
Supplementary Material
This document provides additional details for the paper “Minimum Stein Discrepancy Estimators”.
Appendix A contains background technical material required to understand the paper, Appendix B
derives the minimum SD estimators from first principles and Appendix C derives the information met-
rics for DKSD and DSM. Appendix D contains proof of all asymptotic results including consistency
and central limit theorems for DKSD and DSM, whilst Appendix E discusses their robustness.

Our derivations will use standard operators from vector calculus which we summarise in Ap-
pendix A.1. We will additionally introduce the following notation. We write f <∼ g if there is a
constant C > 0 for which f(x) ≤ Cg(x) for all x. We set Qf ≡

∫
fdQ and use Γ(W,Y) for the

set of mapsW → Y whenW 6= X .

A Background Material

In this section, we provide background material which is necessary to follow the proofs in the follow-
ing sections. This includes background in vector calculus, stochastic optimisation over manifolds and
vector-valued reproducing kernel Hilbert spaces.

A.1 Background on Vector Calculus

The following section contains background and important identities from vector calculus. For a
function g ∈ Γ

(
X ,R

)
, v ∈ Γ

(
X ,Rd

)
and A ∈ Γ

(
X ,Rd×d

)
with components Aij , vi, g, we have

(∇g)i = ∂ig, (v · A)i = vjAji = (v>A)i, (∇ · A)i = ∂jAji which must be interpreted as
the components of row-vectors; (Av)i = Aijvj which are the components of a column vector.
Moreover (∇v)ij = ∂jvi, ∇2f ≡ ∇(∇f), A : B ≡ 〈A,B〉 = Tr(A>B) = AijBij . We have the
following identities (where in the last equality we treat∇ ·A and ∇g as column vectors)

∇ · (gv) = ∂i(gvi) = vi∂ig + g∂ivi = (∇g)v + g∇ · v = ∇g · v + g∇ · v,
∇ · (gA) = ∂i(gAij)ej = (Aij∂ig + g∂iAij)ej = ∇g ·A+ g∇ ·A = ∇g>A+ g∇ ·A,
∇ · (Av) = ∂i(Aijvj) = (∇ ·A)v + Tr[A∇v] = (∇ ·A) · v + Tr[A∇v].

A.2 Background on Norms

For F ∈ Γ(X ,Rn1×n2) we set ‖F‖pp ≡
∫
‖F (x)‖ppdQ(x), where ‖F (x)‖p is the vector p-norm

on Rn1×n2 when n2 = 1, else it is the induced operator norm. If v ∈ Γ(X ,Rn1), then ‖v‖pp =∫
‖v(x)‖ppdx =

∫ ∑
i |vi(x)|pdx =

∑
i ‖vi‖pp, hence v ∈ Lp(Q) iff vi ∈ Lp(Q) for all i, and

similarly F ∈ Lp(Q) iff Fij ∈ Lp(Q) for all i, j since the induced norm ‖F (x)‖p and the vector
norm ‖F‖pvec ≡

∑
ij |Fij(x)|p are equivalent.

A.3 Background on Vector-valued RKHS

A Hilbert space H of functions X → Rd is a RKHS if ‖f(x)‖Rd ≤ Cx‖f‖H. It follows that the
evaluation “functional" δx : H → Rd is continuous, for any x. Moreover for any x ∈ X , v ∈ Rd,
the linear map f 7→ v · f(x) is cts. By the Riesz representation theorem, there exists Kxv ∈ H s.t.
v · f(x) = 〈Kxv, f〉. From this we see that Kxv is linear in v (turns out linear combinations of
Kxivi are dense inH), and K∗x = δx. We define K : X × X → End(Rd) by

K(x, y)v ≡ (Kyv)(x) = δxδ
∗
yv.

It follows that K(x, y) = K(y, x)∗ and u ·K(x, y)v = 〈Kyv,Kxu〉. Denote by ei the ith vector in
the standard basis of Rd. From this we can get the components of the matrix:

(K(x, y))ij = 〈Kxei,Kyej〉.

We have for any vi, xj ,
∑
j,k vj ·K(xj , xk)vk ≥ 0.
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A.4 Background on Separable Kernels

Consider the d dimensional product spaceHd of function f : X → Rd with components fi ∈ Hi
andHi is a RKHS with kernelC2 kernel ki : X ×X → R. LetK : X ×X → End(Rd) ∼= Rd×d
be the kernel of Hd (see Appendix A.3). Note if Kx ≡ K(x, ·) : X → End(Rd), and if
v ∈ Rd, then Kxv ∈ Hd. The reproducing property then states that ∀f ∈ Hd: 〈f(x), v〉Rd =
〈f,K(·, x)v〉Hd . Moreover for the kernel K = diag(λ1k

1, . . . , λdk
d) we will prove below that

〈f, g〉Hd = 1
λi

∑
i〈fi, gi〉Hi , whereas for K = Bk where B is symmetric and invertible we should

have 〈f, g〉Hd =
∑
ij B

−1
ij 〈fi, gj〉H.

Given a real-valued kernel ki on X , considerK = diag(λ1k1, . . . , λnkn). Let f =
∑
j δ
∗
xjvj . Recall

this is a dense subset ofHd: we will derive the RKHS norm for this dense subset and by continuity
this will hold for any function. Given the norm, the formula for the inner product will follow by the
polarization identity. We have

fi(x) = δx(f) · ei = δxδ
∗
xjvj · ei = K(x, xj)vj · ei

= diag(λ1k1, . . . , λnkn)(x, xj)vj · ei = λiki(x, xj)v
i
j

‖f‖2HK = 〈δ∗xjvj , δ
∗
xl
vl〉HK = vj ·K(xj , xl)vl = vijλiki(xj , xl)v

i
l

On the other hand,
∑
i

1
λi
〈fi, fi〉ki =

∑
i

1
λi
λ2
i v
i
jv
i
lki(xj , xl). Thus ‖f‖2HK = 1

λi

∑
i〈fi, fi〉ki .

For a symmetric positive definite matrix B, consider the kernel on H K(x, y) ≡ k(x, y)B. Let
f =

∑
j δ
∗
xjvj . We have:

fi(x) = δx(f) · ei = δxδ
∗
xjvj · ei = K(x, xj)vj · ei = Bvj · eikxj (x)

This implies fi ∈ Hk. Then

‖f‖2HK = 〈δ∗xjvj , δ
∗
xl
vl〉HK = vj ·K(xj , xl)vl = k(xj , xl)vj ·Bvl.

On the other hand 〈fi, fj〉k = e>i Bvre
>
j Bvsk(xs, xr). Notice

B−1
ij e
>
i Bvr = B−1

ij Bilv
l
r = δljv

l
r = vjr .

So we have:

B−1
ij 〈fi, fj〉k = vjre

>
j Bvsk(xs, xr) = vjrBjav

a
sk(xs, xr) = vr ·Bvsk(xs, xr)

A.5 Background on Stochastic Optimisation on Riemmannian Manifolds

The gradient flow of a curve θ on a complete connected Riemannian manifold Θ (for example a
Hilbert space) is the solution to θ̇(t) = −∇θ(t) SD(Q‖Pθ), where∇θ is the Riemannian gradient at θ.
Typically 1 the gradient flow is approximated by the update equation θ(t+1) = expθ(t)(−γtH(Zt, θ))

where exp is the Riemannian exponential map, (γt) is a sequence of step sizes with
∑
γ2
t < ∞,∑

γt = +∞, and H is an unbiased estimator of the loss gradient, E[H(Zt, θ)] = ∇θ SD(Q‖Pθ).
When the Riemannian exponential is computationally expensive, it is convenient to replace it by
a retration R, that is a first-order approximation which stays on the manifold. This leads to the
update θ(t + 1) = Rθ(t)(−γtH(Zt, θ)) [7]. When Θ is a linear manifold it is common to take
Rθ(t)(−γtH(Zt, θ)) ≡ θ(t) − γtH(Zt, θ(t)). In local coordinates (θi) we have ∇θ SD(Q‖Pθ) =

g(θ)−1dθ SD(Q‖Pθ), where dθf denotes the tuple (∂θif), which we will approximate using the
biased estimator H({Xt

i}i, θ) ≡ ĝθ(t)({Xt
i}ni=1)−1dθŜD({Xt

i}ni=1‖Pθ), where ĝθ(t)({Xt
i}ni=1) is

an unbiased estimator for the information matrix g(θ(t)) using a sample {Xt
i}ni=1 ∼ Q. We thus

obtain the following Riemannian gradient descent algorithm

θ(t+ 1) = θ(t)− γtĝθ(t)({Xt
i}ni=1)−1dθ(t)ŜD({Xt

i}ni=1‖Pθ).

When Θ = Rm, γt = 1
t , g is the Fisher metric and ŜD({Xt

i}ni=1‖Pθ) is replaced by
K̂L({Xt

i}ni=1‖Pθ) this recovers the natural gradient descent algorithm [1].

1See sec 4.4 [20] for Riemannian Newton method
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B Derivation of Diffusion Stein Discrepancies

In this appendix, we carefully derive the diffusion SD studied in this paper. We begin by providing
details on the diffusion Stein operator, then move on to the DKSD and DSM divergences and
corresponding estimators.

For any matrix kernel we will show in Appendix B.1 that ∀f ∈ Hd: Smp [f ](x) = 〈Sm,1p Kx, f〉Hd .
In Appendix B.2 we prove that if x 7→ ‖Sm,1p Kx‖Hd ∈ L1(Q), then

DKSDK,m(Q‖P)2 ≡ suph∈Hd
‖h‖≤1

∣∣∫
X S

m
p [h]dQ

∣∣2 =
∫
X
∫
X S

m,2
p Sm,1p K(x, y)dQ(x)dQ(y).

In Appendix B.3 we further show the Stein kernel satisfies

k0(x, y) ≡ Sm,2p Sm,1p K(x, y) = 1
p(y)p(x)∇y · ∇x ·

(
p(x)m(x)K(x, y)m(y)>p(y)

)
.

B.1 Stein Operator

By definition for f ∈ Γ
(
X ,Rd

)
and A ∈ Γ

(
X ,Rd×d

)
Sp[f ] = 1

p∇ · (pmf) = m>∇ log p · f +∇ · (mf),

Sp[A] = 1
p∇ · (pmA) = m>∇ log p ·A+∇ · (mA)

which are operators Γ
(
X ,Rd

)
→ Γ

(
X ,R

)
and Γ

(
X ,Rd×d

)
→ Γ

(
X ,Rd

)
respectively.

Proposition 8. Let X be an open (connected) subset of Rd, m is continuously differentiable, and
K : X × X → Rd×d is the matrix kernel of Hd. Suppose for any j ∈ [1, d], K, ∂1j∂2jK are
separately continuous and locally bounded. Then for any f ∈ Hd

Sp[f ](x) = 〈S1
p [K]|x, f〉Hd

Proof

Note that technically the kernelK ofHd takes value in the set of (bounded) linear operators on Rd, and
we view these linear operators as matrices by defining the components (K(x, y))ji ≡ ej ·K(x, y)ei,
where (el) is the canonical basis of Rd. For any f ∈ Hd

〈f(x),m(x)>∇ log p(x)〉Rd = 〈f,K(·, x)m(x)>∇ log p(x)〉Hd
= 〈f,K>x m(x)>∇ log p(x)〉Hd
= 〈f,m(x)>∇ log p(x) ·Kx〉Hd .

Moreover, under these assumptions the RKHS Hd is continuously embedded in the topological
space C1(X ,Rd), so its elements are continuously differentiable. Then for any f ∈ Hd, by theorem
2.11 [53]

〈f, ∂2jK(·, x)er〉Hd = 〈er, ∂jf |x〉Rd = ∂jfr|x.
Hence

〈f,∇ · (mK)|x〉Hd = 〈f, ∂1j (mjrKri)|xei〉Hd = 〈f, ∂jmjr|xKri(x, ·)ei +mjr(x)∂1jKri|xei〉Hd
= ∂jmjr|x〈f,Kir(·, x)ei〉Hd +mjr(x)〈f, ∂1jKri(x, ·)ei〉Hd
= ∂jmjr|x〈f,K(·, x)er〉Hd +mjr(x)〈f, ∂2jKir(·, x)ei〉Hd
= ∂jmjr|x〈f,K(·, x)er〉Hd +mjr(x)〈f, ∂2jK(·, x)er〉Hd
= ∂jmjr|xfr(x) +mjr(x)∂jfr|x
= 〈∇ ·m, f(x)〉Rd + Tr[m(x)∇xf ]

= ∇x · (mf).

Therefore, we conclude that Sp[f ](x) = 〈S1
pKx, f〉Hd where S1

pKx ≡ S1
p [K]|x means applying Sp

to the first entry ofK and evaluate it x, so informally S1
p [K]|x : y 7→ 1

p∇x ·(p(x)m(x)K(x, y)). �
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B.2 Diffusion Kernel Stein Discrepancies

Proposition 9. Suppose Sp[f ](x) = 〈S1
p [K]|x, f〉Hd for any f ∈ Hd. Let m and K be C2, and

x 7→ SpKx be Q-Bochner integrable. Then

DKSDK,m(Q,P)2 =
∫
X
∫
X S

2
pS1

pK(x, y)dQ(x)dQ(y).

Proof

Let us identify H1 ⊗H2
∼= L(H1 ×H2,R) ∼= L(H2,H1) with (v1 ⊗ v2) ∼ v1〈v2, ·〉H2

(since
H2
∼= H∗2), so that (v1 ⊗ v2)u2 ≡ v1〈v2, u2〉H2

(here L(V,W ) is the space of linear maps from
V to W ). Then

〈u1 ⊗ u2, v1 ⊗ v2〉HS ≡ 〈u1, v1〉H1〈u2, v2〉H2 = 〈u1, (v1 ⊗ u2)v2〉H1
.

For simplicity we will write SpKx ≡ S1
p [K]|x. Using the fact x 7→ SpKx is Q-Bochner integrable,

then by Cauchy-Schwartz x 7→ 〈h,SpKx〉Hd is Q-integrable. Then

DKSDK,m(Q,P)2 = suph∈Hd
‖h‖≤1

〈∫
X Sp[h](x)dQ(x),

∫
X Sp[h](y)dQ(y)

〉
R

= suph∈Hd
‖h‖≤1

∫
X 〈h,SpKx〉HddQ(x)

∫
X 〈h,SpKy〉HddQ(y)

= suph∈Hd
‖h‖≤1

∫
X
∫
X 〈h,SpKx〉Hd〈h,SpKy〉HddQ(x)dQ(y)

= suph∈Hd
‖h‖≤1

∫
X
∫
X 〈h,SpKx ⊗ SpKyh〉HddQ(x)dQ(y)

= suph∈Hd
‖h‖≤1

∫
X
∫
X 〈h⊗ h,SpKx ⊗ SpKy〉HSdQ(x)dQ(y)

Moreover
∫
X ‖SpKx ⊗ SpKy‖HSdQ(x)dQ(y) <∞, since∫

X ‖SpKx ⊗ SpKy‖HSdQ(x)⊗ dQ(y)

=
∫
X
∫
X
√
〈SpKx,SpKx〉Hd〈SpKy,SpKy〉HddQ(x)dQ(y)

=
(∫
X
√
〈SpKx,SpKx〉HddQ(x)

)2
=
(∫
X ‖SpKx‖HddQ(x)

)2
<∞

since by assumption x 7→ SpKx is Q-Bochner integrable. Thus

DKSDK,m(Q,P)2 = suph∈Hd
‖h‖≤1

〈
h⊗ h,

∫
X
∫
X SpKx ⊗ SpKydQ(x)dQ(y)

〉
HS

=
∥∥∫
X
∫
X SpKx ⊗ SpKydQ(x)dQ(y)

∥∥
HS

=
∥∥∫
X SpKxdQ(x)⊗

∫
X SpKydQ(y)

∥∥
HS

=
∥∥∫
X SpKxdQ(x)

∥∥2

Hd

=
〈∫
X SpKxdQ(x),

∫
X SpKyQ(dy)

〉
Hd

=
∫
X
∫
X 〈SpKx,SpKy〉HddQ(x)dQ(y)

=
∫
X
∫
X S

2
pS1

pK(x, y)dQ(x)dQ(y).

To show the penultimate equality (exchange integral and inner product), we use the fact SpKx is
Q-Bochner integrable, and that the operator W : f 7→ 〈f,

∫
X SpKyQ(dy)〉Hd is bounded, from

which it follows that〈∫
X SpKxdQ(x),

∫
X SpKyQ(dy)

〉
Hd = W

[∫
X SpKxdQ(x)

]
=
∫
X W [SpKxdQ(x)]

=
∫
X
〈
SpKx,

∫
X SpKydQ(y)

〉
HddQ(x)

=
∫
X
∫
X 〈SpKx,SpKy〉HddQ(x)dQ(y)

Hence DKSDK,m(Q,P)2 =
∫
X
∫
X S

2
pS1

pK(x, y)dQ(x)dQ(y).
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Note that from this proof we have

k0(x, y) ≡ S2
pS1

pK(x, y) = 〈SpKx,SpKy〉Hd ,

which shows the map φ : X → Hd, φ(x) ≡ S1
p [K]|x is a feature map (more precisely it is dual

to the feature map) for the scalar reproducing kernel k0, and its RKHS consists of functions
g(·) = 〈φ(·), f〉Hd for f ∈ Hd [52]. �

B.3 The Stein Kernel Corresponding to the Diffusion Kernel Stein Discrepancy

Note the Stein kernel satisfies

k0 = 1
p(y)p(x)∇y · ∇x ·

(
p(x)m(x)Km(y)>p(y)

)
since

k0 = S2
pS1

pK(x, y) = 1
p(y)p(x)∇y · (p(y)m(y)∇x · (p(x)m(x)K))

= 1
p(y)p(x)∇y · (p(y)m(y)∂xi(p(x)m(x)irKrs)es)

= 1
p(y)p(x)∇y · (p(y)m(y)ls∂xi(p(x)m(x)irKrs)el)

= 1
p(y)p(x)∂yl(p(y)m(y)ls∂xi(p(x)m(x)irKrs))

= 1
p(y)p(x)∂yl∂xi

(
p(x)m(x)irKrsm(y)>slp(y)

)
= 1

p(y)p(x)∇y · ∇x ·
(
p(x)m(x)Km(y)>p(y)

)
.

Note it is also possible to view m(x)Km(y)> as a new matrix kernel. That is the matrix field m de-
fines a new kernelKm : (x, y) 7→ m(x)K(x, y)m>(y), sinceKm(y, x)> = m(x)K(y, x)m(y)> =
Km(x, y) and for any vj ∈ Rd, xi ∈ X ,

vj ·Km(xj , xl)vl = vj ·m(xj)K(xj , xl)m(xl)
>vl =

(
m(xj)

>vj
)
·K(xj , xl)

(
m(xl)

>vl
)
≥ 0

We can expand the Stein kernel using the following expressions:

∇y · (p(y)m(y)∇x · (p(x)m(x)K))

= ∇y ·
(
p(y)m(y)

(
Km(x)>∇xp+ p(x)∇x · (m(x)K)

))
.

∇y ·
(
p(y)m(y)Km(x)>∇xp

)
= m>(x)∇xp ·Km(y)>∇yp+ p(y)∇y ·

(
m(y)Km(x)>∇xp

)
= m>(x)∇xp ·Km(y)>∇yp+ p(y)∇y · (m(y)K) ·m(x)>∇xp,

∇y · (p(y)m(y)p(x)∇x · (m(x)K))

= p(x)(∇y · (p(y)m(y)) · ∇x · (m(x)K) + p(y)Tr[m(y)∇y∇x · (m(x)K)])

= p(x)p(y)Tr[m(y)∇y∇x · (m(x)K)]

+ p(x)∇x · (m(x)K) ·
(
m(y)>∇yp+ p(y)∇y ·m

)
.

Hence

k0 = m>(x)∇x log p ·Km(y)>∇y log p

+∇y · (m(y)K) ·m(x)>∇x log p+∇x · (m(x)K) ·m(y)>∇y log p

+∇x · (m(x)K) · ∇y ·m+ Tr[m(y)∇y∇x · (m(x)K)]

= 〈sp(x),Ksp(y)〉+ 〈∇y · (m(y)K), sp(x)〉+ 〈∇x · (m(x)K), sp(y)〉
+ 〈∇x · (m(x)K),∇y ·m〉+ Tr[m(y)∇y∇x · (m(x)K)]
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B.4 Special Cases of Diffusion Kernel Stein Discrepancy

Consider

k0 = 1
p(y)p(x)∇y · ∇x ·

(
p(x)m(x)K(x, y)m(y)>p(y)

)
and decompose m(x)K(x, y)m(y)> ≡ gA where g is scalar and A is matrix-valued. Then we

k0 = g〈∇y log p,A∇x log p〉+ 〈∇y log p,A∇xg〉+ 〈∇yg,A∇x log p〉
+ Tr[A∇x∇yg] + g∇y · ∇x ·A+ 〈∇x ·A,∇yg〉+

〈
∇y ·A>,∇xg

〉
+ g
〈
∇y ·A>,∇x log p

〉
+ g〈∇x ·A,∇y log p〉.

For the case, K = diag(k1, . . . , kd), setting T xi ≡ 1
p(x)∂xi(p(x)·) then

S2
pS1

p [diag(k1, . . . , kd)] = T yl
(
mli(y)T xc

(
ki(x, y)m>ic(x)

))
= T yl T xc

(
mli(y)ki(x, y)mci(x)

)
.

If K = Ik in components

S2
pS1

p [Ik] = (sp(x))ik(x, y)(sp(y))i + ∂yi(mirk)(sp(x))r + ∂xi(m(x)irk)(sp(y))r

+ ∂xi(m(x)irk)∂yl(mlr) +m(y)ir∂yi∂xs(m(x)srk)

When p = pθ we are often interested in the gradient∇θk0
θ . Note∇y · (m(y)K) = k∇y ·m+∇yk ·

m(y), so 2

∂θi [k〈∇y ·m, sp(x)〉] = k∂θi〈∇y ·m, sp(x)〉
∂θi [〈∇yk ·m(y), sp(x)〉] = 〈∇yk, ∂θi [m(y)sp(x)]〉

Tr[m(y)∇y∇x · (m(x)K)] = ∇yk>m(y)∇x ·m+ Tr[m(y)m(x)>∇y∇xk]

and the terms in ∂θik0 reduce to

∂θi〈sp(x),Ksp(y)〉 = k∂θi〈sp(x), sp(y)〉
∂θi〈∇y · (m(y)K), sp(x)〉 = k∂θi〈∇y ·m, sp(x)〉+ 〈∇yk, ∂θi [m(y)sp(x)]〉
∂θi〈∇x · (m(x)K), sp(y)〉 = k∂θi〈∇x ·m, sp(y)〉+ 〈∇xk, ∂θi [m(x)sp(y)]〉

∂θi〈∇x · (m(x)K),∇y ·m〉 = k∂θi〈∇x ·m,∇y ·m〉+ ∂θi〈∇xk ·m(x),∇y ·m〉.

When K = kI and we further have a diagonal matrix m = diag(fi), m(y)m(x)> =
diag(fi(y)fi(x)). If u � v denotes the vector given by the pointwise product of vectors, i.e.,
(u� v)i = uivi, and f is the vector, then m(x)∇x log p = f(x)�∇x log p and (∇y ·m)i = ∂yifi,
(∇x · (mk))i = ∂xi(fik),

sp(x) ·Ksp(y) = k(x, y)fi(x)∂xi log pfi(y)∂yi log p

∇y · (m(y)K) · sp(x) = ∂yi(fi(y)k)fi(x)∂xi log p

∇x · (m(x)K) · ∇y ·m = ∂xi(fi(x)k)∂yi(fi(y))

Tr[m(y)∇y∇x · (mk)] = fi(y)∂xi
(
fi(x)∂yik

)
and if m 7→ mI (is scalar), (this is just KSD with k(x, y) 7→ m(x)k(x, y)m(y)):

k0 = m(x)m(y)k(x, y)∇x log p · ∇y log p

+m(x)∇y(m(y)k) · ∇x log p+m(y)∇x(m(x)k) · ∇y log p

+∇x(m(x)k) · ∇ym+m(y)∇x · (m(x)∇yk),

When m = I , we recover the usual definition of kernel-Stein discrepancy (KSD):

KSD(Q‖P)
2

=
∫
X
∫
X

1
p(y)p(x)∇y · ∇x(p(x)k(x, y)p(y))dQ(x)dQ(y).

2More generally∇y · (m(y)K) = (∇y ·m) ·K+Tr[∇yK⊗m(y)] where Tr[∇yK⊗m]r = ∂yiKjrmij

and if K = Bk

∂θi [(∇y ·m) ·Ksp(x)] = kBsr∂θi((∇y ·m)s(sp(x))r) = kTr[B∂θi(sp(x)⊗∇y ·m)]

∂θi
[
∇yk>m(y)Bsp(x)

]
= ∂yskBjr∂θi [msj(y)(sp(x))r]
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B.5 Diffusion Kernel Stein Discrepancies as Statistical Divergences

In this section, we prove that DKSD is a statistical divergence and provide sufficent conditions on the
matrix-valued kernel.

B.5.1 Proof of Proposition 1: DKSD as statistical divergence

By Stoke’s theorem
∫
X Sq[v]dQ =

∫
X ∇ · (qmv)dx = 0, thus

∫
X Sp[v]dQ =

∫
X (Sp[v] −

Sq[v])dQ =
∫
X (sp−sq)·vdQ, and by assumption

∫
X Sq[K]dQ =

∫
X ∇·(qmK)dx = 0. Moreover,

with sp = m>∇ log p, and δp,q ≡ sp − sq . Hence

DKSDK,m(Q,P)2 =
∫
X
∫
X S

2
p

[
S1
pK(x, y)

]
dQ(y)dQ(x)

=
∫
X
∫
X (sp(y)− sp(y)) ·

[
S1
pK(x, y)

]
dQ(y)dQ(x)

=
∫
X (sp(y)− sp(y))dQ(y) ·

∫
X
[
S1
pK(x, y)

]
dQ(x)

=
∫
X (sp(y)− sp(y))dQ(y) ·

∫
X
[
S1
pK(x, y)− S1

qK(x, y)
]
dQ(x)

=
∫
X (sp(y)− sp(y))dQ(y) ·

∫
X [(sp(x)− sp(x)) ·K(x, y)]dQ(x)

=
∫
X
∫
X q(x)δp,q(x)>K(x, y)δp,q(y)q(y)dxdy

=
∫
X
∫
X dµ>(x)K(x, y)dµ(y).

where µ(dx) ≡ q(x)δp,q(x)dx, which is a finite measure by assumption. If S(q, p) = 0, then since
K is IPD we have qδp,q ≡ 0, and since q > 0 and m is invertible we must have ∇ log p = ∇ log q
and thus q = p.

B.5.2 Proof of Proposition 2: IPD matrix kernels

Let µ be a finite signed vector measure. (i) If each ki is IPD, then
∫

dµ>Kdµ =∫
ki(x, y)dµi(x)dµi(y) ≥ 0 with equality iff µi ≡ 0 for all i. Conversely suppose∫
ki(x, y)dµi(x)dµi(y) ≥ 0 with equality iff µi ≡ 0 for all i . Suppose kj is not IPD for some

j, then there exists a finite non-zero signed measure ν s.t.,
∫
kjdν ⊗ dν ≤ 0, so if we define the

vector measure µi ≡ δijν, which is non-zero and finite, then
∫
ki(x, y)dµi(x)dµi(y) ≤ 0 which

contradicts the assumption. For (ii), we first diagonalise B = R>DR where R is orthogonal and D
diagonal with positive entries λi > 0. Then∫

dµ>Kdµ =
∫
kdµ>R>DRdµ =

∫
k(Rdµ)

>
D(Rdµ) =

∫
k(x, y)λidνi(x)dνi(y),

where ν ≡ Rµ is finite and non-zero, since µ is non-zero and R is invertible, thus maps non-zero
vectors to non-zero vectors. Clearly if k is IPD then

∫
dµ>Kdµ ≥ 0 with equality iff νi ≡ 0 for

all i. Suppose K is IPD but k is not, then there exists finite non-zero signed measure ν for which∫
kdν ⊗ dν ≤ 0, but then setting µ ≡ R>ξ, with ξi ≡ δijν which is finite and non-zero, implies∫
dµ>Kdµ =

∫
kdξ>Ddξ = λj

∫
kdν ⊗ dν ≤ 0.

B.6 Diffusion Score Matching

Another example of SD is the diffusion score matching (DSM) discrepancy, as introduced below:

B.6.1 Proof of Theorem 2: Diffusion Score Matching

Note that the Stein operator satisfies

Sp[g] = ∇·(pmg)
p = 〈∇p,mg〉+p∇·(mg)

p = 〈∇ log p,mg〉+∇ · (mg) =
〈
m>∇ log p, g

〉
+∇ · (mg).
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Since
∫
X Sq[g]dQ = 0, we have

D(Q‖P) = supg∈G
∣∣∫
X Sp[g](x)Q(dx)

∣∣2 = supg∈G
∣∣∫
X (Sp[g](x)− Sq[g](x))Q(dx)

∣∣2
= supg∈G

∣∣∫
X ((∇ log p−∇ log q) · (mg))dQ

∣∣2,
= supg∈G

∣∣∣〈m>(∇ log p−∇ log q), g
〉
L2(Q)

∣∣∣2
=
∥∥m>(∇ log p−∇ log q)

∥∥2

L2(Q)

=
∫
X

∥∥m>(∇ log p−∇ log q)
∥∥2

2
dQ,

where we have used the fact that G is dense in the unit ball of L2(Q) (since smooth functions
with compact support are dense in L2(Q)), and that the supremum over a dense subset of the
continuous functional F (·) ≡

〈
m>(∇ log p−∇ log q), ·

〉
L2(Q)

is equal to the supremum over
the closure, supGF = supGF . Suppose D(Q‖P) = 0. Then since q > 0 we must have∥∥m>(∇ log p−∇ log q)

∥∥2

2
= 0, i.e., m>(∇ log p−∇ log q) = 0, i.e., ∇(log p − log q) = 0.

Thus log(p/q) = c, so p = qec and integrating implies c = 0, so D(Q‖P) = 0 iff Q = P a.e..

To obtain the estimator we will use the divergence theorem, which holds for example if X,∇ ·X ∈
L1(Rd) for X = qmm>∇ log p (see theorem 2.36, 2.28 [59] or theorem 2.38 for weaker conditions).
Note∥∥m>(∇ log p−∇ log q)

∥∥2

2
= ‖m>∇ log p‖22 + ‖m>∇ log q‖22 − 2m>∇ log p ·m>∇ log q

thus we have∫
X
〈
m>∇ log p,m>∇ log q

〉
dQ =

∫
X
〈
∇ log q,mm>∇ log p

〉
dQ

=
∫
X
〈
∇q,mm>∇ log p

〉
dx

=
∫
X
(
∇ ·
(
qmm>∇ log p

)
− q∇ ·

(
mm>∇ log p

))
dx

= −
∫
X q∇ ·

(
mm>∇ log p

)
dx

= −
∫
X ∇ ·

(
mm>∇ log p

)
dQ.

B.6.2 Diffusion Score Matching Estimators

As for the standard SM estimator, the DSM is only defined for distributions with sufficiently smooth
densities. However the θ-dependent part of DSMm(Q,Pθ) 3∫

X

(∥∥m>∇x log pθ
∥∥2

2
+ 2∇ ·

(
mm>∇ log pθ

))
dQ

=
∫
X

(∥∥m>∇x log pθ
∥∥2

2
+ 2
(〈
∇ · (mm>),∇ log p

〉
+ Tr

[
mm>∇2 log p

]))
dQ,

does not depend on the density of Q. An unbiased estimator for this quantity follows by replacing
Q with the empirical random measure Qn ≡ 1

n

∑
i δXi where Xi ∼ Q are independent. Hence we

consider the estimator

θ̂DSM
n ≡ argminθ∈ΘQn

(∥∥m>∇x log pθ
∥∥2

2
+ 2
(〈
∇ · (mm>),∇ log pθ

〉
+ Tr

[
mm>∇2 log pθ

]))
.

In components, this corresponds to:

θ̂DSM
n = argminθ∈Θ

∫
X dQ(x)‖m(x)>∇x log p(x|θ)‖22 + 2

∑d
j,k,l=1 ∂xj∂xk log p(x|θ)mkl(x)mjl(x)

+ 2
∑d
j,k,l=1 ∂xk log p(x|θ)(∂xjmkl(x)mjl(x) +mkl(x)∂xjmjl(x))

B.6.3 Proof of Theorem 10: DSM as a limit of DKSD

We now consider the the limit in which DKSD converges to DSM:

3 Here we use∇ ·
(
mm>∇ log p

)
=

〈
∇ · (mm>),∇ log p

〉
+Tr

[
mm>∇2 log p

]
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Theorem 10 (DSM as a limit of DKSD). Let Q be a distribution on Rd with q > 0 and suppose
sp−sq ∈ C(Rd)∩L2(Q). Let Φγ(s) ≡ γ−dΦ(s/γ), γ > 0, Φ ∈ L1(Rd), Φ > 0 and

∫
Rd Φ(s)ds =

1. Consider the reproducing kernel kqγ(x, y) = kγ(x, y)/
√
q(x)q(y) = Φγ(x − y)/

√
q(x)q(y),

and set Kq
γ ≡ Bkqγ . Then, DKSDKq

γ ,m(Q‖P)2 → DSMm(Q‖P), as γ → 0.

We use the following lemma as a stepping stone.

Lemma 1. Suppose Φ ∈ L1(Rd), Φ > 0 and
∫

Φ(s) ds = 1. Let f, g ∈ C(Rd) ∩ L2(Rd), then
defining Kγ ≡ BΦγ where Φγ(s) ≡ γ−dΦ(s/γ) and γ > 0, we have∫ ∫

f(x)>Kγ(x, y)g(y)dxdy →
∫
f(x)>Bg(x) dx, as γ → 0.

Proof We rewrite∫
X
∫
X f(x)>BΦγ(x− y)g(y) dxdy =

∫
X
∫
X f(x)>Bg(x− s)dxΦγ(s) ds =

∫
X H(s)Φγ(s) ds,

where H : X → R is defined by

H(s) ≡
∫
X f(x)>Bg(x− s) dx =

∫
X 〈f(x), Bg(x− s)〉Rddx ≡

∫
X 〈f(x), g(x− s)〉Bdx.

Since f, g ∈ C(Rd) ∩ L2(Rd), the function H(s) is continuous, bounded, |H(s)| ≤
A‖f‖L2(Rd)‖g‖L2(Rd) for a constant A > 0 depending only on B, and H(0) =

∫
f(x)>Bg(x) dx.

Given δ > 0, we can split the integral as follows:∫
|s|<δH(s)Φγ(s) ds +

∫
|s|>δH(s)Φγ(s) ds ≡ I1 + I2.

By continuity, given ε ∈ (0, 1) there exists δ > 0 such that |H(s)−H(0)| < ε for all |s| < δ. Let
I<δ ≡

∫
|y|<δ Φγ(y) dy > 0 since Φ > 0. Consider

I1 −H(0) =
∫
|s|<δ Φγ(s)H(s)ds−H(0) =

∫
|s|<δ Φγ(s)

(
H(s)− H(0)

I<δ

)
ds

=
∫
|s|<δ

Φγ(s)
I<δ

(H(s)I<δ − H(0)) ds.

Clearly
∫

Φγ(s)ds =
∫
γ−dΦ(s/γ)ds =

∫
Φ(z)dz = 1, since z ≡ s/γ implies dz = γ−dds, so

I<δ = 1− I>δ = 1−
∫
|y|>δ/γ Φ(y) dy.

Then since Φ is integrable, there exists γ0(δ) > 0 s.t. for γ < γ0(δ) we have
∫
|y|>δ/γ Φ(y) dy < ε

and thus 0 < 1− ε < I<δ < 1. Therefore, for γ < γ0(δ) :

|I1 −H(0)| =
∣∣∣∫|s|<δ Φγ(s)

I<δ
(H(s)I<δ −H(0))ds

∣∣∣
≤
∫
|s|<δ

Φγ(s)
I<δ
|((H(s)−H(0))I<δ +H(0)(I<δ − 1))|ds

≤
∫
|s|<δ

Φγ(s)
I<δ

(|H(s)−H(0)|I<δ + |1− I<δ|H(0))ds

≤
∫
|s|<δ

Φγ(s)
I<δ

(εI<δ + εH(0))ds

≤ ε
∫
|z|<δ/γ Φ(z)dz +H(0)ε ≤ (1 +H(0))ε.

For the second term, since H is bounded we have

I2 =
∫
|s|>δH(s)Φγ(s)ds =

∫
|s|>δ/γ H(γs)Φ(s)ds ≤ ‖H‖∞

∫
|s|>δ/γ Φ(s)ds,

so that, |I2| ≤ ‖H‖∞ε, for γ < γ0(δ). It follows that∣∣∫ ∫ f(x)>Kγ(x, y)g(y)dxdy −
∫
f(x)>Bg(x) dx

∣∣ =
∣∣∫ H(s)Φγ(s)ds−H(0)

∣∣
= |I1 + I2 −H(0)|
≤ |I1 −H(0)|+ |I2| → 0,
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as γ → 0 as required. �
We note that f ∈ L2(Q) if and only if f

√
q ∈ L2(Rd). Therefore applying the previous result, we

have that∫
X
∫
X f(x)>Kq

γ(x, y)g(y) dQ(x) dQ(y) =
∫
X
∫
X

(√
q(x)f(x)

)>
Kγ(x, y)

(
g(y)

√
q(y)

)
dxdy

→
∫
X f(x)>Bg(x)dQ(x), as γ → 0.

Note that if k is a (scalar) kernel function, then (x, y) 7→ r(x)k(x, y)r(y) is a kernel for any function
r : X → R, and thus kqγ defines a sequence of kernels parametrised by a scale parameter γ > 0. It
follows that the sequence of DKSD paramaterised by Kq

γ

DKSDKq
γ ,m(Q‖P)2 =

∫
X
∫
X q(x)δp,q(x)>Kq

γ(x, y)δp,q(y)q(y)dxdy

converges to DSM with inner product 〈·, ·〉B ≡ 〈·, B·〉2 on Rd.

DSMm(Q‖P) =
∫
X δq,p(x)>Bδq,p(x)dQ =

∫
X ‖m

>(∇ log p−∇ log q)‖2BdQ

C Information Semi-Metrics of Minimum Stein Discrepancy Estimators

In this section, we derive expressions for the metric tensor of DKSD and DSM. LetPΘ be a parametric
family of probability measures on X . Given a map D : PΘ × PΘ → R, for which D(P1‖P2) = 0
iff P1 = P2, its associated information semi-metric is defined as the map θ 7→ g(θ), where g(θ) is
the symmetric bilinear form g(θ)ij = − 1

2
∂2

∂αi∂θjD(Pα‖Pθ)|α=θ. When g is positive definite, we can
use it to perform (Riemannian) gradient descent on PΘ

∼= Θ.

C.1 Proof of Proposition 3: Information Semi-Metric of Diffusion Kernel Stein Discrepancy

From Proposition 1 we have

DKSDK,m(Pα,Pθ)2 =
∫
X
∫
X pα(x)δpθ,pα(x)>K(x, y)δpθ,pα(y)pα(y)dxdy

where δpθ,pα = m>θ (∇ log pθ −∇ log pα). Thus

∂αi∂θj DKSDK,m(Pα,Pθ)2 = ∂αi∂θj
∫
X
∫
X pα(x)δpθ,pα(x)>K(x, y)δpθ,pα(y)pα(y)dxdy

= ∂αi
∫
X
∫
X pα(x)∂θjδpθ,pα(x)>K(x, y)δpθ,pα(y)pα(y)dxdy

+ ∂αi
∫
X
∫
X pα(x)δpθ,pα(x)>K(x, y)∂θjδpθ,pα(y)pα(y)dxdy,

and using δpθ,pθ = 0, we get:

∂αi
∫
X
∫
X pα(x)∂θjδpθ,pα(x)>K(x, y)δpθ,pα(y)pα(y)dxdy

∣∣
α=θ

= ∂αi
∫
X
∫
X pα(x)

(
∂θjm

>
θ (∇ log pθ −∇ log pα) +m>θ ∂θj∇ log pθ

)>
K(x, y)δpθ,pα(y)pα(y)dxdy

∣∣
α=θ

=
∫
X
∫
X pα(x)

(
m>θ ∂θj∇ log pθ

)>
K(x, y)∂αiδpθ,pα(y)pα(y)dxdy

∣∣
α=θ

= −
∫
X
∫
X pα(x)

(
m>θ ∂θj∇ log pθ

)>
K(x, y)

(
m>θ ∂αi∇ log pα

)
(y)pα(y)dxdy

∣∣
α=θ

= −
∫
X
∫
X
(
m>θ ∂θj∇ log pθ

)>
(x)K(x, y)

(
m>θ ∂θi∇ log pθ

)
(y)dPθ(x)dPθ(y).

Similarly, we also get:

∂αi
∫
X
∫
X pα(x)δpθ,pα(x)>K(x, y)∂θjδpθ,pα(y)pα(y)dxdy

∣∣
α=θ

= −
∫
X
∫
X
(
m>θ ∂θi∇ log pθ

)>
(x)K(x, y)

(
m>θ ∂θj∇ log pθ

)
(y)dPθ(x)dPθ(y)

= −
∫
X
∫
X
(
m>θ ∂θi∇ log pθ

)>
(y)K(y, x)

(
m>θ ∂θj∇ log pθ

)
(x)dPθ(y)dPθ(x)

= −
∫
X
∫
X
(
m>θ ∂θi∇ log pθ

)>
(y)K(x, y)>

(
m>θ ∂θj∇ log pθ

)
(x)dPθ(y)dPθ(x)

= −
∫
X
∫
X
(
m>θ ∂θj∇ log pθ

)
(x)>K(x, y)

(
m>θ ∂θi∇ log pθ

)
(y)dPθ(y)dPθ(x).
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Hence, we conclude that

1
2∂αi∂θj DKSDK,m(Pα,Pθ)2 = −

∫
X
∫
X
(
m>θ ∂θj∇ log pθ

)
(x)>K(x, y)

(
m>θ ∂θi∇ log pθ

)
(y)dPθ(y)dPθ(x)

The information tensor is positive semi-definite. Indeed writing Vθ(y) ≡ m>θ (y)∇y〈v,∇θ log pθ〉:

〈v, g(θ)v〉 = vigij(θ)v
j

=
∫
X
∫
X
(
m>θ (x)∇x〈v,∇θ log pθ〉

)>
K(x, y)

(
m>θ (y)∇y〈v,∇θ log pθ〉

)
dPθ(x)dPθ(y)

=
∫
X
∫
X
〈
m>θ (x)∇x〈v,∇θ log pθ〉,K(x, y)m>θ (y)∇y〈v,∇θ log pθ〉

〉
dPθ(x)dPθ(y)

=
∫
X
∫
X 〈Vθ(x),K(x, y)Vθ(y)〉dPθ(x)dPθ(y) ≥ 0

since K is IPD.

C.2 Proof of Proposition 4: Information Semi-Metric of Diffusion Score Matching

Proof The information metric is given by g(θ)ij = − 1
2

∂2

∂αi∂θj DSM(pα‖pθ)|α=θ. Recall

DSM(pα‖pθ) =
∫
X

∥∥m>(∇ log pθ −∇ log pα)
∥∥2

2
pαdx.

Moreover

1
2∂αi∂θj DSM(pα‖pθ)

∣∣
α=θ

= 1
2∂αi∂θj

∫
X

∥∥m>(∇ log pθ −∇ log pα)
∥∥2

2
pαdx

∣∣
α=θ

= ∂αi
∫
X
(
m>(∇ log pθ −∇ log pα)

)
·
(
m>∂θj∇ log pθ

)
pαdx

∣∣
α=θ

=
∫
X
(
m>(∇ log pθ −∇ log pα)

)
·
(
m>∂θj∇ log pθ

)
∂αipαdx

∣∣
α=θ

−
∫
X
(
m>∂αi∇ log pα

)
·
(
m>∂θj∇ log pθ

)
pαdx

∣∣
α=θ

= −
∫
X
(
m>∂θi∇ log pθ

)
·
(
m>∂θj∇ log pθ

)
dPθ.

Finally g is semi-positive definite,

〈v, g(θ)v〉 = vigij(θ)v
j =

∫
X v

im>rs∂xs∂θi log pθm
>
rl∂xl∂θj log pθv

jdPθ
=
∫
X m

>
rs∂xs〈v,∇θ log pθ〉m>rl∂xl〈v,∇θ log pθ〉dPθ

=
∫
X
〈
m>∇x〈v,∇θ log pθ〉,m>∇x〈v,∇θ log pθ〉

〉
dPθ

=
∫
X ‖m

>∇x〈v,∇θ log pθ〉‖2dPθ ≥ 0

�

D Proofs of Consistency and Asymptotic Normality for minimum Stein
Discrepancy Estimators

In this appendix, we prove several results concerning the consistency and asymptotic normality of
DKSD and DSM estimators.

D.1 Diffusion Kernel Stein Discrepancies

Given the Stein kernel (2) we want to estimate θDKSD
∗ ≡ argminθ∈Θ DKSDK,m(Q,Pθ)2 =

argminθ∈Θ

∫
X
∫
X k

0
θ(x, y)Q(dx)Q(dy) using a sequence of estimators θ̂DKSD

n ∈
argminθ∈ΘD̂KSDK,m(Q,Pθ)2 that minimise the U -statistic approximation (3). We will as-
sume we are in the specified setting Q = PθDKSD

∗
∈ PΘ. In the misspecified setting it is necessary to

further assume the existence of a unique minimiser.

D.1.1 Strong Consistency

We first prove a general strong consistency result based on an equicontinuity assumption:
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Lemma 2. Let X = Rd. Suppose {θ 7→ k0
θ(x, y)}, {θ 7→ Qzk0

θ(x, z)} are equicontinuous on any
compact subsetC ⊂ Θ for x, y in a sequence of sets whose union has full Q-measure, and ‖spθ (x)‖ ≤
f1(x), ‖∇x ·mθ(x)‖ ≤ f2(x), ‖∇x · (mθ(x)K(x, y))‖ ≤ f3(x, y), |Tr[m(y)∇y∇x · (m(x)K)]| ≤
f4(x, y) hold on C, where f1(x)

√
K(x, x)ii ∈ L1(Q), and f4, f3f2, f1f3 ∈ L1(Q ⊗ Q). Assume

further that θ 7→ Pθ is injective. Then we have a unique minimiser θDKSD
∗ , and if either Θ is compact,

or θDKSD
∗ ∈ int(Θ) and Θ and θ 7→ D̂KSDK,m({Xi}ni=1,Pθ)2 are convex, then θ̂DKSD

n is strongly
consistent.

Proof

Note DKSDK,m(Q,Pθ)2 = 0 iff Pθ = PθDKSD
∗

by Proposition 1, which implies θ = θDKSD
∗ since

θ 7→ Pθ is injective. Thus we have a unique minimiser at θDKSD
∗ .

Suppose first Θ is compact and take C = Θ. Note

|k0(x, y)| ≤|〈sp(x),Ksp(y)〉|+ |〈∇y · (m(y)K), sp(x)〉|+ |〈∇x · (m(x)K), sp(y)〉|
+ |〈∇x · (m(x)K),∇y ·m〉|+ |Tr[m(y)∇y∇x · (m(x)K)]|
≤ |〈sp(x),Ksp(y)〉|+ f3(y, x)f1(x) + f3(x, y)f1(y) + f3(x, y)f2(y) + f4(x, y),

From the reproducing property f(x) = 〈f,K(·, x)v〉Hd , for any f ∈ Hd, v ∈ Rd. Using K(y, x) =
K(x, y)> we haveK(·, x),i = K(x, ·)i,, whereK(·, x),i andK(x, ·)i, denote the ith column and row
respectively, which implies that K(x, ·)i,,K(·, x),i ∈ Hd and f(x)i = 〈f,K(·, x),i〉Hd . Choosing
f = K(·, y),j implies

K(x, y)ij = 〈K(·, y),j ,K(·, x),i〉Hd ≤ ‖K(·, y),j‖Hd‖K(·, x),i‖Hd
=
√
〈K(·, y),j ,K(·, y),j〉Hd

√
〈K(·, x),i,K(·, x),i〉Hd

=
√
K(y, y)jj

√
K(x, x)ii.

It follows that

〈sp(x),Ksp(y)〉 = (sp)i(x)K(x, y)ij(sp)j(y) ≤ (sp)i(x)
√
K(x, x)ii

√
K(y, y)jj(sp)j(y)

≤ ‖sp(x)‖∞
√
K(x, x)ii

√
K(y, y)jj‖sp(y)‖∞

≤ Cf1(x)
√
K(x, x)ii

√
K(y, y)jjf1(y),

where the constant C > 0 arises from the norm-equivalence of ‖sp(y)‖ and ‖sp(y)‖∞. Hence k0 is
integrable. Thus by theorem 1 [70],

supθ

∣∣∣D̂KSDK,m({Xi}ni=1,Pθ)2 −DKSDK,m(Q,Pθ)2
∣∣∣ a.s.−−→ 0

and θ 7→ DKSDK,m(Q,Pθ)2 are continuous. By theorem 2.1 [56] then θ̂DKSD
n

a.s.−−→ θDKSD
∗ .

On the other hand, if Θ is convex we follow a similar strategy to the proof of theorem 2.7 [56]. Since
θDKSD
∗ ∈ int(Θ), we can find a ε > 0 for which C = B(θDKSD

∗ , 2ε) ⊂ Θ is a closed ball containing
θDKSD
∗ (which is compact since Θ ⊂ Rm). Using the compact case, we know any sequence of

estimators θ̃DKSD
n ∈ argminθ∈C D̂KSDK,m({Xi}ni=1,Pθ)2 is strongly consistent for θDKSD

∗ . In
particular, there exists N0 a.s. s.t. for n > N0, ‖θ̃DKSD

n − θDKSD
∗ ‖ < ε . If θ /∈ C, there exists

λ ∈ [0, 1) s.t. λθ̃DKSD
n + (1− λ)θ lies on the boundary of the closed ball C. Using convexity and

the fact θ̃DKSD
n is a minimiser over C,

D̂KSDK,m({Xi}ni=1,Pθ̃DKSD
n

)2

≤ D̂KSDK,m({Xi}ni=1,Pλθ̃DKSD
n +(1−λ)θ)

2

≤ λD̂KSDK,m({Xi}ni=1,Pθ̃DKSD
n

)2 + (1− λ)D̂KSDK,m({Xi}ni=1,Pθ)2

which implies D̂KSDK,m({Xi}ni=1,Pθ̃DKSD
n

)2 ≤ D̂KSDK,m({Xi}ni=1,Pθ)2 and θ̃DKSD
n is the

global minimum of θ 7→ D̂KSDK,m({Xi}ni=1,Pθ)2 for n > N0. �
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When k0 is Fréchet differentiable on Θ equicontinuity can be obtained using the Mean value theorem,
which simplifies the assumptions under which strong consistency holds.

We now prove our main result for consistency of minimum DKSD estimators: Theorem 3:

Proof Let ‖K‖ + ‖∇xK‖ + ‖∇x∇yK‖ ≤ K∞. Note ‖∇y · (m(y)K)‖ ≤ 2f2(y)K∞ and
|Tr[m(y)∇y∇x · (m(x)K)]| ≤ 2f2(y)f2(x)K∞ so

|k0
θ(x, y)| ≤ f1(x)K∞f1(y) + 2f2(x)K∞f1(y) + 2f2(y)K∞f1(x) + 3K∞f2(x)f2(y)

which is symmetric and integrable by assumption. Let Sm, m = 1, 2, . . . be an increasing sequence
of closed balls in Rd, such that ∪∞m=1Sm = Rd. Moreover,

‖∇θ〈sp(x),Ksp(y)〉‖ ≤ g1(x)f1(y)K∞ + g1(y)f1(x)K∞
‖∇θ〈∇y · (m(y)K), sp(x)〉‖ ≤ 2K∞g2(y)f1(x) + 2f2(y)g1(x)K∞
‖∇θ〈∇x · (m(x)K),∇y ·m〉‖ ≤ 2K∞g2(x)f2(y) + 2K∞f2(x)g2(y)

‖∇θTr[m(y)∇y∇x · (m(x)K)]‖ ≤ 2K∞g2(y)f2(x) + 2K∞f2(y)g2(x)

thus ‖∇θk0
θ(x, y)‖ is bounded above by a continuous integrable symmetric function, (x, y) 7→ s(x, y),

which attains a maximum on the compact spaces Sm × Sm. By the MVT applied on the Rm-open
neighbourhood of Θ, |k0

θ(x, y) − k0
α(x, y)| ≤ ‖∇θk0

θ(x, y)‖‖θ − α‖ ≤ s(x, y)‖θ − α‖ ≤
maxx,y∈Sm s(x, y)‖θ− α‖, and k0

θ(x, y) is equicontinuous in θ ∈ C for x, y ∈ Sm. Similarly, since
s is integrable, |

∫
X k

0
θ(x, y)Q(dy) −

∫
X k

0
α(x, z)Q(dz)| ≤ ‖∇θ

∫
X k

0
θ(x, z)dQ(z)‖‖θ − α‖ ≤∫

X ‖∇θk
0
θ(x, z)‖dQ(z)‖θ − α‖ ≤ maxx∈Sm Qzs(x, z)‖θ − α‖ ≤ is equicontinuous in θ ∈ C for

x ∈ Sm. The rest follows as in the previous proposition. �

D.1.2 Proof of Theorem 4: Asymptotic Normality

Proof Note that ∇θD̂KSDK,m({Xi}ni=1,Pθ)2 = 1
N(N−1)

∑
i6=j ∇θk0

θ(Xi, Xj). Let µ(θ) ≡
Q ⊗ Q[∇θk0

θ ]. Assumptions 1 and 2 imply that Q ⊗ Q[‖∇θk0
θ‖2] < ∞. By [29, Theorem 7.1 ] it

follows that

√
n
(
∇θD̂KSDK,m({Xi}ni=1,Pθ)2 − µ(θ)

)
d−→ N (0, 4Σ(θ))

where

Σ = Q
[
Q2

[
∇θk0

θ − µ(θ)
]
⊗Q2

[
∇θk0

θ − µ(θ)
]]

=
∫
X
(∫
X ∇θk

0
θ(x, y)dQ(y)− µ(θ)

)
⊗
(∫
X ∇θk

0
θ(x, z)dQ(z)− µ(θ)

)
dQ(x)

Note that µ(θDKSD
∗ ) = Q ⊗ Q[∇θk0

θ |θDKSD
∗

] = ∇θ
(
Q⊗Q[k0

θ ]
)
|θ=θDKSD

∗
, and if Q ⊗ Q[k0

θ ] is
differentiable around θDKSD

∗ , then the first order optimality condition implies µ(θDKSD
∗ ) = 0.

Consider now ∇θ∇θD̂KSDK,m({Xi},Pθ)2 = 1
n(n−1)

∑
i 6=j ∇θ∇θk0

θ(Xi, Xj). Note

‖∇θ∇θ∇θ〈sp(x),Ksp(y)〉‖ <∼ g1(x)K∞f1(y) + f1(x)K∞g1(y)

‖∇θ∇θ∇θ〈∇y · (m(y)K), sp(x)〉‖ <∼ g2(y)K∞f1(x) + f2(y)K∞g1(x)

‖∇θ∇θ∇θ〈∇x · (m(x)K),∇y ·m〉‖ <∼ f2(y)K∞g2(x) + g2(y)K∞f2(x)

‖∇θ∇θ∇θTr[m(y)∇y∇x · (m(x)K)] <∼ g2(y)K∞f2(x) + f2(y)K∞g2(x)

Hence by Assumptions 1-4 ‖∇θ∇θ∇θk0
θ‖ is bounded above by a continuous integrable sym-

metric function and we can apply the MVT to show equicontinuity as in the proof above.
Moreover the conditions of [70, Theorem 1] hold for the components of ∇θ∇θk0

θ , so that

supθ∈N

∣∣∣ 1
n(n−1)

∑
i 6=j ∂θa∂θbk

0
θ(Xi, Xj)−Q⊗Q∂θa∂θbk0

θ

∣∣∣ a.s.−−→ 0 as n→∞, for all a and b.
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Finally we observe that Q⊗Q∂θa∂θbk0
θ

∣∣
θ=θDKSD

∗
= gab(θ

DKSD
∗ ), where g is the information metric

associated with DKSDK,m. Indeed using δp,q = 0 if p = q

Q⊗Q∂θa∂θbk0
θ

∣∣
θ=θDKSD

∗

= ∂θa∂θb
∫
X
∫
X pθDKSD

∗
(x)δpθ,pθDKSD

∗
(x)>K(x, y)δpθ,pθDKSD

∗
(y)pθDKSD

∗
(y)dxdy

∣∣
θ=θDKSD

∗

= ∂θa
∫
X
∫
X pθDKSD

∗
(x)∂θbδpθ,pθDKSD

∗
(x)>K(x, y)δpθ,pθDKSD

∗
(y)pθDKSD

∗
(y)dxdy

∣∣
θ=θDKSD

∗

+ ∂θa
∫
X
∫
X pθDKSD

∗
(x)δpθ,pθDKSD

∗
(x)>K(x, y)∂θbδpθ,pθDKSD

∗
(y)pθDKSD

∗
(y)dxdy

∣∣
θ=θDKSD

∗

=
∫
X
∫
X pθDKSD

∗
(x)∂θbδpθ,pθDKSD

∗
(x)>K(x, y)∂θaδpθ,pθDKSD

∗
(y)pθDKSD

∗
(y)dxdy

∣∣
θ=θDKSD

∗

+
∫
X
∫
X pθDKSD

∗
(x)∂θaδpθ,pθDKSD

∗
(x)>K(x, y)∂θbδpθ,pθDKSD

∗
(y)pθDKSD

∗
(y)dxdy

∣∣
θ=θDKSD

∗

= 2
∫
X
∫
X

(
m>θDKSD

∗
(x)∇x∂θjDKSD

∗
log pθDKSD

∗

)>
K(x, y)(

m>θDKSD
∗

(y)∇y∂θiDKSD
∗

log pθDKSD
∗

)
dPθDKSD

∗
(x)dPθDKSD

∗
(y),

so Q⊗Q∂θa∂θbk0
θ

∣∣
θ=θDKSD

∗
= gab(θ

DKSD
∗ ). The conditions of [56, Theorem 3.1] hold, from which

the advertised result follows. �

D.2 Diffusion Score Matching

Recall that the DSM is given by:

DSM(Q‖Pθ) =
∫
X

(∥∥m>∇x log pθ
∥∥2

2
+ ‖m>∇ log q‖22 + 2∇ ·

(
mm>∇ log pθ

))
dQ

and we wish to estimate

θDSM
∗ = argminθ∈Θ

∫
X

(∥∥m>∇x log pθ
∥∥2

2
+ 2∇ ·

(
mm>∇ log pθ

))
dQ ≡ argminθ∈Θ

∫
X FθdQ

with a sequence of M -estimators θ̂DSM
n = argminθ∈Θ

1
n

∑n
i Fθ(Xi). Recall also we have

Fθ(x) =
∥∥m>∇x log pθ

∥∥2

2
+ 2
〈
∇ · (mm>),∇ log pθ

〉
+ 2Tr

[
mm>∇2 log pθ

]
.

We will have a unique minimiser θDSM
∗ whenever the map θ 7→ Pθ is injective.

D.2.1 Weak Consistency of DSM

Theorem 11 (Weak Consistency of DSM). Suppose X be open subset of Rd, and Θ ⊂ Rm.
Suppose log pθ(·) is C2(X ) and m ∈ C1(X ), and ‖∇x log pθ(x)‖ ≤ f1(x). Suppose also that
‖∇x∇x log pθ(x)| ≤ f2(x) on any compact setC ⊂ Θ, where ‖m>‖f1 ∈ L2(Q), ‖∇·(mm>)‖f1 ∈
L1(Q), ‖mm>‖∞f2 ∈ L1(Q). If either Θ is compact, or Θ and θ 7→ Fθ are convex and θ∗ ∈ int(Θ),
then θ̂DSM

n is weakly consistent for θ∗.

Proof By assumption θ 7→ Fθ(x) is continuous. Suppose Θ is compact, taking C = Θ, note

|Fθ| =
∣∣∣∥∥m>∇x log pθ

∥∥2

2
+ 2∇ ·

(
mm>∇ log pθ

)∣∣∣
=
∣∣∣∥∥m>∇x log pθ

∥∥2

2
+ 2
(
∇ · (mm>) · ∇ log pθ + Tr

[
mm>∇2 log pθ

])∣∣∣
<∼ ‖m>‖2f2

1 + 2‖∇ · (mm>)‖f1 + 2‖mm>‖∞f2

which is integrable, so the conditions of Lemma 2.4 [56] are satisfied so θ 7→ QFθ is continuous, and
supΘ | 1n

∑n
i Fθ(Xi)−QFθ|

p−→ 0, and thus from theorem 2.1 [56] θ̂DSM
n

p−→ θDSM
∗ . If Θ is convex,

note that the sum of convex functions is convex, so θ 7→ 1
n

∑n
i Fθ(Xi) is convex, and we can follow

a derivation analogous to the one in Theorem 3. �
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D.2.2 Asymptotic Normality of DSM

Theorem 12 (Asymptotic Normality of DSM). Suppose X ,Θ be open subsets of Rd and Rm

respectively. If (i) θ̂DSM
n

p−→ θ∗, (ii) θ 7→ log pθ(x) is twice continuously differentiable on a closed
ball B̄(ε, θ∗) ⊂ Θ, and

(iii) ‖mm>‖ + ‖∇x · (mm>)‖ ≤ f1(x), and ‖∇x log p‖ + ‖∇θ∗∇x log p‖ +
‖∇θ∗∇x∇x log p‖ ≤ f2(x), with f1f2, f1f

2
2 ∈ L2(Q)

(iv) for θ ∈ B̄(ε, θ∗) ‖∇θ∇x log p‖2 + ‖∇x log p‖‖∇θ∇θ∇x log p‖ + ‖∇θ∇θ∇x log p‖ +
‖∇θ∇θ∇x∇x log p‖ ≤ g1(x), and f1g1 ∈ L1(Q),

and (v) and the information tensor is invertible at θ∗. Then

√
n
(
θ̂DSM
n − θ∗

)
d−→ N

(
0, g−1(θ∗)Q[∇θ∗Fθ ⊗∇θ∗Fθ]g−1(θ∗)

)
Proof From (ii) θ 7→ Fθ is twice continuously differentiable on a ball B(ε, θ∗) ⊂ Θ. Note
∇θ 1

N

∑N
i Fθ(Xi) = 1

N

∑N
i ∇θFθ(Xi), then Q[∇θFθDSM

∗
(Xi)] = ∇θQ[FθDSM

∗
(Xi)] = 0. Note

‖∇θFθDSM
∗

(x)‖ <∼ ‖mm>‖‖∇x log p‖‖∇θ∇x log p‖+ ‖∇x · (mm>)‖‖∇θ∇x log p‖
+ ‖mm>‖‖∇θ∇x∇x log p‖
<∼ f1(x)f2(x)[f2(x) + 2].

Hence∇θFθDSM
∗
∈ L2(Q), so by the CLT

√
n∇θ 1

n

∑n
i FθDSM

∗
(Xi)

d−→ N
(
0,Q

[
∇θFθDSM

∗
⊗∇θFθDSM

∗

])
.

Now θ 7→ ∇θ∇θFθ(x) is continuous on B(ε, θ∗) so we have:

‖∇θ∇θFθ(x)‖ <∼ ‖mm>‖
(
‖∇θ∇x log p‖2 + ‖∇x log p‖‖∇θ∇θ∇x log p‖

)
+ ‖∇ · (mm>)‖‖∇θ∇θ∇x log p‖+ ‖mm>‖‖∇θ∇θ∇x∇x log p‖
<∼ f1(x)g1(x)

Combining the above, we have that the assumptions of Lemma 2.4 [56] applied to B(ε, θ∗)

hold, and supB(ε,θ∗)

∣∣ 1
n

∑n
i ∂θa∂θbFθ|θ∗(Xi)−Q∂θa∂θbFθ|θ∗

∣∣ p−→ 0. As in Theorem 4
Q∂θa∂θbFθ|θ∗ = gab(θ

∗) is the information tensor, which is continuous at θ∗ by Lemma 2.4. The
result follows by theorem 3.1 [56]. �

D.3 Strong Consistency and Central Limit Theorems for Exponential Families

Let X be an open subset of Rd, Θ ⊂ Rm. Consider the case when the density p lies in an exponential
family, i.e. pθ(x) ∝ exp(〈θ, T (x)〉Rm − c(θ)) exp(b(x)), where θ ∈ Rm and sufficient statistic
T = (T1, . . . , Tm) : X → Rm. Then ∇T ∈ Γ(X ,Rm×d) and ∇x log pθ = ∇xb + θ · ∇xT ,
∇θ∇x log pθ = ∇xT>.

D.3.1 Strong Consistency of the Minimum Diffusion Kernel Stein Discrepancy Estimator

We consider a RKHSHd of functions f : X → Rd with matrix kernel K. Recall the Stein kernel is

k0 = ∇x log p ·m(x)Km(y)>∇y log p+∇x · (m(x)K) · ∇y ·m+ Tr[m(y)∇y∇x · (m(x)K)]

+∇y · (m(y)K) ·m(x)>∇x log p+∇x · (m(x)K) ·m(y)>∇y log p

Given a (i.i.d.) sample Xi ∼ Q, we can define an estimator using the U -statistic

D̂KSDK,m({Xi}ni=1,Pθ)2 = 2
n(n−1)

∑
1≤i<j≤n k

0(Xi, Xj).
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For the case where the density p lies in an exponential family, then k0 = θ>Aθ + v>θ + c where
A ∈ Γ(X × X ,Rm×m), v ∈ Γ(X × X ,Rm) are given by (we set φ ≡ m>∇T> ∈ Γ(X ,Rd×m))

A = φ(x)>K(x, y)φ(y)

v> = ∇yb ·m(y)K(y, x)φ(x) +∇xb ·m(x)K(x, y)φ(y)

+∇x · (m(x)K) · φ(y) +∇y · (m(y)K) · φ(x)

c = ∇xb ·m(x)K(x, y)m(y)>∇yb+∇x · (m(x)K) · ∇y ·m+ Tr[m(y)∇y∇x · (m(x)K)]

+∇y · (m(y)K) ·m(x)>∇xb+∇x · (m(x)K) ·m(y)>∇yb
Lemma 3. Suppose K is IPD, that ∇T has linearly independent rows, that m is invertible, and
‖φ‖L1(Q) <∞. Then the matrix

∫
X AQ⊗Q is symmetric positive definite.

Proof The matrix B =
∫
X AQ⊗Q is symmetric

(
∫
X AQ⊗Q)> =

∫
X A(x, y)>Q(dx)⊗Q(dy) =

∫
X ∇yTm(y)K(x, y)>m(x)>∇xT>Q(dx)⊗Q(dy)

=
∫
X ∇yTm(y)K(y, x)m(x)>∇xT>Q(dy)⊗Q(dx) =

∫
X AQ⊗Q.

Moreover, set φ ≡ m>∇T>, so A(x, y) = φ(x)>K(x, y)φ(y). If v 6= 0, then u ≡ φv 6= 0 as
∇T> has full column rank (i.e., the vectors {∇Ti} are linearly independent) and m is invertible, and
‖φv‖L1(Q) =

∫
X ‖φ(x)v‖1dx ≤ ‖v‖1

∫
X ‖φ(x)‖1dx < ∞ implies dµi ≡ uidQ is a finite signed

Borel measure for each i. Clearly

v>(
∫
X AQ⊗Q)v =

∫
X u(x)>K(x, y)u(y)Q(dx)Q(dy)

=
∫
X K(x, y)ijui(x)uj(y)Q(dx)Q(dy)

=
∫
X K(x, y)ijµi(dx)µj(dy) ≥ 0.

Moreover since the kernel is IPD, if this equals zero then for all i: 0 = µi(C) = uiQ(C) =
φijvjQ(C) for all measurable sets C, which implies φv = 0 and thus v = 0. �

Theorem 1. Suppose K is IPD with bounded derivative up to order 2, that ∇T has linearly
independent rows, and m is invertible. Suppose ‖φ‖, ‖∇xb‖‖m‖, ‖∇xm‖ + ‖m‖ ∈ L1(Q). The
minimiser θ̂DKSD

n of D̂KSDK,m({Xi}ni=1,Pθ) exists eventually, and converges almost surely to the
minimiser θ∗ of DKSDK,m(Q,Pθ).

Proof

Let Xi : Ω → X ⊂ Rd be independent Q-distributed random vectors. The U -statistic
An ≡ 2

n(n−1)

∑
1≤i<j≤nA(Xi, Xj) is symmetric semi-definite. Since

∫
X ‖A‖dQ ⊗ Q < ∞,

by theorem 1 [30] the components of An converge to the components of B almost surely, and
since the matrix inverse is a continuous map, by the continuous mapping theorem the components
of A−1

n (the inverse exists eventually) converge almost surely to B−1. Hence the minimiser of
D̂KSDK,m({Xi}ni=1,Pθ)2 = θ>Anθ + v>n θ + c where vn ≡ 2

n(n−1)

∑
1≤i<j≤n v(Xi, Xj) exists

eventually.

|A(x, y)| <∼K∞‖φ(x)‖‖φ(y)‖
‖v‖ <∼K∞‖∇yb‖‖m(y)‖‖φ(x)‖+K∞‖∇xb‖‖m(x)‖‖φ(y)‖

+ (‖∇xm‖+ ‖m(x)‖)K∞‖φ(y)‖+ (‖∇ym‖+ ‖m(y)‖)K∞‖φ(x)‖
|c| <∼K∞‖∇xb‖‖m(x)‖‖m(y)‖‖∇yb‖+K∞(‖∇xm‖+ ‖m(x)‖)‖∇ym‖+

+K∞‖m(y)‖(1 + ‖m(x)‖+ ‖∇xm‖)
+K∞(‖∇ym‖+ ‖m(y)‖)‖∇xm‖‖∇xb‖+K∞(‖∇xm‖+ ‖m(x)‖)‖∇ym‖‖∇yb‖

and it follows from the integrability assumptions that Q⊗Q|k0
θ | <∞. Since the product and sum of

random variables that converge a.s. converge a.s., we have that θ̂DKSD
n → θ∗ a.s.,

θ̂DKSD
n = − 1

2A
−1
n vn

a.s.−−→ − 1
2B
−1v = θ∗.

�
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D.3.2 Asymptotic Normality of the DKSD Estimator

We now consider the distribution of
√
n(θ̂DKSD

n −θ∗). Recall thatA ∈ Γ(X ,Rm×m), v ∈ Γ(X ,Rm),
and for n large enough A−1

n exists a.s., and θ̂DKSD
n = − 1

2A
−1
n vn.

Theorem 2. Suppose ‖φ‖, ‖∇xb‖‖m‖, ‖∇xm‖ + ‖m‖ ∈ L2(Q). Then the DKSD estimator is
asymptotically normal.

Proof From the integrability assumptions, it follows that v,A ∈ L2(Q⊗Q), and since X has finite
Q ⊗ Q-measure, v,A ∈ L1(Q ⊗ Q). Assume first that m = 1. Hence the tuple Un ≡ (vn, An) :
Ω→ R2, with E[Un] = (

∫
X vQ⊗Q,

∫
X AQ⊗Q) ≡ (U1, U2) , is asymptotically normal

√
n(Un − E[Un])

d−→ N (0, 4Σ)

where, setting v0 = v − U1 and A0 = A− U2

Σ = E
[(∫
X v

0(X, y)dQ(y),
∫
X A

0(X, y)dQ(y)
)
⊗
(∫
X v

0(X, y)dQ(y),
∫
X A

0(X, y)dQ(y)
)]

=

(∫
X v

0(x, y)dQ(y)
∫
X v

0(x, z)dQ(z)dQ(x)
∫
X v

0(x, y)dQ(y)
∫
X A

0(x, z)dQ(z)dQ(x)∫
X v

0(x, y)dQ(y)
∫
X v

0(x, z)dQ(z)dQ(x)
∫
X A

0(x, y)dQ(y)
∫
X A

0(x, z)dQ(z)dQ(x)

)
Since θ̂DKSD

n = g(Un), θ∗ = g(U) where g(x, y) ≡ − 1
2x/y, we can apply the delta method which

states
√
n(θ̂DKSD

n − θ∗) =
√
n(g(Un)− g(U))

d−→ N
(
0, 4∇g(U)Σ∇g(U)>

)
and ∇g(U) =

(
−1/2U2, U1/2U

2
2

)
. Now let m be arbitrary. Since A ∈ L2(Q) then setting

A0 ≡ A−
∫
X AQ⊗Q we find

√
n(An − E[An])

d−→ N (0, 4Σ1), Σ1 ≡
∫
X
[∫
X A

0(x, y)dQ(y)⊗
∫
X A

0(x, y)dQ(y)
]
dQ(x)

and similarly , with v0 ≡ v −
∫
vdQ⊗ dQ

√
n(vn − E[vn])

d−→ N (0, 4Σ2), Σ2 ≡
∫
X
[∫
X v

0(x, y)dQ(y)⊗
∫
X v

0(x, y)dQ(y)
]
dQ(x).

and
√
n((vn, An)− E[(vn, An)])

d−→ N (0, 4Σ)

where

Σ =
∫
X
[(∫
X v

0(x, y)dQ(y),
∫
X A

0(x, y)dQ(y)
)
⊗
(∫
X v

0(x, y)dQ(y),
∫
X A

0(x, y)dQ(y)
)]

dQ(x).

Let D ≡ Rm × Rm×m, which we equip with coordinates zijk = (xi, yjk). Consider the function
g : D → Rm, (x, y) 7→ − 1

2y
−1x, so g(vn, An) = θDKSD

n . Note Σ ∈ D × D and ∇g : D →
End(D,Rm) ∼= Rm × D, so that ∇g(U)Σ∇g(U)> ∈ Rm×m. First consider the matrix inversion
h(y) = y−1, so ∇h(y) ∈ R(m×m)×(m×m), and ∇h(y)(ij)(kr) = ∂ykrhij . Since h(y)ijyjl = δil we
have 0 = ∂kr(h(y)ijyjl) = ∂kr(h(y)ij)yjl + h(y)ijδjkδrl = ∂kr(h(y)ij)yjl + h(y)ikδrl and

∇h(y)(is)(kr) = ∂kr(h(y)ij)yjlh(y)ls = −hikδrlh(y)ls = −h(y)ikh(y)rs

and clearly f : x 7→ x, then∇f(x) = 1m×m. Moreover

∂yabgi(z) = ∂yab(h(y)ijf(x)j) = ∂yab(h(y)ij)xj = −h(y)iah(y)bjxj , ∂xlgi(z) = h(y)il

Then

(∇g(z)Σ)ir = ∂vgiΣvr = gi,xlΣxlr + gi,yabΣyabr = h(y)ilΣxlr + ∂yab(h(y)is)xsΣyabr

= h(y)ilΣxlr − h(y)iah(y)bsxsΣyabr,

so

(∇g(z)Σ∇g(z)>)ic = (∇g(z)Σ)ir(∇g(z))cr = (∇g(z)Σ)ir∂rgc
= h(y)ilΣxlr∂rgc − h(y)iah(y)bsxsΣyabr∂rgc
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with
h(y)ilΣxlr∂rgc = h(y)ilΣxlxb∂xbgc + h(y)ilΣxlyas∂yasgc

= h(y)ilΣxlxbh(y)cb − h(y)ilΣxlyashca(y)h(y)sjxj
and

−h(y)iah(y)bsxsΣyabr∂rgc = −h(y)iah(y)bsxs
(
Σyabxk∂xkgc + Σyabyld∂yldgc

)
= −h(y)iah(y)bsxs

(
Σyabxkh(y)ck − Σyabyldh(y)clh(y)djxj

)
.

Note we have
Σxx =

∫
X
∫
X v

0(x, y)dQ(y)⊗
∫
X v

0(x, z)dQ(z)dQ(x) ≡
∫
X T (x)⊗ T (x)dQ(x)

Σxy =
∫
X
∫
X v

0(x, y)dQ(y)⊗
∫
X A

0(x, z)dQ(z)dQ(x) ≡
∫
X T (x)⊗ L(x)dQ(x)

Σyy =
∫
X
∫
X A

0(x, y)dQ(y)⊗
∫
X A

0(x, z)dQ(z)dQ(x) ≡
∫
X L(x)⊗ L(x)dQ(x)

then
4∇g(U1, U2)Σ∇g(U1, U2)> =

∫
X (U−1

2 T )⊗ (TU−1
2 )dQ

− 2
∫
X
(
U−1

2 LU−1
2 U1

)
⊗
(
TU−1

2

)
dQ

+
∫
X
(
U−1

2 LU−1
2 U1

)
⊗
(
U−1

2 LU−1
2 U1

)
dQ

�

D.3.3 Diffusion Score Matching Asymptotics

Consider the loss function
L(x, θ) =

〈
∇ log pθ,mm

>∇ log pθ
〉

+ 2
(
∇ · (mm>) · ∇ log pθ + Tr

[
mm>∇2 log pθ

])
.

For the exponential family L(x, θ) = θ>Aθ + v>θ + c, where (we set S = mm>)
A = ∇TS∇T>

v> = 2∇b · S∇T> + 2∇ · S · ∇T> + 2Tr
[
S∇2Ti

]
ei

c = ∇b · S∇b+ 2∇ · S · ∇b+ 2Tr[S∇∇b].
Theorem 13. Suppose m is invertible and {∇Ti} are linearly independent. Then if A, v ∈ L1(Q),
θ̂DSM
n eventually exists and is strongly consistent. If we also have A, v ∈ L2(Q), then θ̂DSM

n is
asymptotically normal.

Proof LetM≡
∫
AdQ, H ≡

∫
vdQ. If A = ∇Tmm>∇T> = ∇Tm(∇Tm)> so rank(A) =

rank(∇Tm(∇Tm)>) = rank(∇Tm) = rank(∇T ) = rank(∇T>) if m is invertible. So if the
vectors {∇Ti} are linearly independent, then ∇T> has full column rank. Then A it is symmetric
positive (strictly) definite and the minimum of L(θ) ≡

∫
L(x, θ)dQ(x) is θ∗ = − 1

2M
−1H which for

sufficiently large n can be estimated by the random variable θ̂DSM
n ≡ − 1

2M
−1
n Hn which converges

a.s. to θ.

We consider the tuple Un ≡ (Hn,Mn), so E[Un] = (H,M). Since A, v ∈ L2(Q), then
√
n(Un − (H,M))

d−→ N (0,Γ)

where, setting v0 = v −H , A0 = A−M
Γ = E

[
(v0, A0)⊗ (v0, A0)

]
.

Let D ≡ Rm × Rm×m, and consider g : D → Rm, defined by g(x, y) = − 1
2y
−1x. Using the Delta

method
√
n(θ̂DSM

n − θ∗) d−→ N
(
0, 4∇g(H,M)Γ∇g(H,M)>

)
where, proceeding as in Appendix D.3.2, we find

4∇g(H,M)Γ∇g(H,M)> =
∫
X (M−1v0)⊗ (v0M−1)dQ

− 2
∫
X
(
M−1A0M−1H

)
⊗
(
v0M−1

)
dQ

+
∫
X
(
M−1A0M−1H

)
⊗
(
M−1A0M−1H

)
dQ

�
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E Proofs of Robustness of Minimum Stein Discrepancy Estimators

In this section, we provide conditions on the Stein operator (and Stein class) to obtain robust estimators
in the context of DKSD and DSM. In particular we prove Proposition 7 and derive the influence
function of DSM.

E.1 Robustness of Diffusion Kernel Stein Discrepancy

Let T : PΘ → Θ with T (P) = argminΘ DKSDK,m(P‖Pθ) be defined by IF(z,Q) ≡
limt→0(T (Q+ t(δz−Q))−T (Q))/t. Denote Qt = Q+ t(δz−Q), θt = T (Qt), θ0 = T (Q). Note
that by the first order optimality condition:

∇θ
∫
X
∫
X k

0Qt ⊗Qt|θt = ∇θt DKSDK,m(Qt‖Pθ) = 0.

By the MVT, there exists θ̄ on the line joining θ0 and θt for which

0 =
∫
X
∫
X ∇θk

0|θ0Qt ⊗Qt +
∫
X
∫
X ∇θ∇θk

0|θ̄Qt ⊗Qt(θt − θ0).

Expanding

Qt ⊗Qt∇θk0|θ0 = t2(δz −Q)⊗ (δz −Q)∇θk0|θ0 + 2tQy∇θk0|θ0(z, y)

where we have used the optimality condition. On the other hand

Qt ⊗Qt∇θ∇θk0|θ̄ = (1− 2t)Q⊗Q∇θ∇θk0|θ̄ + t2(δz −Q)⊗ (δz −Q)∇θ∇θk0|θ̄ + 2tQy∇θ∇θk0|θ̄(z, y).

Hence

Qy∇θk0|θ0(z, y) = 1
2

(
(1− 2t)Q⊗Q∇θ∇θk0|θ̄ + 2tQy∇θ∇θk0|θ̄(z, y)

)
θt−θ0
t +O(t),

and taking the limit t→ 0, θ̄ → θ0 and using a derivation as in the proof of Theorem 4

Qy∇θk0|θ0(z, y) = 1
2

∫
X
∫
X ∇θ∇θk

0|θ0dQ⊗ dQ IF(z,Q) = g(θ0) IF(z,Q)

hence the influence function is given by

IF(z,Q) = g(θ0)−1
∫
X ∇θk

0|θ0(z, y)dQ(y).

We aim to show the estimator is B-robust, that is z 7→ ‖IF(z,Q)‖ is bounded. Sup-
pose that the additional assumptions hold. Then there exists a function c such that∫
〈sp(x),K(x, y)∇θ0sp(y)〉Q(dy) ≤ ‖sp(x)‖c(x) which is bounded in x ∈ X . Following a similar

argument, and using the assumptions, a similar limit will hold for all terms in
∫
∇θ0k0(z, y)dQ(y).

It follows that supz∈X ‖IF(z,Q)‖ <∞.

E.2 Robustness of Diffusion Score Matching

The scoring rule S : X × PX → R of DSM is

S(x,Pθ) ≡ 1
2

∥∥m>∇x log pθ
∥∥2

2
+∇ ·

(
mm>∇ log pθ

)
(x)

Indeed the proof of Theorem 2 we have∫
X

∥∥m>∇ log q
∥∥2

dQ = −
∫
X ∇ ·

(
mm>∇ log q

)
dQ.

which implies QS(·,Q) = − 1
2

∫
X

∥∥m>∇ log q
∥∥2

dQ, so

QS(·,Pθ)−QS(·,Q) =
∫
X

(
1
2

∥∥m>∇x log pθ
∥∥2

2
+ 1

2

∥∥m>∇ log q
∥∥2

+∇ ·
(
mm>∇ log pθ

))
dQ

= DSMm(Q‖Pθ).

From 4.2 [15] the influence function is then IF(x,Pθ) = gDSM(θ)−1s(x, θ), where

s(x, θ) ≡ ∇θS(x, θ) = 1
2∇θ‖m

>∇x log pθ‖22 +∇θ∇x ·
(
mm>∇x log pθ

)
= 1

2∇θ‖m
>∇x log pθ‖22 +∇θ

(〈
∇x · (mm>),∇ log pθ

〉
+ Tr

[
mm>∇2

x log pθ
])

= ∇x∇θ log pθmm
>∇x log pθ + (∇x∇θ log pθ)∇x · (mm>) + Tr[mm>∇x∇x]∇θ log pθ

and where gDSM(θ) ≡ Pθ∇θ∇θS(·, θ) is the information metric associated with DSM. Hence the
estimator is bias-robust iff x 7→ s(x, θDSM

∗ ) is bounded.
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F Additional Numerical Experiments

In this section, we provide further details and expand on the numerical experiments in the main paper.

F.1 Efficiency of Minimum SD Estimators for Scale Parameters of Symmetric Bessel
distributions

In this section, we extend the results from the main text and compares SM with KSD based on a
Gaussian kernel and a range of lengthscale values for the scale parameter of the symmetric Bessel
distribution. The results, given in Fig. 1, are also based on n = 500 IID realisations in d = 1. Similar
results to those for the location parameter are obtained: KSD can deal with rougher densities, as
illustrated when s = 0.6.

Figure 5: Minimum SD Estimators for the Scale of a Symmetric Bessel Distribution. We consider the
case where θ∗1 = 0 and θ∗2 = 1 and n = 500 for a range of smoothness parameter values s in d = 1.

F.2 Bias Robustness of Minimum SD Estimators for the Symmetric Bessel and
Non-standardised Student-t Distributions

In this section, we explore the robustness of minimum SD estimators for the two other examples in
the main paper: the symmetric Bessel distribution (ν = 1000) and the non-standardised student-t
distribution. We once again select a diffusion matrix of the form m(x) = 1/(1 + ‖x‖α), and fix
α = 1 in both cases. This choice is refered to as “robust DKSD”. On the other hand, we call “efficient
DKSD” the DKSDs with choices of m as highlighted in the main text (and which were chosen to
improve efficiency in both cases). The results are provided in Fig. 6. In each case, we used n = 500
data points, 80 of which were corrupted by a Dirac at some value of given on the x-axis. Both in
the student-t and symmetric Bessel distribution, we notice that the “efficient DKSD” has an l1 error
which grows with the value of the Dirac, whereas the “robust DKSD” is bounded as a function of this
Dirac.

Figure 6: The Robustness of Minimum SD Estimators for the Symmetric Bessel and Student-t
Distributions. Left: Student-t distribution. Right: Symmetric Bessel distribution.
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