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1 Supplementary Materials

Here we will give detailed proofs for the results given in the main paper. Any equation reference with
the prefix MP- indicates a reference to an equation number in the main paper. We start with the claim
that the network in consideration is differentiable almost everywhere in weight space.

Proof of Lemma 1. Note that the claim is trivial if a = 0, so we proceed assuming a 6= 0. First,
define S′i : Rn0 × Rm → Rni by

S′i(a,W ) = h′i(W
T
i−1σ(. . . σ(WT

0 a) . . .)),

where h′i : Rni → Rni is given by

h′i(x1, . . . , xni
) = (sign(x1), . . . , sign(xni

)),

where

sign(x) =


1 x > 0,

0 x = 0,

−1 x < 0.

First, we claim that W 7→ y(a,W ) is smooth at W ∗ if all the elements of S′i(a,W
∗) are non-zero

for all i. Indeed, if this is the case, then, for W in an open neighbourhood of W ∗,

y(a,W ) = WT
HSH(a,W ∗)WT

H−1SH−1(a,W ∗) . . . S1(a,W ∗)WT
0 a, (1)

which is a polynomial function of W , and so is smooth. So, we may proceed assuming that at W ∗,
at least one element of S′i(a,W

∗) is zero for some i. Write S′i,j(a,W
∗) as this element, so that the

index i refers to the layer, and j refers to the neuron in that layer. We may proceed without loss of
generality assuming that S′k,l(a,W

∗) 6= 0 for any k < i and all l, since otherwise we could relabel
S′i,j(a,W

∗) as S′k,l(a,W
∗) where k is minimal. As such, W ∗ is in the set

A = {W ∈ Rm | ∃i, j, such that S′i,j(a,W ) = 0, and S′k,l(a,W ) 6= 0

∀k < i, l ∈ {1, . . . , nk}}.
Let us partition A into two subsets, B and C, where

B = {W ∈ A | Si−1,j,j(a,W ) = 0 ∀j ∈ {1, . . . , ni−1}}, C = A \B.
Note that S is used in the definition of B, not S′. The function W 7→ y(a,W ) is differentiable at
all W ∗ ∈ B. This holds because the definition of B and the fact that B ⊂ A imply that y(a,W ) is
constant in an open neighbourhood of W ∗. So W 7→ y(a,W ) is smooth on B.

We will now show that C has measure zero. Clearly,

C =

H+1⋃
i=1

ni⋃
j=1

Ci,j ,
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where
Ci,j = {W ∈ A | S′i,j(a,W ) = 0, and S′k,l(a,W ) 6= 0 ∀k < i, l ∈ {1, . . . , nk}

∃l ∈ {1, . . . , ni−1}, such that Si−1,l,l(a,W ) 6= 0}
We will show that each of the Ci,j is contained in the finite union of sets which have Lebesgue
measure zero, and this will in turn show that C has measure zero by sub-additivity of measure.

If W ∗ ∈ Ci,j , then W ∗ is in the zero set of the function

yi,j(a,W ) = eTj W
T
i−1Si−1(a,W ∗)WT

i−2Si−2(a,W ∗) . . . S1(a,W ∗)WT
0 a. (2)

This is a polynomial in W , and is non-zero by definition of Ci,j . Non-zero real analytic functions
have zero sets with measure zero [Mit15], so the zero set of this particular polynomial has measure
zero. Moreover, as we vary W ∗ ∈ Ci,j in (2) we get finitely many distinct polynomials, since the
switches Si−1, . . . , S1 take on finitely many values. This proves that Ci,j is in a finite union of
measure zero sets, and hence C has Lebesgue measure zero. The map W 7→ y(a,W ) is smooth
everywhere else, so we are done.

Proof of Lemma 2. Let ` be smooth in an open neighbourhood U of a point W ∗ ∈ Rm. Defining
e(ai,W ) = y(ai,W )− f(ai),

we compute

∂2

∂wj2kl
`(W ) =

1

N

N∑
i=1

(
∂

∂wjkl
y(ai,W )

)2

+ e(ai,W )
∂2

∂wj2k,l
y(ai,W ),

=
1

N

N∑
i=1

(
∂

∂wjkl
y(ai,W )

)2

, (3)

where (3) follows since each term in y(ai,W ) is locally a polynomial in the weights where each
variable has maximum degree 1. The second derivative of ` with respect to any variable is therefore
non-negative, and so

∆`(W ) ≥ 0 (4)
Hence, ` is a subharmonic function on U , and therefore, by the maximum principle for subharmonic
functions [McO03], ` cannot obtain a maximum at W ∗, unless it is constant on U .

Remark: It is easy to see that the proof of Lemma 2 can be generalized to the case of a loss function

˜̀(W ) =
1

N

N∑
i=1

g(f(ai), y(ai,W )),

provided ∂2

∂y2 g(f(ai), y) ≥ 0 for all i.

Proof of Lemma 3. Let X ∈ Rm be a perturbation direction, with X = (X0, . . . , XH), and set
ỹ(a,W + tX) as

ỹ(a,W + tX) = SH+1(a,W )(WH + tXH)TSH(a,W ) . . . S1(a,W )(W0 + tX0)Ta,

so that

φ(W + tX) =
1

2N

N∑
i=1

(f(ai)− ỹ(ai,W + tX))2. (5)

Let e(ai,W + tX) = ỹ(ai,W + tX)− f(ai); we compute

d2

dt2
|t=0φ(W + tX) =

1

N

d

dt
|t=0

N∑
i=1

e(ai,W + tX)
d

dt
ỹ(ai,W + tX),

=
1

N

N∑
i=1

(
d

dt
|t=0ỹ(ai,W + tX)

)2

+ e(ai,W )
d2

dt2
|t=0ỹ(ai,W ),

≥ 1

N

N∑
i=1

e(ai,W )
d2

dt2
|t=0ỹ(ai,W ).
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Let W̃i(a,W ) = Si+1(a,W )WiSi(a,W ) for i = 0, . . . ,H , with S0 = In0 . It is clear that

ỹ(a,W + tX) = (W̃H + tX̃H)T . . . (W̃0 + tX̃0)Ta, (6)

where X̃i = Si+1(a,W )XiSi(a,W ). We may proceed to compute derivatives

d

dt
ỹ(a,W + tX) =

H∑
i=0

(W̃H + tX̃H)T . . . X̃T
i . . . (W̃0 + tX̃0)Ta, (7)

d2

dt2
|t=0ỹ(a,W + tX) =

H∑
i=0

∑
j 6=i

W̃T
H . . . X̃

T
i . . . X̃

T
j . . . W̃

T
0 a. (8)

Using the triangle inequality, as well as the sub-multiplicative property of matrix norms, we may
estimate ∣∣∣∣ d2dt2 |t=0ỹ(a,W + tX)

∣∣∣∣ ≤ H∑
i=0

∑
j 6=i

‖W̃H‖2 . . . ‖X̃i‖F . . . ‖X̃j‖F . . . ‖W̃0‖2‖a‖2. (9)

Here we have used the fact that the Frobenius norm dominates the matrix norm induced by the
Euclidean 2-norm. Neglecting zeroed out columns and rows, we have∣∣∣∣ d2dt2 |t=0ỹ(a,W + tX)

∣∣∣∣ ≤ H∑
i=0

∑
j 6=i

‖WH‖2 . . . ‖Xi‖F . . . ‖Xj‖F . . . ‖W0‖2‖a‖2,

≤
H∑
i=0

∑
j 6=i

‖W‖H−1∗ ‖X‖2‖a‖2,

= H(H + 1)‖W‖H−1∗ ‖X‖2‖a‖2.
With ‖ai‖2 ≤ r for all 1 ≤ i ≤ N , we therefore obtain

d2

dt2
|t=0φ(W + tX) ≥ − 1

N

N∑
i=1

|e(ai,W )|H(H + 1)‖W‖H−1∗ ‖X‖2‖ai‖2,

≥ −H(H + 1)‖W‖H−1∗ ‖X‖2r

(
1

N

N∑
i=1

|e(ai,W )|

)
,

≥ −
√

2H(H + 1)‖W‖H−1∗ ‖X‖2r`(W )1/2.

In the last line we used the Cauchy-Schwarz inequality. Recalling `(W ) = φ(W ), the lemma is
proved.

Proof of Lemma 4: Let W0 be a global minimizer of `λ; a global minimizer must exist because `λ
is coercive and continuous. We have `λ(W0) = ε, and as such

`(W0) ≤ ε, λ
2
‖W0‖2 ≤ ε. (10)

Since ‖W‖∗ ≤ ‖W‖ for all W , we have

`(W0)1/2‖W0‖H−1∗ ≤
√
ε
√

2
H−1
√
ε
H−1

√
λ
H−1 (11)

=
√

2
H−1

√
ε
H

√
λ
H−1 , (12)

<
√

2
H−1
√
λ
H+1

√
λ
H−1

1
√

2
H
H(H + 1)r

, (13)

=
λ√

2H(H + 1)r
. (14)
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Since the inequality in (13) is strict, there exists θ > 0 such that

`(W0)1/2‖W0‖H−1∗ <
λ− θ√

2H(H + 1)r
, (15)

and so W0 ∈ U(λ, θ). Moreover, since the slack in (13) is independent of W0, the same θ must work
for all global minimizers. Thus U(λ, θ) contains all global minimizers.

Proof of Theorem 3. To define the sets Bi, enumerate the possible configurations of the switches
Sj(ak,W ) as j = 1, . . . ,H + 1 and k = 1, . . . , N as we vary W ; for the ith configuration set Bi as
the closure of all points in Rm giving those values for the switches. There are finitely many Bi’s, and
their union is all of Rm, so (MP-11) is clear.

Define φi : Rm → R as equal to `λ, but with switches held constant, as prescribed by the definition
of Bi. Each φi is therefore smooth, and (MP-13) holds by definition of Bi. By Lemma 3 and the
definition of U(λ, θ), we have, for each point W ∈ Bi ∩ U(λ, θ),

d2

dt2
|t=0φi(W + tX) > −(λ− θ)‖X‖2 + λ‖X‖2 = θ‖X‖2,

which proves (MP-12) for all W ∈ Bi ∩ U(λ, θ). The definition of U(λ, θ) uses strict inequalities,
so there exists open Vi ⊃ Bi ∩ U(λ, θ) such that each inequality holds for φi on Vi, and therefore
(MP-12) holds in Vi.

Proof of Lemma 5: We will abbreviate U(λ, θ) as U . Let W ∈ U be a differentiable critical point of
`λ. Suppose that W is not an isolated local minimum, so that there exists {Wn}∞n=1 ⊂ U all distinct
from W such that

Wn →W, `λ(Wn) ≤ `λ(W ) n = 1, 2, . . . (16)
Let I ⊂ {1, . . . , L} such that i ∈ I if and only if W ∈ Bi; I is non-empty by (MP-11). Let ε > 0 be
small enough that

B(W, ε) ⊂
⋂
i∈Ic

Bci ∩ U (17)

where B(W, ε) is the Euclidean ball of radius ε centred at W ; such an ε exists because the Bi are
closed, and therefore their complements are open. Equation (17) implies

B(W, ε) ⊂
⋃
i∈I

(Bi ∩ U), (18)

and therefore `λ is always equal to one of the φi for i ∈ I on B(W, ε). Note also that

W ∈
⋂
i∈I

Bi ∩ U ⊂
⋂
i∈I

Vi, (19)

and therefore, decreasing ε if necessary, we also have

B(W, ε) ⊂
⋂
i∈I

Vi. (20)

This is possible because the Vi are open. We conclude that φi is strongly convex on B(W, ε) for all
i ∈ I . Now, let n be large enough that Wn ∈ B(W, ε). Take γ : [0, 1]→ U as

γ(t) = (1− t)Wn + tW, (21)

so that γ(0) = Wn, and γ(1) = W . By assumption,

`λ(γ(0)) ≤ `λ(W ). (22)

Define
t∗ = sup{t ∈ [0, 1] | `λ(γ(s)) ≤ `λ(W ) ∀s ∈ [0, t]}. (23)

It is clear that t∗ ≥ 0, by (22), and we claim that t∗ = 1. Proceeding by contradiction, suppose
t∗ < 1. Then we must have that `λ(γ(t∗)) = `λ(W ), and there exists a sequence δn > 0 converging
to 0 such that

`λ(γ(t∗ + δn)) > `λ(W ) n = 1, 2, . . . . (24)
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Let J ⊂ {1, . . . , L} such that i ∈ J if and only if γ(t∗) ∈ Bi. Note that J ⊂ I by (17). Again, since
the Bi are closed, there exists δ > 0 such that for

γ(t) ∈

( ⋃
i∈Jc

Bi

)c
, ∀ t ∈ [t∗, t∗ + δ). (25)

This implies `λ(γ(t)) ∈ {φi(γ(t)) | i ∈ J} for all t ∈ [t∗, t∗ + δ). Note, however, that

φi(γ(t)) < `λ(W ), ∀ t ∈ (t∗, t∗ + δ), i ∈ J. (26)

This holds because φi(γ(t∗)) = φi(W ) = `λ(W ) for all i ∈ J , and φi is a strongly convex function
onB(W, ε). As such, `λ(γ(t)) < `λ(W ) for all t ∈ (t∗, t∗+δ), contradicting (24). We conclude that
t∗ = 1, and so `λ(γ(t)) ≤ `λ(W ) for all t ∈ [0, 1]. Let {tk}∞k=1 ⊂ [0, 1] be a sequence converging
to 1 such that for all k, γ(tk) ∈ Bi for some i ∈ I; such an i must exist because there are finitely
many Bi and infinitely many points in [0, 1]. Because φi is strongly convex with parameter θ,

φi(γ(tk)) ≥ φi(W ) + 〈∇φi(W ), γ(tk)−W 〉+
θ

2
‖γ(tk)−W‖2. (27)

Since φi(γ(tk)) − φi(W ) ≤ 0, θ2‖γ(tk)−W‖2 > 0, and γ(tk) −W = (1 − tk)(Wn −W ), we
obtain

0 > 〈∇φi(W ),Wn −W 〉. (28)
We also have

φi(γ(tk))− φi(W )

‖γ(tk)−W‖
=
`λ(γ(tk))− `λ(W )

‖γ(tk)−W‖
(29)

As tk → 1, the right hand side converges to 0 since W is a differentiable critical point of `λ. On the
other hand,

lim
tk→1

φi(γ(tk))− φi(W )

‖γ(tk)−W‖
=
〈∇φi, (Wn −W )〉
‖Wn −W‖

< 0, (30)

which is a contradiction. We therefore conclude that if W is a differentiable critical point, it is an
isolated local minimum.

Proof of Lemma 6: Assume by contradiction that W is a local minimum, but that there exists a
sequence of points {Wn}∞n=1 satisfying

Wn →W, `λ(Wn) = `λ(W ) n = 1, 2, . . . (31)

In the proof of Lemma 5, we have shown that if (31) holds, then for all n large enough, there are
points on the segment joining Wn and W obtaining strictly smaller values of `λ; this is shown
explicitly in (26). This is shown without assuming that `λ is differentiable at W , and thus we may
use it here. We therefore obtain a sequence of points W̃n on the segments connecting Wn to W ,
satisfying

`λ(W̃n) < `λ(W ), (32)

and therefore W cannot be a local minimum, since W̃n converges to W . This contradiction proves
the result.

Proof of Lemma 7: For linear networks, all previous results hold with L, the number of sets Bi,
equal to 1. We therefore conclude that Lemma 5 holds for linear neural networks. Suppose by
contradiction that `λ has a critical point W 6= 0 in U(λ). Then there exists θ such that W ∈ U(λ, θ).
By Lemma 5, W is an isolated local minimum. Since W 6= 0, there exists i ∈ {0, . . . ,H} such that
Wi 6= 0. Let R : Rni+1 → Rni+1 be a rotation. Consider the weight

W̃ = (W0,W1, . . . ,WiR
T , RWi+1, . . . ,WH). (33)

Since RT = R−1, it is clear that
`λ(W̃ ) = `λ(W ), (34)

and there are rotations R such that W̃ 6= W since Wi 6= 0. Taking R a small rotation, we can make
W̃ arbitrarily close to W , and therefore W is not an isolated local minimum. This contradiction
proves the result.
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Remark: The same proof may not work in the case of a non-linear network, as the switches may
interfere with the rotation matrix R.

Proof of Lemma 8: We have

d

dt
γ(t) = 〈∇`λ(W (t)), Ẇ (t)〉 = −‖∇`λ(W (t))‖2. (35)

Set u(t) = − d
dtγ(t); by assumption, u(t) is C1 on [0, t∗] and satisfies

u′(t) = − d2

dt2
γ(t) = −2∇`λ(W (t))TH(`λ(W (t)))∇`λ(W (t)),

≤ −C‖∇`λ(W (t))‖2,
= −Cu(t).

As such, u(t) satisfies the differential inequality

u′(t) ≤ −Cu(t), (36)

for t ∈ [0, t∗]. This is the hypothesis of Grönwall’s inequality, which in this setting has a short proof
which we will reproduce for completeness. Let v(t) be the solution to

v′(t) = −Cv(t), v(0) = u(0). (37)

Assume u(0) > 0, since otherwise the conclusion of the lemma is immediate. Then v(t) =
u(0)e−Ct > 0 for all t, We have,

d

dt

u(t)

v(t)
=
u′(t)v(t)− u(t)v′(t)

v2(t)
,

=
v(t)(u′(t) + Cu(t))

v2(t)
≤ 0.

So, u(t)/v(t) is a decreasing function which starts at 1 when t = 0. We therefore conclude that for
all t ∈ [0, t∗],

u(t) ≤ v(t)⇒ ‖∇`λ(W (t))‖2 ≤ ‖∇`λ(W (0))‖2e−Ct, (38)
which proves the lemma.
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