
Supplement

Contents

A Details on experiments 1

A.1 Beta growth . 2

A.2 Comparison with similar work . 3

B Difference in network output 4

C Generalization over architectures and data sets 4

C.1 Additional architectures . 4

C.2 Additional datasets . 5

D Smoothing explanation methods 9

D.1 Pixelflipping . 10

E Proofs 14

E.1 Theorem 1 . 14

E.2 Theorem 2 . 16

F Additional examples for VGG 17

A Details on experiments

We provide a run_attack.py file in our reference implementation which allows one to produce
manipulated images. The hyperparameter choices used in our quantitative analysis are summarized
in Table 1. We set β0 = 10 and βe = 100 for beta growth (see section below for a description). The
column ’factors’ summarizes the weighting of the mean squared error of the explanation maps and
the network outputs respectively.

method iterations lr factors

Gradient 1500 10−3 1011, 106

Grad x Input 1500 10−3 1011, 106

IntGrad 500 5× 10−3 1011, 106

LRP 1500 2× 10−4 1011, 106

GBP 1500 10−3 1011, 106

PA 1500 2× 10−3 1011, 106

Table 1: Hyperparameters used in our analysis.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

The patterns for explanation method PA are trained on a subset of the ImageNet training set. The
baseline x̄ for explanation method IG was set to zero. To approximate the integral, we use 30 steps
for which we verified that the attributions approximately adds up to the score at the input.

A.1 Beta growth

In practise, we observe that we get slightly better results by increasing the value of β of the softplus
sp(x) = 1

β ln (1 + eβx) during training a start value β0 to a final value βe using

β(t) = β0

(
βe
β0

)t/T
, (1)

where t is the current optimization step and T denotes the total number of steps. Figure 1 shows the
MSE for images and explanation maps during training with and without β-growth. This strategy is
however not essential for our results.

0 1000 2000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

M
S

E
Im

ag
es

×10−4

β = 10 β ∈ [10, 100] β = 100 β = 1000

0 1000 2000
Iterations

1

2

3

4

5

6

M
S

E
E

xp
la

n
at

io
n

s

×10−10

Figure 1: MSE between x and xadv (left) and between ht and h(xadv) (right) for various values for
β.

We use beta growth for all methods except LRP for which we do not find any speed-up in the
optimization as the LRP rules do not explicitly depend on the second derivative of the relu activations.
Figure 2 demonstrates that for large beta values the softplus networks approximate the relu network
well. Figure 3 and Figure 4 show this for an example for the gradient and the LRP explanation
method. We also note that for small beta the gradient explanation maps become more similar to
LRP/GPB/PA explanation maps.

100 101 102 103
0.0

0.5

1.0

1.5

2.0

M
SE

1e 9

100 101 102 103

beta

0.6

0.8

1.0

SS
IM

100 101 102 103
0.2

0.4

0.6

0.8

1.0

PC
C

Figure 2: Error measures between the gradient explanation map produced with the original network
and explanation maps produced with a network with softplus activation functions using various values
for β.

2

Image ReLU β = 10 β = 3 β = 2 β = 1

Figure 3: Gradient explanation map produced with the original network and a network with softplus
activation functions using various values for β.

Image ReLU β = 10 β = 3 β = 2 β = 1

Figure 4: LRP explanation map produced with the original network and a network with softplus
activation functions using various values for β.

A.2 Comparison with similar work

Ghorbani et al. (2017) present a targeted but unstructured attack to manipulate explanations. They
perturb the original image by a fixed stepsize in the direction of the signed gradient sgn(∇xD) of the
dissimilarity function

D(x) =
∑
i∈A

I(xi). (2)

This increases the accumulated relevance in the specified area A but cannot structurally reproduce a
target explanation except for very selected and simple cases. We demonstrate this qualitatively in
Figure 5 (a-c) and quantitatively for 100 test images by comparing the Pearson Correlation Coefficient
between the explanations prior and post the manipulation on the left hand side of Figure 5 (d).
Furthermore our method keeps the output constant while their method often leads to a significant
change in confidence, see right hand side of Figure 5 (d). Constant output is crucial for the geometrical
interpretation in terms of principal curvatures and all results derived from it. At an intuitive level, the
relation between curvature and vulnerability of explanation methods was already pointed out in their
work. We make this relation mathematically precise and derive rigorous bounds from our differential
geometrical theory which then enable us to propose effective defense mechanisms.

Ours Ghorb. et al. Ours Ghorb. et al. Ours Ghorb. et al.

(a) Heat on Truck (b) Heat on Street (c) Heat on Sky

m
an

ip
ul

at
ed

Im
ag

es
E

xp
la

na
tio

ns

Ours Ghorb. Ours Ghorb.

D
iff

in
 A

cc
ur

ac
y

P
C

C
 E

xp
la

na
tio

ns

(d) Quantitative Analysis

Figure 5: (a-c) Our method can structurally reproduce a target explanation map, Ghorbani et al cannot.
We use the same image as Ghorbani et al for comparability. (d) Similarity to target map (higher is
better) and change of winning-class probability for 100 images.

3

B Difference in network output

Figure 6 summarizes the change in the output of the network due to the manipulation. We note that
all images have the same classification result as the originals. Furthermore, we note that the change
in confidence is small. Last but not least, the norm of the vector of all class probabilities is also very
small.

0

1

1 N
‖g̃

(x
a
d
v
)
−
g̃

(x
)‖

2 2

0

1

1 N
‖g

(x
a
d
v
)
−
g

(x
)‖

2 2 ×10−6

0

1

−
lo

g(
g c

(x
a
d
v
))

−1

0

g̃ c
(x

a
d
v
)
−
g̃ c

(x
)

Gradient Gradient
x Input

Integrated
Gradients

0

1

g c
(x

a
d
v
)
−
g c

(x
) ×10−2

0

2

×101

0.0

0.5

×10−6

0

1

0.0

2.5

×101

LRP GBP PA

0

2
×10−2

Figure 6: Error analysis of Network output. g̃(x) denotes pre-activation of the last layer. g(x) is the
network output after applying the softmax function to the pre-activation g̃(x).

C Generalization over architectures and data sets

Manipulable explanations are not only a property of the VGG-16 network. In this section, we show
that our algorithm to manipulate explanations can also be applied to other architectures and data sets.
For the experiments, we optimize the loss function given in the main text. We keep the pre-activation
for all network architectures approximately constant, which also leads to approximately constant
activation.

C.1 Additional architectures

In addition to the VGG architecture, we also analyze the explanation’s susceptibility to manipulations
for the AlexNet, Densenet and ResNet architectures. The hyperparameter choices used in our
experiments are summarized in Table 2. We set β0 = 10 and βe = 100 for beta growth. Only for
Densenet we set β0 = 30 and βe = 300 as for smaller beta values the explanation map produced
with softplus does not resemble the explanation map produced with relu. Figure 8 and 7 show that
the similarity measures are comparable for all network architectures for the gradient method.

Figure 9, 11, 12 and 10 show one example image for each architecture.

4

network iterations lr factors

VGG16 1500 10−3 1e11, 10
AlexNet 4000 10−3 1e11, 10

Densenet-121 2000 5× 10−4 1e11, 10
ResNet-18 2000 10−3 1e11, 10

Table 2: Hyperparameters used in our analysis for all networks.

1

2

3

1 N
‖g̃

(x
a
d
v
)
−
g̃

(x
)‖

2 2 ×10−2

0.0

2.5

1 N
‖g

(x
a
d
v
)
−
g

(x
)‖

2 2 ×10−6

0

2

−
lo

g(
g c

(x
a
d
v
))

−2.5

0.0

g̃ c
(x

a
d
v
)
−
g̃ c

(x
) ×10−1

VGG-16 ResNet-18 AlexNet Densenet-121

−2.5

0.0

2.5

g c
(x

a
d
v
)
−
g c

(x
) ×10−2

Figure 7: Change in output for various architectures. g̃(x) denotes pre-activation of the last layer.
g(x) is the network output after applying the softmax function to the pre-activation g̃(x).

C.2 Additional datasets

We trained the VGG-16 architecture on the CIFAR-10 dataset1. The test accuracy is approximately
92%. We then used our algorithm to manipulate the explanations for the LRP method. The hyperpa-
rameters are summarized in Table 3. Two example images can be seen in Figure 13.

1code for training VGG on CIFAR-10 from https://github.com/chengyangfu/
pytorch-vgg-cifar10

5

https://github.com/chengyangfu/pytorch-vgg-cifar10
https://github.com/chengyangfu/pytorch-vgg-cifar10

1.5

2.0

2.5

3.0

M
S

E

×10−10 Errors Explanations

0.4

0.6

0.8

S
S

IM

VGG-16 ResNet-18 AlexNet Densenet-121
4

5

6

7

8

P
C

C

×10−1

0.2

0.4

0.6

0.8

M
S

E

×10−3 Errors Images

0.85

0.90

0.95

S
S

IM

VGG-16 ResNet-18 AlexNet Densenet-121

0.9900

0.9925

0.9950

0.9975

1.0000

P
C

C

Figure 8: Similarity measures for gradient method for various architectures.

method iterations lr factors

LRP 1500 2× 10−4 107, 102

Table 3: Hyperparameters used in our analysis for the CIFAR-10 Dataset.

6

Figure 9: Gradient explanation maps produced with VGG-16 model.

Figure 10: Gradient explanation maps produced with ResNet-18 model.

7

Figure 11: Gradient explanation maps produced with AlexNet model.

Figure 12: Gradient explanation maps produced with Densenet-121 model.

Figure 13: LRP Method on CIFAR-10 dataset

8

D Smoothing explanation methods

One can achieve a smoothing effect when substituting the relu activations for softplusβ activations
and then applying the usual rules for the different explanation methods.

A smoothing effect can also be achieved by applying the SmoothGrad explanation method, see
Figure 14. SmoothGrad adds random perturbations to the image and then averages over the resulting
explanation maps. We average over 10 perturbed images with different values for the standard
deviation σ of the Gaussian noise. The noise level n is related to σ by σ = n · (xmax−xmin), where
xmax and xmin are the maximum and minimum values the input image can take.

0.0

0.5

1.0

P
C

C
G

ra
d

ie
nt

h(xadv) & ht

h(xadv) & h(x)

10−1 100 101

noise in %

0.0

0.5

1.0

P
C

C
L

R
P

O
ri

gi
n

al

Image ReLU
Smoothgrad
noise: 0.5%

Smoothgrad
noise: 5.0%

M
an

ip
u

la
te

d
T

ar
ge

t

O
ri

gi
n

al

Image ReLU
Smoothgrad
noise: 0.5%

Smoothgrad
noise: 5.0%

M
an

ip
u

la
te

d
T

ar
ge

t

Figure 14: Recovering the original explanation map with SmoothGrad. Left: noise dependence for
the correlations of the manipulated explanation (here Gradient and LRP) with the target and original
explanation. Line denotes median, 10th and 90th percentile are shown in semitransparent colour.
Center and Right: network input and the respective explanation maps as the noise level is increased
for Gradient (center) and LRP (right).

The β-smoothed or SmoothGrad explanation maps are more robust with respect to manipulations.
Figure 15, 16 and 17 show results (MSE, SSIM and PCC) for 100 targeted attacks on the original
explanation, the SmoothGrad explanation and the β-smoothed explanation for explanation methods
Gradient and LRP. For all experiments we use the same 100 randomly selected images as previously.

For manipulation of SmoothGrad, we use beta growth with β0 = 10 and βe = 100. For manipulation
of β-Smoothing, we set β = 0.8 for all runs. The hyperparameters for SmoothGrad and β-Smoothing
are summarized in Table 4 and Table 5.

method iterations lr factors

Gradient 1500 3× 10−3 1011, 106

LRP 1500 3× 10−4 1011, 106

Table 4: Hyperparameters used in our analysis for SmoothGrad.

method iterations lr factors

Gradient 500 2.5× 10−4 1011, 106

Grad x Input 500 2.5× 10−4 1011, 106

IntGrad 200 2.5× 10−3 1011, 106

LRP 1500 2.0× 10−4 1011, 106

GBP 500 5.0× 10−4 1011, 106

PA 500 5.0× 10−4 1011, 106

Table 5: Hyperparameters used in our analysis for β-smoothing.

In Figure 18 and Figure 19, we directly compare the original explanation methods with the β-
smoothed explanation methods. An increase in robustness can be seen for all methods: explanation
maps for β-smoothed explanations have higher MSE and lower SSIM and PCC than explanation

9

2 4
Smoothed Gradient ×10−9

1

2

3

4

5

G
ra

d
ie

nt

×10−9MSE Explanation

0.0002 0.0004 0.0006
Smoothed Gradient

0.000

0.000

0.001

G
ra

d
ie

nt

MSE Images

0.5 1.0 1.5
Smoothed LRP ×10−9

0.5

1.0

1.5

L
R

P

×10−9

β-smoothed SmoothGrad

0.0002 0.0004 0.0006
Smoothed LRP

0.000

0.000

0.001

L
R

P

Figure 15: Left: Similarities between explanations. Markers are mostly right of the diagonal, i.e. the
MSE for the smoothed explanations is higher than for the unsmoothed explanations which means the
manipulated smoothed explanation map does not closely resemble the target ht. Right: Similarities
between images. The MSE for the smoothed methods is greater (right of the diagonal) or comparable
(on the diagonal), i.e. greater or comparable perturbations in the manipulated Images when using
smoothed explanation methods.

maps for the original methods. The similarity measures for the manipulated images are of comparable
magnitude.

D.1 Pixelflipping

We compare the pixel-flipping performance of the β-smoothed explanations with SmoothGrad,
Gradient and the random baseline. The metric sorts pixels of the validation images according to their
importance in the respective explanation and incrementally removes those pixels from the input (here
we set the pixels to zero) starting with the most relevant. In each step the networks performance is
tested on the complete validation set. A small accuracy then means that the pixels marked relevant by
the explanation method were indeed needed for a correct classification, which is a desirable quantity
of an explanation method. We set β = 1 for the β-smoothed explanations and the noise level for
SmoothGrad to 0.2. Figure 21 shows superior performance of β-smoothing and SmoothGrad over
the original Gradient method.

10

0.4 0.6 0.8 1.0
Smoothed Gradient

0.4

0.6

0.8

1.0

G
ra

d
ie

nt

SSIM Explanations

0.8 0.9 1.0
Smoothed Gradient

0.800

0.850

0.900

0.950

1.000

G
ra

d
ie

nt

SSIM Images

0.4 0.6 0.8 1.0
Smoothed LRP

0.4

0.6

0.8

1.0

L
R

P

β-smoothed SmoothGrad

0.8 0.9 1.0
Smoothed LRP

0.800

0.850

0.900

0.950

1.000

L
R

P

Figure 16: Left: Similarities between explanations. Markers are mostly left of the diagonal, i.e. the
SSIM for the smoothed explanations is lower than for the unsmoothed explanations which means the
manipulated smoothed explanation map does not closely resemble the target ht. Right: Similarities
between Images. The SSIM for the smoothed methods is lower (left of the diagonal) or comparable
(on the diagonal), i.e. bigger or comparable perturbations in the manipulated images when using
smoothed explanation methods.

11

0.25 0.50 0.75 1.00
Smoothed Gradient

0.2

0.4

0.6

0.8

1.0

G
ra

d
ie

nt

PCC Explanations

0.990 0.995 1.000
Smoothed Gradient

0.990

0.993

0.995

0.998

1.000

G
ra

d
ie

nt

PCC Images

0.25 0.50 0.75 1.00
Smoothed LRP

0.2

0.4

0.6

0.8

1.0

L
R

P

β-smoothed SmoothGrad

0.990 0.995 1.000
Smoothed LRP

0.990

0.993

0.995

0.998

1.000

L
R

P

Figure 17: Left: Similarities between explanations. Markers are mostly left of the diagonal, i.e. the
PCC for the smoothed explanations is lower than for the unsmoothed explanations which means
that the manipulated smoothed explanation map does not closely resemble the target ht. Right:
Similarities between Images. The PCC for the smoothed methods is lower (left of the diagonal) or
comparable (on the diagonal), i.e. bigger or comparable perturbations in the manipulated images
when using smoothed explanation methods.

0

2

4

M
S

E

×10−9

0.4

0.6

0.8

S
S

IM

Gradien
t

β-sm
oothed

G

Gradien
t

x Input

β-sm
oothed

GxI

Integ
rated

Gradien
ts

β-sm
oothed

IG LRP

β-sm
oothed

LRP
GBP

β-sm
oothed

GBP PA

β-sm
oothed

PA

0.25

0.50

0.75

1.00

P
C

C

Figure 18: Comparison of Similarities of Explanation Maps for the original Explanation Methods
and the β-smoothed Explanation Methods. Targeted attacks do not work very well on β-smoothed
explanations, i.e. MSE is higher and SSIM and PCC are lower for the β-smoothed explanations than
for the original explanations.

12

0.0

0.5

1.0

M
S

E

×10−3

0.8

0.9

S
S

IM

Gradien
t

β-sm
oothed

G

Gradien
t

x Input

β-sm
oothed

GxI

Integ
rated

Gradien
ts

β-sm
oothed

IG LRP

β-sm
oothed

LRP
GBP

β-sm
oothed

GBP PA

β-sm
oothed

PA

0.990

0.995

1.000

P
C

C

Figure 19: Comparison of Similarities between original and manipulated images. The similarity
measures for images for the β-smoothed explanation methods are of comparable size or slightly
worse (higher MSE, lower SSIM and lower PCC) than for the original explanation method, i.e. the
manipulations are more visible for the β-smoothed explanation methods.

= 1

Figure 20: Contour plot of a 2-Layer Neural Network f(x) = V >sp(W>x) with x ∈ [−1, 1]2,
W ∈ R2×50, V ∈ R50 and Vi,Wij ∼ U(−1, 1). Using a softplus activation with β = 1 visibly
reduces curvature compared to a ReLU activation with β →∞.

0.0 0.2 0.4 0.6 0.8
Ratio of pixels set to zero

0.00

0.25

0.50

0.75

to
p

-1
ac

cu
ra

cy β - smoothed Gradient

SmoothGrad

Gradient

random

Figure 21: Pixelflipping performance compared to random baseline (the lower the accuracy the better
the explanation) shows superiority of SmoothGrad and β-smoothed explanation over the original
Gradient method.

13

E Proofs

In this section, we collect the proofs of the theorems stated in the main text.

E.1 Theorem 1

Theorem 1 Let f : Rd → R be a network with spβ non-linearities and Uε(p) = {x ∈
Rd; ‖x− p‖ < ε} an environment of a point p ∈ S such that Uε(p)∩S is fully connected. Let f have
bounded derivatives ‖∇f(x)‖ ≥ c for all x ∈ Uε(p) ∩ S. It then follows for all p0 ∈ Uε(p) ∩ S that

‖h(p)− h(p0)‖ ≤ |λmax| dg(p, p0) ≤ β C dg(p, p0), (3)

where λmax is the principle curvatures with the largest absolute value for any point in Uε(p) ∩ S
and the constant C > 0 depends on the weights of the neural network.

Proof: This proof will proceed in four steps. We will first bound the Frobenius norm of the Hessian
of the network f . From this, we will deduce an upper bound on the Frobenius norm of the second
fundamental form. This in turn will allow us to bound the largest principle curvature |λmax| =
max{|λ1| . . . |λd−1|}. Finally, we will bound the maximal and minimal change in explanation.

Step 1: Let sp(l)(x) = sp(W (l)x) where W (l) are the weights of layer l.2 We note that

∂ksp(
∑
j

Wijxj) = Wik σ(
∑
j

Wijxj) (4)

∂lσ(
∑
j

Wijxj) = βWil g(
∑
j

Wijxj)) (5)

where

σ(x) =
1

(1 + e−βx)
, g(x) =

1

(eβx/2 + e−βx/2)2
. (6)

The activation at layer L is then given by

a(L)(x) = (sp(L) ◦ · · · ◦ sp(1))(x) (7)

Its derivative ∂ka
(L)
i is equal to

∑
s2...sL

W
(L)
isL

σ

∑
j

W
(L)
ij a

(L−1)
j

W (L−1)
sLsL−1

σ

∑
j

W
(L−1)
sLj

a
(L−2)
j

 . . .W
(1)
s2k
σ

∑
j

W
(1)
s2j
xj

We therefore obtain ∥∥∥∇a(L)∥∥∥ ≤ L∏

l=1

∥∥∥W (l)
∥∥∥
F

(8)

Deriving the expression for ∂ka
(L)
i again, we obtain

∂l∂ka
(L)
i =

∑
m

∑
s2...sL

{

W
(L)
isL

σ

∑
j

W
(L)
ij a

(L−1)
j

W (L−1)
sLsL−1

σ

∑
j

W
(L−1)
sLj

a
(L−2)
j

. . . β

∑
ŝm

W
(m)
sm+1ŝm

W (m)
sm+1smg

∑
j

W
(m)
sm+1j

a
(m−1)
j (x)

 ∂la
(m−1)
ŝm

(x)

. . .W
(1)
s2k
σ

∑
j

W
(1)
s2j
xj

}
2We do not make the dependence of softplus on its β parameter explicit to ease notation.

14

We now restrict to the case for which the index i only takes a single value and use |σ(•)| ≤ 1. The
Hessian Hij = ∂i∂ja

L(x) is then bounded by

‖H‖F ≤ βC̃ (9)
where the constant is given by

C̃ =
∑
m

∥∥∥W (L)
∥∥∥
F

∥∥∥W (L−1)
∥∥∥
F
. . .
∥∥∥W (m)

∥∥∥2
F
. . .
∥∥∥W (1)

∥∥∥2
F
. (10)

Step 2: Let e1 . . . ed−1 be a basis of the tangent space TpS. Then the second fundamental form for
the hypersurface f(x) = c at point p is given by
L(ei, ej) = −〈Dein(p), ej〉 (11)

= −〈Dei

∇f(p)

‖∇f(p)‖ , ej〉 = − 1

‖∇f(p)‖〈H[f]ei, ej〉+ (. . .)〈∇f(p), ej〉 (12)

We now use the fact that 〈∇f(p), ej〉 = 0, i.e. the gradient of f is normal to the tangent space. This
property was explained in the main text. This allows us to deduce that

L(ei, ej) = − 1

‖∇f(p)‖H[f]ij . (13)

Step 3: The Frobenius norm of the second fundamental form (considered as a matrix in the sense of
step 2) can be written as

‖L‖F =
√
λ21 + · · ·+ λ2d−1 , (14)

where λi are the principle curvatures. This property follows from the fact that the second fundamental
form is symmetric and can therefore be diagonalized with real eigenvectors, e.g. the principle
curvatures. Using the fact that the derivative of the network is bounded from below, ‖∇f(p)‖ ≥ c,
we obtain

|λmax| ≤ β
C̃

c
. (15)

Step 4: For p, p0 ∈ Uε(p) ∩ S, we choose a curve γ with γ(t0) = p0 and γ(t) = p. Furthermore, we
use the notation u(t) = γ̇(t). It then follows that

n(p)− n(p0) =

∫ t

t0

d

dt
(n(γ(t))) dt =

∫ t

t0

Du(t)n(γ(t)) dt (16)

Using the fact that Du(t)n(γ(t)) ∈ Tγ(t)S and choosing an orthonormal basis ei(t) for the tangent
spaces, we obtain∫ t

t0

Du(t)n(γ(t)) dt =

∫ t

t0

∑
j

〈ej(t), Du(t)n(γ(t))〉 ej(t) dt =

∫ t

t0

∑
j

L(ej(t), u(t)) ej(t) dt

(17)
The second fundamental form L is bilinear and therefore∫ t

t0

∑
i

L(ej(t), u(t)) ej(t) dt =

∫ t

t0

∑
i,j

L(ej(t), ei(t))u
i(t) ej(t) dt (18)

We now use the notation Lij(t) = L(ej(t), ei(t)) and choose its eigenbasis for ei(t). We then obtain
for the difference in the unit normals:

n(p)− n(p0) =

∫ t

t0

∑
i

λi(t)u
i(t) ei(t) dt , (19)

where λi(t) denote the principle curvatures at γ(t). By orthonormality of the eigenbasis, it can be
easily checked that

〈
∑
i

λi(t)u
i(t) ei(t),

∑
j

λj(t)u
j(t) ej(t)〉 ≤ |λmax|2

∑
i

ui(t)2

⇒
∥∥∥∥∥∑

i

λi(t)u
i(t) ei(t)

∥∥∥∥∥ ≤ |λmax| ‖u(t)‖

15

Using this relation and the triangle inequality, we then obtain by taking the norm on both sides of
(19):

‖n(p)− n(p0)‖ ≤ |λmax|
∫ t

t0

‖γ̇(t)‖ dt . (20)

This inequality holds for any curve connecting p and p0 but the tightest bound follows by choosing
γ to be the shortest possible path in Uε(p) ∩ S with length

∫ t
t0
‖γ̇(t)‖ dt, i.e. the geodesic distance

dg(p, p0) on Uε(p) ∩ S. The second inequality of the theorem is obtained by the upper bound on the
largest principle curvature λmax derived above, i.e. (15).

E.2 Theorem 2

Theorem 2 For one layer neural networks g(x) = relu(wTx) and gβ(x) = spβ(wTx), it holds that

Eε∼pβ [∇g(x− ε)] = ∇g β
‖w‖

(x) , (21)

where pβ(ε) = β
(eβε/2+e−βε/2)2

.

Proof: We first show that

spβ(x) = Eε∼pβ [relu(x− ε))] , (22)

for a scalar input x. This follows by defining p(ε) implicitly as

spβ(x) =

∫ +∞

−∞
p(ε) relu(x− ε) dε . (23)

Differentiating both sides of this equation with respect to x results in

σβ(x) =

∫ +∞

−∞
p(ε) Θ(x− ε) dε =

∫ x

−∞
p(ε) dε , (24)

where Θ(x) = I(x > 0) is the Heaviside step function and σβ(x) = 1
(1+e−βx)

. Differentiating both
sides with respect to x again results in

pβ(x) = p(x) . (25)

Therefore, (22) holds. For a vector input ~x, we define the distribution of its perturbation ~ε by

pβ(~ε) =
∏
i

pβ(εi) , (26)

where εi denotes the components of ~ε. We will suppress any arrows denoting vector-valued variables
in the following in order to ease notation. We choose an orthogonal basis such that

ε = εpŵ +
∑
i

ε(i)o ŵ(i)
o with ŵ · ŵ(i)

o = 0 and w = ‖w‖ ŵ . (27)

This allows us to rewrite

Eε∼pβ
[
relu(wT (x− ε))

]
= Eε∼pβ

[
relu(wTx− ‖w‖ εp))

]
=

∫
pβ(εp)

(
relu(wTx− ‖w‖ εp)

)
dεp

By changing the integration variable to ε̃ = ‖w‖ εp and using (22), we obtain

Eε̃∼pβ
[
relu(wTx− ε̃)

]
= sp β

‖w‖
(wTx) , (28)

The theorem then follows by deriving both sides of the equation with respect to x.

16

F Additional examples for VGG

Figure 22: Explanation map produced with the Gradient Explanation Method on VGG.

17

Figure 23: Explanation map produced with the Gradient × Input Explanation Method on VGG.

18

Figure 24: Explanation map produced with the Integrated Gradients Explanation Method on VGG.

19

Figure 25: Explanation map produced with the LRP Explanation Method on VGG.

20

Figure 26: Explanation map produced with the Guided Backpropagation Explanation Method on
VGG.

21

Figure 27: Explanation map produced with the Pattern Attribution Explanation Method on VGG.

22

	Details on experiments
	Beta growth
	Comparison with similar work

	Difference in network output
	Generalization over architectures and data sets
	Additional architectures
	Additional datasets

	Smoothing explanation methods
	Pixelflipping

	Proofs
	Theorem 1
	Theorem 2

	Additional examples for VGG

