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1 Supplementary Materials

Here we will give detailed proofs for the results given in the main paper. Any equation reference with
the prefix MP- indicates a reference to an equation number in the main paper. We start with the claim
that the network in consideration is differentiable almost everywhere in weight space.

Proof of Lemmal(l] Note that the claim is trivial if a = 0, so we proceed assuming a # 0. First,
define S/ : R™ x R™ — R™ by

Si(a, W) =h,(WE o(...0(W]a)...)),
where b} : R™ — R™ is given by
h’/i(xlv BREE) 'I"L') = (Sign(x1)7 BN sign(xm)),

where
1 x>0,
sign(z) =40 x =0,
-1 xz < 0.

First, we claim that W — y(a, W) is smooth at W* if all the elements of S}(a, W*) are non-zero
for all 7. Indeed, if this is the case, then, for W in an open neighbourhood of W*,

y(a, W) = WSy (a, W)W _ Sp_1(a, W*) ... S1(a, W)W a, (1)
which is a polynomial function of ¥, and so is smooth. So, we may proceed assuming that at /' *,

at least one element of S;(a, W*) is zero for some i. Write S] ;(a, W*) as this element, so that the

index i refers to the layer, and j refers to the neuron in that layer. We may proceed without loss of
generality assuming that S} ;(a, W*) # 0 for any k < 7 and all [, since otherwise we could relabel

S j(a, W) as S ;(a, W*) where k is minimal. As such, W* is in the set
A={W e R™| 3,j, such that S; ;(a, W) = 0, and S}, ;(a, W) # 0
VE <i,le{l,...,nk}}
Let us partition A into two subsets, B and C, where
B={WeA|Si_1,;,a,W)=0Vje{l,...,ni_1}}, C=A\B.

Note that S is used in the definition of B, not S’. The function W + y(a, W) is differentiable at
all W* € B. This holds because the definition of B and the fact that B C A imply that y(a, W) is
constant in an open neighbourhood of W*. So W — y(a, W) is smooth on B.

We will now show that C' has measure zero. Clearly,
H4+1 n;

c={U Uda

i=1 j=1
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where
Ci,j = {W cA | S;)j(a, W) =0, and S;{CJ(G,W) 7é 0VEk < i,l S {1, Ce ,nk}
dl e {17 ey 77,2',1}7 such that Sifl,l,l(aw W) 75 0}

We will show that each of the C; ; is contained in the finite union of sets which have Lebesgue
measure zero, and this will in turn show that C' has measure zero by sub-additivity of measure.
If W* € C; ;, then W* is in the zero set of the function

yi,j (a, W) = e?WﬁlSi,l(a, W*)W;{QSZ‘,Q(G, W*) e Sl (a, W*)WOTa (2)
This is a polynomial in W, and is non-zero by definition of C; ;. Non-zero real analytic functions
have zero sets with measure zero [Mitl3]], so the zero set of this particular polynomial has measure
zero. Moreover, as we vary W* € C; ; in (2) we get finitely many distinct polynomials, since the
switches S;_1,..., S take on finitely many values. This proves that C; ; is in a finite union of

measure zero sets, and hence C' has Lebesgue measure zero. The map W +— y(a, W) is smooth
everywhere else, so we are done. O

Proof of Lemma 2] Let ¢ be smooth in an open neighbourhood U of a point W* € R™. Defining
e(aia W) = y(aia W) - f(ai)7
we compute

2 N 2 2
aw(m:}VZ( ° <az,W>> + el W)=yl W),

Jj2 J
Owy, dwy,

2
AT (3] 9 3
Z <8wkl a; >> 3)

where (3] follows since each term in y(a;, W) is locally a polynomial in the weights where each
variable has maximum degree 1. The second derivative of ¢ with respect to any variable is therefore
non-negative, and so

AYW) >0 “4)
Hence, ¢ is a subharmonic function on U, and therefore, by the maximum principle for subharmonic
functions [McOQ3]], £ cannot obtain a maximum at W *, unless it is constant on U ]

Remark: Tt is easy to see that the proof of Lemma[Z] can be generalized to the case of a loss function

Zg y(ai, W),

provided aa—;g(f(ai), y) > 0 for all 7.

Proof of Lemma 3| Let X € R™ be a perturbation direction, with X = (Xj,..., Xp), and set
gla, W +1tX) as

gla, W +tX) = Sgy1(a, W)(Wg + tXH)TSH(a, W)...S1(a, W)(Wy + tXO)Ta,
so that

N
d(W +tX) :—NZ: (a;) — §la;, W +tX))2. (5)

Lete(a;, W +tX) = g(a;, W + tX) f(a;); we compute

d? 1 d
Sz li=0d(W +1X) = |t OZ e(ai, W +1X) - g(ai, W +1X),

1 al d 2 d2
= — — | nt . X . Y~ )
N ; (dt|t0y(a/z7W+t )) +€(CL7I,W) dt2|t70y(a“W)’
N
1 d?
z N Ze(a“ )dt2 lt=o07(ai, W).

1

<.
Il



Let W;(a, W) = Sip1(a, W)W;S;(a, W) fori = 0,..., H, with Sy = I,,. It is clear that

Gla, W +tX) = Wy +tXg)T ... (Wo +tXo) a, (6)
where X; = S;11(a, W)X;S;(a, W). We may proceed to compute derivatives
d a . ~ ~ . ~
(e, W +1X) = S Wy +tXy)" . X[ (Wo +1Xo)"a, 7)
i=0
d? - -
2|t of(a, W +tX) = ZZWH xr. X7 W (8)

=0 j#i
Using the triangle inequality, as well as the sub-multiplicative property of matrix norms, we may
estimate

d? A ~ ~ ~ ~
\ & oo W £ 1X) \ <SS Wl Kl 1K [ Wolgllally ©)
i=0 j£i

Here we have used the fact that the Frobenius norm dominates the matrix norm induced by the
Euclidean 2-norm. Neglecting zeroed out columns and rows, we have

2 2
oot 0] < 3 S Wil Xl 1 ol
i=0 j#£i
H
H-1 2
<3S Xl
i=0 j#£i

H-1 2
= H(H + D)W I X]["[all,-
With ||a;||, < rforall 1 <i < N, we therefore obtain

a2 1 & _
im0V +4X) 2 1S elas, WHH + DIWIE X Pal,

i=1

—H(H + 1)|[WII | X]*r ( Z\ e(a;, W )

—V2H(H + WX *rew )1/2-

In the last line we used the Cauchy-Schwarz inequality. Recalling £(WW) = ¢(W), the lemma is
proved. O

| \/

Y

Proof of Lemma E Let Wy be a global minimizer of £y; a global minimizer must exist because £
is coercive and continuous. We have ¢, (W,) = ¢, and as such

A
(Wo) < e, S[Woll” < e. (10)
Since ||W|,, < ||W|| for all W, we have
H—-1
_ H—-1
LW W H T < evE T Y (an
VA
H
H—-1
— vt (12)
VA
H+1
H-1V\ 1
<V2 \FH—l H ’ (13)
VAT V2 H(H 4 )r
A
= —_: 14
V2H(H + 1)r (19



Since the inequality in (T3] is strict, there exists > 0 such that

_ A—0
LW W P! <« ————, 15
) W < a3
and so Wy € U(\, 6). Moreover, since the slack in (T3)) is independent of Wy, the same 6 must work
for all global minimizers. Thus U(A, #) contains all global minimizers. O

Proof of Theorem 3] To define the sets B;, enumerate the possible configurations of the switches
Sjla,W)asj=1,...,H+1landk =1,..., N as we vary W for the ith configuration set B; as
the closure of all points in R™ giving those values for the switches. There are finitely many B;’s, and
their union is all of R™, so (MP{T]) is clear.

Define ¢; : R™ — R as equal to £, but with switches held constant, as prescribed by the definition
of B;. Each ¢; is therefore smooth, and (MP{I3) holds by definition of B;. By Lemma [3|and the
definition of U (A, #), we have, for each point W € B; N U (A, 6),

d2
dt?
which proves (MP{12) for all W € B; N U(A, #). The definition of U (), #) uses strict inequalities,

so there exists open V; D B; N U(A, #) such that each inequality holds for ¢; on V;, and therefore
(MP{I2) holds in V;. O

=g (W +1X) > —(A = )[1X |1 + M| X|* = 6] )7,

Proof of Lemma We will abbreviate U (X, §) as U. Let W € U be a differentiable critical point of
5. Suppose that W is not an isolated local minimum, so that there exists {W,,}52; C U all distinct
from W such that

W, =W, OL(W,) <OL(W) n=12,... (16)

Let I C {1,...,L} suchthati € I if and only if W € B;; I is non-empty by (MP{L1). Let € > 0 be
small enough that

B(W,e)C (| BinU (17
iele
where B(W, ¢) is the Euclidean ball of radius e centred at W; such an € exists because the B; are
closed, and therefore their complements are open. Equation (17)) implies
B(W,e) c | JB:nD), (18)
i€l
and therefore ¢, is always equal to one of the ¢; for i € I on B(W,¢€). Note also that
We(B:NUC(Vi (19)
i€l iel
and therefore, decreasing ¢ if necessary, we also have
B(W,e) C [V (20)
il

This is possible because the V; are open. We conclude that ¢; is strongly convex on B(W ¢) for all
i € I. Now, let n be large enough that W,, € B(W,¢). Take v : [0,1] — U as

v(t) = (1 = t)W,, + W, 21
so that v(0) = W,,, and v(1) = W. By assumption,
€ (v(0)) < &(W). (22)
Define
t* =sup{t € [0,1] | £x(y(s)) < (W) Vs € [0,t]}. (23)

It is clear that ¢* > 0, by (22)), and we claim that t* = 1. Proceeding by contradiction, suppose
t* < 1. Then we must have that £ (y(t*)) = £,(W), and there exists a sequence d,, > 0 converging
to 0 such that

Oyt 4+ 6,)) > O(W) n=1,2,.... (24)



Let J C {1,..., L} suchthati € J if and only if v(¢*) € B;. Note that J C I by (I7). Again, since
the B; are closed, there exists 6 > 0 such that for

v(t) € (U B,;) .V te[t,t+0). (25)

ieJe
This implies £x(v(t)) € {¢:(y(t)) | i € J} forall ¢t € [t*,t* + J). Note, however, that
¢i(y(t) < A(W), ¥V te(tt"+6),ic ) (26)

This holds because ¢;(y(t*)) = ¢;(W) = £x(W) forall i € J, and ¢; is a strongly convex function
on B(W, ). As such, £ (y(t)) < €x(W) forall t € (t*,t* +6), contradicting (24). We conclude that
t* =1, and so £x(y(t)) < €x(W) forall t € [O 1]. Let {tx}32, C [0, 1] be a sequence converging
to 1 such that for all k, y(tx) € B; for some ¢ € I; such an 7 must exist because there are finitely
many B; and infinitely many points in [0, 1]. Because ¢; is strongly convex with parameter 6,

8:0(0)) 2 6:(W) + (V6:W),7(t4) = W) + 1 (ts) — W, @

Sti)nc_e Gi(Y(tr)) — G (W) < 0, Zlly(te) — W|* > 0, and y(tx) — W = (1 — t;,) (W, — W), we
obtain
0> (Vei(W), W,, — W). (28)

¢i(v(tr)) = &i(W) _ x(v(tk)) = Ex (W)
(k) = Wi (k) = W]
As t;, — 1, the right hand side converges to 0 since W is a differentiable critical point of /. On the

We also have

(29)

other hand,
i(Y(Lk)) — i i (Wn —
i SO0) =6 W) _ (Vou, (Wa —W)) _ 0
=l |y () — W W — Wl
which is a contradiction. We therefore conclude that if W is a differentiable critical point, it is an
isolated local minimum. O

Proof of Lemma [6} Assume by contradiction that TV is a local minimum, but that there exists a
sequence of points {W,,}°2; satisfying

Wn—>VV, f)\(Wn)Zé)\(W) n:1,2,... 3D

In the proof of Lemma([5} we have shown that if (31)) holds, then for all » large enough, there are
points on the segment joining W,, and W obtaining strictly smaller values of /; this is shown
explicitly in (26). This is shown without assuming that ¢ is differentiable at W, and thus we may
use it here. We therefore obtain a sequence of points W,, on the segments connecting W,, to W,
satisfying

(W) < (W), (32)
and therefore TV cannot be a local minimum, since W, converges to W. This contradiction proves
the result. O

Proof of Lemma [’E For linear networks, all previous results hold with L, the number of sets B;,
equal to 1. We therefore conclude that Lemma [5] holds for linear neural networks. Suppose by
contradiction that £ has a critical point W # 0 in U (). Then there exists 6 such that W € U(\, ).
By Lemma[5] W is an isolated local minimum. Since W # 0, there exists ¢ € {0, ..., H} such that
W; # 0. Let R : R™+1 — R™i+! be a rotation. Consider the weight

W= Wo,Wi,...,WiRT, RW;i1,...,Wg). (33)
Since RT = R~1, it is clear that }
(W) = (W), (34)

and there are rotations R such that W/ =+ W since W; # 0. Taking R a small rotation, we can make

W arbitrarily close to W, and therefore W is not an isolated local minimum. This contradiction
proves the result. O



Remark: The same proof may not work in the case of a non-linear network, as the switches may
interfere with the rotation matrix R.

Proof of Lemma 8t We have

1) = (VW (1), W(#) = = V(W (@) 35)

Set u(t) = —<L~(t); by assumption, u(t) is C* on [0,¢*] and satisfies

(1) = — S3() = 29 (W (1)) TH( (W (1) V(W (1),

< —CIVa W m)IP,
= —Cuf(t).
As such, u(t) satisfies the differential inequality
u'(t) < —Cu(t), (36)

for ¢t € [0,¢*]. This is the hypothesis of Gronwall’s inequality, which in this setting has a short proof
which we will reproduce for completeness. Let v(¢) be the solution to

V'(t) = —Cu(t), v(0)=u(0). (37)

Assume u(0) > 0, since otherwise the conclusion of the lemma is immediate. Then v(t) =
u(0)e=¢* > 0 for all £, We have,

du(t) _ u'()v(t) —u@)v'(t)
dtv(t) v2(t) ’

_ v(®)(W/(t) + Cu(t))

- (1) =0

So, u(t)/v(t) is a decreasing function which starts at 1 when ¢t = 0. We therefore conclude that for
all t € [0, ],
u(t) < ot) = VAW @) < VW (0)] e, (38)

which proves the lemma. O

References

[McOO03] Robert C. McOwen. Partial Differential Equations: Methods and Applications. Prentice
Hall, 2nd edition, 2003.

[Mit15] Boris Mityagin. The zero set of a real analytic function. arXiv preprint arXiv:1512.07276,
2015.



	Supplementary Materials

