
A Proof of Main Result396

We now give the proof of Theorem 5.1, which establishes identifiability, consistency, and asymptotic397

normality.398

Recall our setup:399

• Y : outcome; T : treatment; Z: confounder.400

• Z is unobserved. We use some non-iid additional structure as a proxy.401

• (Yi, Ti, Zi)
iid∼ P .402

• Q(t, z) = E [Y | t, z]; g(Z) = P (T = 1 |Z)403

• The target parameter is the ATE,404

ψ0 = E [Q(1, Z)−Q(0, Z)] .

The estimator and the algorithm. Recall that we learn the nuisance parameters Q, g, and the405

embeddings λ using a semi-supervised embedding-based predictor. We allow a slightly more general406

construction of the estimator than in the body of the paper. In the body, we state the result only for407

the A-IPTW. Here, we allow any estimator that solves the efficient estimating equations. This allows,408

for example, for targeted minimum loss based estimation.409

Step 1. Form a K-fold partition; the splits are Ik, k = 1, . . . ,K. For each set Ik, let Ick denote the410

units not in Ik.411

Construct K estimators ψ̌(Ick), k = 1, . . . ,K:412

1. Estimate the nuisance parameters Q, g, and the embedding λ:413

η̂(Ick) :=
�
λ̂i, g̃n(·; γ̂g,Ic

k
n ), Q̃n(·, ·; γ̂Q,Ic

k
n )

�

2. ψ̌(Ick) is a solution to the following equation:414

1

nK

�

i∈Ik

ϕ
�
Yi, Ti, Zi;ψ0, λ̂i, g̃n(·; λ̂i, γ̂

g,Ic
k

n ), Q̃n(·, ·; γ̂Q,Ic
k

n )
�
= 0,

where the ϕ(·) function is the efficient score:415

ϕ(Y, T, Z;ψ0,λ, g̃n, Q̃n)

=
T

g̃n(λ)
{Y − Q̃n(1,λ)}−

1− T

1− g̃n(λ)
{Y − Q̃n(0,λ)}+ {Q̃n(1,λ)− Q̃n(0,λ)}− ψ0.

We note that ϕ does not depend on the unobserved Z.416

Step 2. The final estimator for the ATE ψ0 is417

ψ̃ =
1

K

K�

k=1

ψ̌(Ick).

The theorem and the proof.418

Assumption 1. The probability distributions P satisfies419

Y = Q(T, Z) + ζ, E[ζ |Z, T ] = 0,

T = g(Z) + ν, E[ν |Z] = 0.

Assumption 2. There is some function λ mapping features Z into Rp such that λ satisfies the420

condition of Theorem 4.1, and421

||Q̃n(d, λ̂n,i; γ̂Q,Ic
k
)−Q(d,λ(Zi))||P,2 + ||g̃n(λ̂n,i; γ̂g,Ic

k
)− g(λ(Zi))||P,2 ≤ δnK

. (5.1)

Additionally, λ must satisfy all of the following assumptions.422
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Assumption 3. The following moment conditions hold for some fixed ε, C, c, some q > 4, and all423

t ∈ {0, 1}424

||Q(t,λ(Z))||P,q ≤ C,

||Y ||P,q ≤ C,

P (ε ≤ g(λ(Z)) ≤ 1− ε) = 1,

P (EP

�
ζ2 |λ(Z)

�
≤ C) = 1,

||ζ||P,2 ≥ c,

||ν||P,2 ≥ c.

Assumption 4. The estimators of nuisance parameters satisfy the following accuracy requirements.425

There is some δn,ΔnK
→ 0 such that for all n ≥ 2K and d ∈ {0, 1} it holds with probability no426

less than 1−ΔnK
:427

||Q̃n(d, λ̂n,i; γ̂Q,Ic
k
)−Q(d,λ(Zi))||P,2 · ||g̃n(λ̂n,i; γ̂g,Ic

k
)− g(λ(Zi))||P,2 ≤ δnK

· n−1/2
K (5.2)

And,428

P (ε ≤ g̃n(λ̂n,i; γ̂g,Ic
k
) ≤ 1− ε) = 1, (5.3)

Assumption 5. We assume the dependence between the trained embeddings is not too strong: For429

any i, j and all bounded continuous functions f with mean 0,430

E
�
f(λ̂n,i) · f(λ̂n,j)

�
= o(

1

n
). (5.4)

Theorem A.1 (Validity). Denote the true ATE as431

ψ0 = EP [Q(1, Z)−Q(0, Z)] .

Under Assumptions 1 to 5 the estimator ψ̃ concentrates around ψ0 with the rate 1/
√
n and is432

approximately unbiased and normally distributed:433

σ−1
√
n(ψ̃ − ψ0)

d→ N (0, 1)

σ2 = EP

�
ϕ2
0 (W ;ψ0, η(λ(Z)))

�
,

where434

W = (Y, T,λ(Z)),

η(λ(Z)) = (g(λ(Z)), Q(T,λ(Z))),

and435

ϕ0(Y, T,λ(Z);ψ0, η(λ(Z)))

=
T

g(λ(Z))
{Y −Q(1,λ(Z))}− 1− T

1− g(λ(Z))
{Y −Q(0,λ(Z))}+ {Q(1,λ(Z))−Q(0,λ(Z))}− ψ0.

Proof. We prove the result for the special case where λ is the identity map. By Assumption 2 this is436

without loss of generality—it’s the case where all of the information in Z is relevant for prediction.437

This is not an important mathematical point, but substantially simplifies notation.438

The proof follow the same idea as in Chernozhukov et al. [Che+17b] with a few modifications439

accounting for the non-iid proxy structure.440

We start with some notation.441

1. || · ||P,q denotes the Lq(P ) norm. For example, for measurable f : W d→ R,442

||f(W )||P,q := (

�
|f(w)q dP (w)|)1/q.

2. The empirical process Gn,I(f(W )) for ||f(Wi)||P,2 < ∞ is443

Gn,I(f(W )) :=
1√
n

�

i∈I

(f(Wi)−
�

f(w) dP (w)).
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3. The empirical expectation and probability is444

En,I [f(W )] :=
1

n
f(Wi); Pn,I(A) :=

1

n

�

i∈I

1(Wi ∈ A).

Let Pn be the empirical measure.445

Step 1: (Main Step). Letting ψ̌k = ψ̌(Ick), we first write446

√
n(ψ̌k − ψ0) = Gn,Ic

k
ϕ(W ;ψ0, η̂(I

c
k)) +

√
n

�
ϕ(w;ψ0, η̂(I

c
k)) dPn(w), (A.1)

where447

η̂(Ick) :=
�
λ̂i, g̃n(·; γ̂g,Ic

k
n ), Q̃n(·, ·; γ̂Q,Ic

k
n )

�

as is defined earlier.448

Steps 2 and 3 below demonstrate that for each k = 1, . . . ,K,449
�
(ϕ(w;ψ0, η̂(I

c
k))− ϕ0(w;ψ0, η(z)))

2 dPn(w) = oPn(1), (A.2)

and that450 √
n

�
ϕ(w;ψ0, η̂(I

c
k)) dPn(w) = oPn(1). (A.3)

(A.2) implies451

Gn,Ic
k
(ϕ(w;ψ0, η̂(I

c
k))− ϕ0(w;ψ0, η(z))) = oPn

(1)

due to Lemma B.1 of Chernozhukov et al. [Che+17b] and the Chebychev’s inequality.452

We note that η̂(Ick) =
�
λ̂i, g̃n(·; γ̂g,Ic

k
n ), Q̃n(·, ·; γ̂Q,Ic

k
n )

�
, where the embedding λ̂i’s are not indepen-453

dent. By contrast, η(z) only depends on Zi where all Zi’s are independent.454

We next show σ−1√nK(ψ̌k − ψ0)
K
k=1 = σ−1Gn,Ic

k
ϕ0(W ;ψ0, η(Z))Kk=1 + oPn

(1).455

First, we notice456

E
�
[
√
nK(ψ̌k − ψ0)−Gn,Ic

k
ϕ0(W ;ψ0, η(Z))]2 | Ick

�

=E
�
[Gn,Ic

k
ϕ(W ;ψ0, η̂(I

c
k))−Gn,Ic

k
ϕ0(W ;ψ0, η(Z)) + oPn(1)]

2 | Ick
�

=E
�
(Gn,Ic

k
ϕ(W ;ψ0, η̂(I

c
k)))

2 | Ick
�
+ E

�
(Gn,Ic

k
ϕ0(W ;ψ0, η(Z)))2 | Ick

�

− 2E
�
(Gn,Ic

k
ϕ(W ;ψ0, η̂(I

c
k)) · (Gn,Ic

k
ϕ0(W ;ψ0, η(Z))) | Ick

�
+ oPn(1)

The first equality is due to (A.1) and (A.2). The second equality is due to457

E
�
Gn,Ic

k
ϕ(W ;ψ0, η̂(I

c
k))

�
= E

�
Gn,Ic

k
ϕ0(W ;ψ0, η(Z))

�
= 0. (A.4)

If we write ϕ̄(Wi) := ϕ(Wi)−
�
ϕ(w) dPn(w), we have458

E
�
[
√
nK(ψ̌k − ψ0)−Gn,Ic

k
ϕ0(W ;ψ0, η(Z))]2 | Ick

�

=
1

n
E




nK�

i,j=1

ϕ̄(Wi;ψ0, η̂(I
c
k)) · ϕ̄(Wj ;ψ0, η(I

c
k)) | Ick




+
1

n
E




nK�

i,j=1

ϕ̄0(Wi;ψ0, η(Zi)) · ϕ̄0(Wj ;ψ0, η̂(Zj))




− 2E
�
(Gn,Ic

k
ϕ(W ;ψ0, η̂(I

c
k)) | Ick

�
· E

�
(Gn,Ic

k
ϕ0(W ;ψ0, η(Z)))

�
+ oPn

(1)

=
1

n

nK�

i,j=1

o(
1

n
) +

1

n

nK�

i,j=1

E [ϕ̄0(Wi;ψ0, η(Zi))] · E [ϕ̄0(Wj ;ψ0, η̂(Zj))] + oPn
(1)

=oPn
(1)
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The second equality is due to Assumption 5, the independence of Wi’s, and (A.4).459

By Lemma B.1 of Chernozhukov et al. [Che+17b],460

E
�
[
√
nK(ψ̌k − ψ0)−Gn,Ic

k
ϕ0(W ;ψ0, η(Z))]2 | Ick

�
= oPn

(1)

implies461

√
nK(ψ̌k − ψ0)−Gn,Ic

k
ϕ0(W ;ψ0, η(Z)) = oPn(1)

Therefore, we have462

σ−1√nK(ψ̌k − ψ0)
K
k=1 = σ−1Gn,Ic

k
ϕ0(W ;ψ0, η(Z))Kk=1 + oPn

(1)
d→ (Nk)

K
k=1

where (Nk)
K
k=1 is a Gaussian vector with independent N (0, 1) coordinates. Using the independence463

of Zi’s and the central limit theorem, we have464

σ−1
√
n(ψ̃ − ψ0)

=σ−1
√
n(

1

K

K�

k=1

(ψ̌k − ψ0))

=
1

K
σ−1

K�

k=1

Gn,Ic
k
ϕ0(W ;ψ0, η(Z)) + oPn(1)

d→ 1

K

K�

k=1

Nk = N (0, 1).

Step 2: This step demonstrates (A.2). Observe that for some constant Cε that depends only on ε and P ,465

||ϕ(W ;ψ0, η̂(I
c
k))− ϕ(W ;ψ0, η(Z))||Pn,2 ≤ Cε(I1 + I2 + I3),

where466

I1 = max
d∈{0,1}

||Q̃n(d, Z; γ̂
Q,Ic

k
n )−Q(d, Z)||Pn,2,

I2 = ||T (Y − Q̃n(1,λ; γ̂
Q,Ic

k
n ))

g̃n(·; γ̂g,Ic
k

n )
− T (Y −Q(1, Z))

g(λ)
||Pn,2,

I3 = || (1− T )(Y − Q̃n(0,λ; γ̂
Q,Ic

k
n ))

1− g̃n(·; γ̂g,Ic
k

n )
− (1− T )(Y −Q(0, Z))

1− g(λ)
||Pn,2,

We bound I1, I2, and I3 in turn. First, Pn(I1 > δnK
) ≤ ΔnK

→ 0 by Assumption 4, and so467

I1 = oPn
(1). Also, on the event that468

Pn(ε ≤ g̃n(Z; Ick) ≤ 1− ε) = 1 (A.5)

||Q̃n(1,λ; γ̂
Q,Ic

k
n )−Q(1, Z)||Pn,2 + ||g̃n(·; γ̂g,Ic

k
n )− g(Z)||Pn,2 ≤ δnK

, (A.6)

which happens with PPn
-probability at least 1−ΔnK

by Assumption 4,469

I2 ≤ ε−2||Tg(Z)(Y − Q̃n(1,λ; γ̂
Q,Ic

k
n ))− T g̃n(Z; Ick)(Y −Q(1, Z))||Pn,2

≤ ε−2||g(Z)(Q(1, Z) + ζ − Q̃n(1,λ; γ̂
Q,Ic

k
n ))− g̃n(Z; Ick)ζ||Pn,2

≤ ε−2||g(Z)(Q̃n(1,λ; γ̂
Q,Ic

k
n )−Q(1, Z))||Pn,2 + ||(g̃n(Z; Ick)− g(Z))ζ||Pn,2

≤ ε−2||Q̃n(1,λ; γ̂
Q,Ic

k
n )−Q(1, Z)||Pn,2 +

√
C||g̃n(Z; Ick)− g(Z)||Pn,2

≤ ε−2(δnK
+
√
CδnK

) → 0,

where the first inequality follows from (A.5) and Assumption 4, the second from the facts that470

T ∈ {0, 1} and for T = 1, Y = Q(1, Z) + ζ, the third from the triangle inequality, the fourth from471

the facts that Pn(g(Z) ≤ 1) = 1 and Pn(EPn

�
ζ2 |Z

�
≤ C) = 1 in Assumption 3, the fifth from472
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(A.6), and the last assertion follows since δnK
→ 0. Hence, I2 = oPn(1). In addition, the same473

argument shows that I3 = oPn(1), and so (A.2) follows.474

Step 3: This step demonstrates (A.3). Observe that since ψ0 = EPn
[Q(1, Z)−Q(0, Z)], the left-475

hand side of (A.3) is equal to476

I4 =
√
n

�
g̃n(Z; Ick)− g(z)

g̃n(Z; Ick)
· (Q̃n(1,λ; γ̂

Q,Ic
k

n )−Q(1, z))

+
g̃n(Z; Ick)− g(z)

1− g̃n(Z; Ick)
· (Q(0, z; Ick)−Q(0, z)) dPn(z).

But on the event that477

Pn(ε ≤ g̃n(Z; Ick) ≤ 1− ε) = 1

and478

max
d∈{0,1}

||Q̃n(d,λ; γ̂
Q,Ic

k
n )−Q(d, Z)||Pn,2 · ||g̃n(Z; Ick)− g(Z)||Pn,2 ≤ δnK

· n−1/2
K ,

which happens with PPn -probability at least 1−ΔnK
by Assumption 4,the Cauchy-Schwarz inequality479

implies that480

I4 ≤ 2
√
n

ε
max

d∈{0,1}
||Q̃n(d,λ; γ̂

Q,Ic
k

n )−Q(d, Z)||Pn,2 · ||g̃n(Z; Ick)− g(Z)||Pn,2 ≤ 2δnK

ε
→ 0,

which gives (A.3).481

482
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