Sk) <

(). (151)

C .2 Proof of Theorem 4

Proof. For ease of notation we omit the perturbation o. Let O,.,- be the set of all r x r orthogonal
matrices. Let O € O,.«, be an r X r orthogonal matrix that will be specified later. Denote
—-1/2 (p) (p)

R =UVsY (V)T = ¢PPC " and R = U7 (V")T. From Eqn.(134) we
have:
Z (Sw)7 < 16( Uz 0 - B0 e+ A2>2 (152)
k=1
(||RV o-RV"|, +A2)2. (153)
To bound |[RV?0 — RV || -
IRVP0 - RV ||, = ||R(V(p)O—V(p) +R-BR)VYp (154)
<RI IVP0 =V |+ R =R - [V (155)
— IR||- V0 V5 + V7R - R, (156)

where on the last equality we use the fact that v is orthogonal hence ||V(p) lF = +/r. We know
that there exists some O € O,.y, such that

VOO0 -V |p < V2)sin®(VO V)| < Varl|sin@ (VO V). (157)
By Wedin’s lemma and the fact that R and R have rank r we know that
) \/ﬂ R-R
vPo - v, U”(R)”. (158)
Plug this back into Eqn.(TI56) we have:
) ) V2r|R
RV~ RV | < (vi+ 2R - R (159
< 2v2rk(R)|R — R|| (160)
< 4V2rk(R)|R — R (161)

2 ~

<4/ k®R)|P - P| (162)
PNPN
2 .

=4/ kP - P, (163)
PNPN
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where in the last equality we use the fact that x(R) = & ( \/W(x)p(ya:)> which we proved in the
proof of Theorem 2.

According to Lemma[d] there exists a constant ¢ > 0 such that if

K27 M iz 108(2tpmie N /0) 1 2 4A32
: : = 164
ne=e PNPN max{(Al/Zl—Ag)Q’eA%’eQA‘lL}’ (164)
then with probability at least 1 — ¢,
. 1 PNPN eA
P-P| < Ar/4—A 2A 165
1Pl < gy 5 min{ A a1 69

Under condition (T63), 16(|RV”O — RV lF+ A2)2 < A%, which ensures (135) is true hence

we can use Lemma We also have |[RV(P O — rv"” |2 < eA2/2 and [RVPO— RV || Ay <
€A? /2. These two inequalities together imply

16(RV0 - RV || + Az) (166)
—16(||RV<P>0 RV |12 + 2 RVP0 - RV || r A, + A2) (167)
<eA? 4 16A3. (168)

We can now derive an upper bound for the misclassification rate M:
- - ~ 7(Sk)
MQ7, -+, ) < 16
(@) <> e (169)
k=1
~ (k)57
<> Az (170)
k=1
2
16(JRV©0 — RV | + A,)
< (171)
Af
16A2
< . 172
< AZ (172)
O

D Experiment with DQN

The game of Demon Attack is simulated in the Arcade Learning Environment ([BNVB13]]), which
provides an interface to hundreds of Atari 2600 games and serves an important testbed for deep
reinforcement learning algorithms. We closely follow the experimental setting, network structure and
training method used by [MKS™13].. In this environment, each game frame o; is a 210 x 160 x 3
image. In each interactive step the agent takes in the last 16 frames and preprocesses them to be the
input state s; = ¢({0—; }12,). The state s, is an 84 x 84 x 4 rescaled, grey-scale image, and is the
input to the neural network Q(s, -;8). The first convolution layer in the network has 32 filters of
size 8 stride 4, the second layer has 64 layers of size 4 stride 2, the final convolution layer has 64
filters of size 3 stride 1, and is followed by a fully-connected hidden layer of 512 units. The output is
another fully-connected layer with six units that correspond to the six action values {Q(s;, a;; 6) }?:1.
The agent selects an action based on these state-action values, repeats the selected action four times,
observes four subsequent frames {ot+i}?:1 and receives an accumulated reward r;.

The agent in the DQN algorithm "learns" through a novel variant of Q-learning that employs the
techniques of target net (™) and experience replay (D) ((MKS™15]), and conducts gradient descent
to the following loss function at each iteration:

2
[:(9) = Es,a,r,s’NU(D) |:<’I" + ’Yma,XQ(S/, a/; 0_) - Q(57 a; 9)) :| .
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While our training regime and hyper-parameters are almost the same as those of [MKS™135]], we use
Adam optimizer ([KB15]) with a decaying learning rate, and a smaller replay buffer of size 500k
frames. Training is done over 2.5 million steps, i.e., 10 million game frames. The Q-network is
stored and evaluated every 500k steps. The best policy among these evaluations attains a 150-200%
human-level performance (which was reported in [MKS™15]), and is later used as our sampling
policy.

The raw input to the state embedding algorithm is a time series of length 47936 and dimension 512,
comprising 130 trajectories generated by the fully-connected hidden layer in DQN when it is running
the sampling policy. The embeddings are obtained through the same process as in Experiment 6.1
with a Gaussian kernel and 200 random Fourier features. The rank r is set to be 3, and the time
interval 7 corresponds to 12 game frames, i.e., 0.36 second in real time. Both the raw date and the
embeddings are projected onto 2D planes by t-SNE with a perplexity of 40.
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