396

397

398

399

400

401

402

403

404

405
406
407
408
409

410
411

412

413

414

415

416

417

418

419

420
421

422

A Proof of Main Result

We now give the proof of Theorem 5.1, which establishes identifiability, consistency, and asymptotic
normality.

Recall our setup:

e Y: outcome; T': treatment; Z: confounder.

e 7 is unobserved. We use some non-iid additional structure as a proxy.
(Vi Th, Z:) = P.

Qt,z) =E[Y|t,2]:9(2) = P(T = 1] 2)

The target parameter is the ATE,

Yo =E[Q(1,2) - Q(0, 2)].

The estimator and the algorithm. Recall that we learn the nuisance parameters (), g, and the
embeddings A using a semi-supervised embedding-based predictor. We allow a slightly more general
construction of the estimator than in the body of the paper. In the body, we state the result only for
the A-IPTW. Here, we allow any estimator that solves the efficient estimating equations. This allows,
for example, for targeted minimum loss based estimation.

Step 1. Form a K-fold partition; the splits are I,k = 1,..., K. For each set I, let I} denote the
units not in [y.

Construct K estimators ¢(I§), k= 1,..., K:

1. Estimate the nuisance parameters (), g, and the embedding A:

) = (30 (19875, Qul,43015))

2. ¢(I{) is a solution to the following equation:

1 N . e~ c
E Z ¥ (EaTia Zla ﬂ’o, )\lvgn(a Aiv:)/’;qle)a Qn(v ’;:)/T?Jk)) = 07

i€ I,
where the ¢(+) function is the efficient score:

SD(Y7 T7 Za 1/}07 >\7gnu Qn)

T ~ 1-T
Zm{y —Qn(1,N)} = =00

We note that ¢ does not depend on the unobserved Z.

{Y - Qn(ov )‘)} + {Qn(la )‘) - Qn(ov )‘)} - 1/)0-

Step 2. The final estimator for the ATE g is
o1 &
b= ; D(I5).

The theorem and the proof.
Assumption 1. The probability distributions P satisfies

Y:Q(T7Z)+<7 E[<|Z7T]=O,
T=g(2Z)+v, Elv|Z] =0.

Assumption 2. There is some function A mapping features Z into RP such that A satisfies the
condition of Theorem 4.1, and

1Qn(d, Anis Aq.re) — QU AZ)) P2 + 1|Gn(Ansis gzg) — INZ) P2 < Onye. (5.1

Additionally, A must satisfy all of the following assumptions.
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Assumption 3. The following moment conditions hold for some fixed ¢, C, ¢, some ¢ > 4, and all
te{0,1}

QA2 pg < C,
¥l < C.

Pe < g\(Z) S 1—¢) =1,
P(Er [(2N2)] <C) =1,
Illpz > e,

]]ps > c.

Assumption 4. The estimators of nuisance parameters satisfy the following accuracy requirements.
There is some d,,, A, — 0 such that for all n > 2K and d € {0, 1} it holds with probability no
lessthan 1 — A,,

1Qn(d, Anii A0.1e) — Qd, M(Z1)))

And,

2 G0 (i Ag,1e) — 9 Z) P2 < S - 1> (52)

P(5 < gn(An,i;;Yg,Ig) <1- 5) =1, (5.3)
Assumption 5. We assume the dependence between the trained embeddings is not too strong: For
any 4, j and all bounded continuous functions f with mean 0,

. N 1
Theorem A.1 (Validity). Denote the true ATE as
1/)0 = EP [Q(la Z) - Q(O7 Z)] .

Under Assumptions 1 to 5 the estimator 1/; concentrates around 1)y with the rate 1//n and is
approximately unbiased and normally distributed:

o7 /n(d — o) 5 N(0,1)

o® =Ep [¢f (W;v0,n(\2)))],
where

W = (Y, T,\2)),

n(A(2)) = (9(A(2)), Q(T, \(Z))),

and
0o (Y, T, M(Z); 00, n(A(Z)))
T

1
) A AR A w3 Yy o)

Proof. We prove the result for the special case where A is the identity map. By Assumption 2 this is
without loss of generality—it’s the case where all of the information in Z is relevant for prediction.
This is not an important mathematical point, but substantially simplifies notation.

{Y —Q(0,A(2))} +{Q(1,A(2)) — Q(0, \(2))} — ¢o.

The proof follow the same idea as in Chernozhukov er al. [Che+17b] with a few modifications
accounting for the non-iid proxy structure.

We start with some notation.
1. || - || p,q denotes the L,(P) norm. For example, for measurable f : W 4R,
FVlrg = ([ 1) dP())
2. The empirical process G, 1 (f(W)) for || f(W;)||p2 < oo is

LS () - / f(w) dP(w)).

G 1 (f(W)) := NP

12
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3. The empirical expectation and probability is

B [J0)) = [ Pus(A)i= - S 1(Wi € A)

iel
Let IP,, be the empirical measure.

Step 1: (Main Step). Letting 1, = (), we first write

Vit = 0) = G s o (Wi, iIE)) + Vi [ (s v, (1) AP,
where
A7) = (A gn(35575), Qul, 35215))
as is defined earlier.

Steps 2 and 3 below demonstrate that foreach k =1, ..., K,

/( (w3 0, (IE)) — o (ws Yo, n(2))? AP (w) = o, (1),

and that

i / (w3 0, A(IE)) AP () = o, (1).

(A.2) implies

G, 1 (0(w; ¥o, (15)) — o(w; o, n(2))) = op, (1)
due to Lemma B.1 of Chernozhukov et al. [Che+17b] and the Chebychev’s inequality.

~g. 15

(A1)

(A2)

(A.3)

We note that /(1) = <;\1, Gn (3397, Q- ,’y,? I")), where the embedding \;’s are not indepen-

dent. By contrast, 77(z) only depends on Z; where all Z;’s are independent.
We next show o~ /i (¥ — 10)i, = 0 G, 10 00(Ws b0, 0(Z) ) 1=y + 0p,, (1).
First, we notice

E [[Vnk bk = 1h0) — Gn,1e00(W; b0, n(2))]? | If]

=E [[Gp,1e0(W; 0, 0(I5)) — Gn,1¢00(W;¥0,1(Z)) + 0p,, (1)]? | If]

=E [(Gn,1e0(W; 00, (I | IE] + E (G 100 (W3 100, 1(2)))? | IF]

= 2E [(Gu, 10 (W30, 1(I3)) - (G, 15 00(Ws b0, 1(2))) | I7] + 0p,, (1)
The first equality is due to (A.1) and (A.2). The second equality is due to
E [Gn,f,g@(W;%,ﬁ(Ig))] =E [Gn,1re00(W;¢0,1(Z))] = 0.

If we write ¢(W;) := — [o(w (w), we have

E [[\/@(W - 7/)0) - Gn,f,g@o(W; Yo, n(2))* | If]

= % {Z P(Wis o, 1(I5)) - (Wi o, 0(7))| f;:,]

1,j=1

—|—E

Z @o(Wis o, 1(Zi)) - @O(Wj§¢07ﬁ(zj)):|

7,7=1

— 2K [(Gp 1e0(W; %0, (IF)) | If] - E (G 1e00(W %0, 1(Z)))] + 0p, (1)

=23 o)+ - > Epo(Wistbo,n(Z)] - E [po(Wis o, a(Z)] + oz, (1)

i,j=1 i,j=1

=op, (1)

13
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The second equality is due to Assumption 5, the independence of W;’s, and (A.4).
By Lemma B.1 of Chernozhukov et al. [Che+17b],

E [[vnk (§r — 0) — G 1e00(W; b0, 1(2))]? | 1] = op,, (1)
implies
VK (P = 10) — G repo(Witho, 1(Z)) = op, (1)
Therefore, we have
Tk W = vo)isr = 07 G po (Wi, n(Z))iss + op, (1) 5 (NS,

where (V)& | is a Gaussian vector with independent \V'(0, 1) coordinates. Using the independence
of Z,’s and the central limit theorem, we have

o — o)
—1 1 = 7.
=0 \/E(E ;(ﬂ/k—ﬂfo))
) K
:EO'_l ZGn,I;@O(W7 1/’0; 77(2)) + O]Pn(]')
k=1

K
d 1 _

Step 2: This step demonstrates (A.2). Observe that for some constant C. that depends only on € and P,
(W3 4bo, 1(15)) — (W3 %0, n(Z2))le, 2 < Ce(Ti + In + T3),

where
Ty = max [1Qa(d, Z:37") = (. 2)llr, 2.
7y — [TV QX5 T -QL2),
an(53) 9N
7o — L= D = @05 (1 -TIY -Q.2)
L= guls ) =90

We bound 7,75, and Z3 in turn. First, P, (Z7 > 0,,) < A,, — 0 by Assumption 4, and so
7, = op, (1). Also, on the event that

Po(e <gn(Z;I) <1—-¢)=1 (A.5)
10n (1, X425) = QL 2) e, 2 + 13 (98") = 9(2)|lps 2 < G (A.6)

which happens with Pp_-probability at least 1 — A,,,. by Assumption 4,

T, < 2| Tg(2)(Y — QL X A275)) = T9u(Z: I)(Y — QL 2))le.. 2
< e g(Z)(QL, Z) + ¢ — Qu(L,MA2T)) = Gu(Z: I Ip, 2
< e7|g(2)(@Qu(L M A2™) = QL 2))lp, 2 + 1(50(Z 1) — 9(2))Clp,. 2
< e 2Qn(L, X 42) = QL 2)l[p, 2 + VC|gn(Z: 1) — 9(Z) I, 2
< e b, + V06, ) =0,

ns

where the first inequality follows from (A.5) and Assumption 4, the second from the facts that
Te{0,1}andforT =1,Y = Q(1, Z) + ¢, the third from the triangle inequality, the fourth from
the facts that P,,(g(Z) < 1) = 1 and P,,(Ep, [¢*]| Z] < C) = 1 in Assumption 3, the fifth from
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(A.6), and the last assertion follows since d,,,, — 0. Hence, Zo = op, (1). In addition, the same
argument shows that Zs = op_ (1), and so (A.2) follows.

Step 3: This step demonstrates (A.3). Observe that since g = Ep, [Q(1, Z) — Q(0, Z)], the left-
hand side of (A.3) is equal to

7 —vi [ BELIE . (G005~ Q1.2

gank) 9(2)

+

Q0,2 1) — Q(0, 2)) APy (2).

But on the event that
Po(e < gu(ZiIf) < 1—¢) =1
and

QI - c -
e [1Qu(d X35 %) = QU D)lle, 2 19 (Z: 1) = 9(Z)lle 2 < S -,

which happens with Pp_ -probability at least 1 —A,, . by Assumption 4,the Cauchy-Schwarz inequality
implies that
20,

nK

7, < 2% inax 1Qn(d, X 37 7) = QUd, Z)[p, 2 - [19n(Z: 1) = 9(Z)lp, 2 <

— 0,

which gives (A.3).
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