
5 Supplementary Material

5.1 Auxiliary Lemmas

The next lemma shows smoothness properties of the softmax function.

Lemma 2. Let hi (x) =
e−xi

∑K
j=1 e−xj

and h (x) = (h1 (x) , ..., hK (x)). Then for any x ∈ R
K and

Δ ∈ R
K
+

‖h (x)− h (x+Δ)‖1 ≤ 2 〈h (x) ,Δ〉 . (29)

Proof. For all x ∈ R
K and Δ ∈ R

K
+

hi (x+Δ)− hi (x) =
e−xi−Δi∑K
j=1 e

−xj−Δj

− e−xi∑K
j=1 e

−xj

≥
(a)

e−xi−Δi − e−xi∑K
j=1 e

−xj

=
(
e−Δi − 1

)
h (x) ≥

(b)
−Δihi (x) (30)

where (a) follows since
∑K

j=1 e
−xj−Δj ≤∑K

j=1 e
−xj and (b) since 1− x ≤ e−x for all x ≥ 0.

We also have for all x ∈ R
K and Δ ∈ R

K
+ that

hi (x+Δ)− hi (x) =
e−xi−Δi∑K
j=1 e

−xj−Δj

− e−xi∑K
j=1 e

−xj

≤
(a)

e−xi−Δi∑K
j=1 e

−xj−Δj

− e−xi−Δi∑K
j=1 e

−xj

= hi (x+Δ)

(
1−
∑K

j=1 e
−xj−Δj∑K

l=1 e
−xl

)
=

hi (x+Δ)

∑K
j=1 e

−xj
(
1− e−Δj

)
∑K

l=1 e
−xl

≤
(b)

hi (x+Δ)

∑K
j=1Δje

−xj∑K
l=1 e

−xl

(31)

where (a) follows since e−xj ≥ e−xj−Δj and (b) since 1 − x ≤ e−x for all x ≥ 0. Combining the
two inequalities we conclude that

‖h (x)− h (x+Δ)‖1 =
K∑
i=1

|hi (x)− hi (x+Δ)| ≤
(a)

K∑
i=1

Δihi (x) +

K∑
i=1

hi (x+Δ)

⎛
⎝ K∑

j=1

Δje
−xj∑K

l=1 e
−xl

⎞
⎠ =

〈h (x) ,Δ〉+

⎛
⎝ K∑

j=1

(
Δj

e−xj∑K
l=1 e

−xl

)⎞⎠ K∑
i=1

hi (x+Δ) =
(b)

2 〈h (x) ,Δ〉 (32)

where (a) follows since (30) and (31) show that for all i

|hi (x+Δ)− hi (x)| ≤ max

{
Δihi (x) , hi (x+Δ)

∑K
j=1Δje

−xj∑K
j=1 e

−xj

}
(33)

and (b) follows since
∑K

i=1 hi (x+Δ) = 1 by definition.

The next lemma analyzes the contribution of the “no-delay” term to the expected regret.

Lemma 3. Let ηt be a non-increasing a sequence of step sizes. Let
{
l
(i)
t

}
be a cost sequence such

that l(i)t ∈ [0, 1] for every t, i. Let {dt} be a delay sequence such that the reward from round t is
received at round t+ dt. Let St be the set of costs (feedback samples) received at round t. Then

Ea

{
T∑

t=1

∑
s∈St

ηs

〈
ls,ps−

〉
−min

i

T∑
t=1

ηtl
(i)
t

}
≤ lnK +

K

2

T∑
t=1

η2t . (34)
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Proof. Define s−, s+ as the steps a moment before and after using the feedback from round s,
respectively. These steps are taking place in round t if s ∈ St, and ps− is the computed probability

vector at s−. Define Φ (t) = − ln
(∑K

i=1 e
−L̃

(i)
t

)
and l̃t =

(
0, ...,

l
(at)
t

p
(at)
t

, ..., 0

)
. We have

Φ (s+)− Φ (s−) = − ln

⎛
⎝∑K

i=1 e
−L̃(i)

s− e−ηs l̃
(i)
s∑K

j=1 e
−L̃

(j)
s−

⎞
⎠ = − ln

(
K∑
i=1

p(i)s−e
−ηs l̃

(i)
s

)
≥
(a)

− ln

(
K∑
i=1

p(i)s−

(
1− ηs l̃

(i)
s +

1

2
η2s

(
l̃(i)s

)2))
=

− ln

(
1−

K∑
i=1

p(i)s−

(
ηs l̃

(i)
s − 1

2
η2s

(
l̃(i)s

)2))
≥
(b)

ηs

K∑
i=1

p(i)s− l̃
(i)
s − η2s

2

K∑
i=1

p(i)s−

(
l̃(i)s

)2
(35)

where (a) follows since e−x ≤ 1− x+ 1
2x

2 and (b) since ln (1− x) ≤ −x. Taking the expectation
on both sides of (35) yields

Ea {Φ (s+)− Φ (s−)} ≥ Ea

{
ηs

K∑
i=1

p(i)s− l̃
(i)
s − η2s

2

K∑
i=1

p(i)s−

(
l̃(i)s

)2}
=
(a)

Ea

{
ηs

K∑
i=1

p(i)s−E
a
{
l̃(i)s | Fs−

}}
− η2s

2
Ea

{
K∑
i=1

p(i)s−E
a

{(
l̃(i)s

)2
| Fs−

}}
=
(b)

Ea
{
ηs

〈
ls,ps−

〉}
− η2s

2

K∑
i=1

(
l(i)s

)2
≥ Ea

{
ηs

〈
ls,ps−

〉}
− η2s

2
K (36)

where (a) uses p
(i)
s− ∈ Fs− and (b) uses p

(i)
s ∈ Fs− (since s < s−) together with the fact that l̃

(i)
s is

l(i)s

p
(i)
s

with probability p
(i)
s and zero otherwise. Note that as is independent of Fs− since by definition

the feedback from as was not received until round s−. Hence, by iterating (36) over s we obtain

Ea
{
Φ
(
s+T
)
− Φ (1)

}
= Ea

{
T∑

t=1

∑
s∈St

(Φ (s+)− Φ (s−))

}
≥

Ea

{
T∑

t=1

∑
s∈St

ηs

〈
ls,ps−

〉}
− K

2

T∑
t=1

η2t . (37)

where sT ∈ ST is the last feedback to be updated at round T . Now we upper bound Φ
(
s+T
)
−Φ (1).

We have for every i

Ea
{
Φ
(
s+T
)
− Φ (1)

}
= −Ea

⎧⎨
⎩ln
⎛
⎝ K∑

j=1

e
−L̃

(j)

s
+
T

⎞
⎠− lnK

⎫⎬
⎭ ≤

(a)

Ea
{
L̃
(i)

s+T
+ lnK

}
≤
(b)

T∑
t=1

ηtl
(i)
t + lnK (38)

where (a) follows by omitting positive terms from
∑K

i=1 e
−L̃

(i)
t and (b) since we are adding ηtl

(i)
t

(positive) terms of rounds whose feedback was not received before round T . Combining (37) and
(38), we obtain for all i = 1, ...,K

Ea

{
T∑

t=1

∑
s∈St

ηs

〈
ls,ps−

〉
−

T∑
t=1

ηtl
(i)
t

}
≤ lnK +

K

2

T∑
t=1

η2t . (39)
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The next lemma is necessary to analyze the contribution of the “delay term” to the expected regret.

Lemma 4. Let {ηt} be a non-increasing positive sequence. Let dt be the delay of the cost of the
action at round t. Let Sr be the set of feedback samples received at round t, and define St,s =
{r ∈ St; r < s}, which is the set of feedback samples that the algorithm uses before the feedback
from round s is used. Define the setM of all samples that have not been received by round T . Then

T∑
t=1

∑
s∈St

ηs

⎛
⎝ ∑

q∈St,s

ηq +

t−1∑
r=s

∑
q∈Sr

ηq

⎞
⎠ ≤ 2

∑
t/∈M

η2t dt. (40)

Proof. The quantity Qs,t �
∑

q∈St,s
ηq +

∑t−1
r=s

∑
q∈Sr

ηq is a weighted count of the number of

feedback samples received and used between round s and round t, before the feedback from round

s is used. We want to upper bound
∑T

t=1

∑
s∈St

ηsQs,t for all possible delay sequences {dt}. We
do so by (over) counting the number of appearances of each feedback from the T feedback samples,
in the different Qs,t “buckets”. There are two possible cases of feedback samples being counted, so

we write Qs,t = Q1
s,t +Q2

s,t.

• A feedback from q ≥ s is received and used before s is used: there are a maximum of
ds feedback samples of this type that can each contribute ηq ≤ ηs with q ≥ s to Q1

s,t for

s ∈ St (since ηt is non-increasing). We over count them by giving each Q1
s,t term all of its

ds possible samples of this type. So

T∑
t=1

∑
s∈St

ηsQ
1
s,t ≤

T∑
t=1

∑
s∈St

η2sds =
∑
t/∈M

η2t dt. (41)

• A feedback from q < s is received and used before s is used: the samples from round q can
contribute to a maximum of dq different Q2

s,t terms, all with s ≥ q. This follows simply
because the feedback from q is not received before q + dq . Denote by Γq the set of rounds

s such that the samples from round q contribute to Q2
s,t. Then

T∑
t=1

∑
s∈St

ηsQ
2
s,t =

(a)

∑
q/∈M

∑
s∈Γq

ηsηq ≤
(b)

∑
q/∈M

η2q |Γq| ≤
∑
q/∈M

η2qdq (42)

where (a) follows since only rounds q whose feedback is received sometime before T are
counted in Q2

s,t for some s, t. Inequality (b) uses η2s ≤ η2q since ηt is non-increasing and
s ≥ q for all s ∈ Γq .

Adding (41) and (42) we obtain (40).

5.2 Proof of Theorem 2

Proof. Define Me as the set of feedback samples for costs in epoch e that are not received within
epoch e. Denote by Te = max Te the last round in Te. Note that Te is the set of consecutive rounds

from Te−1+1 to Te. Every round t ∈ Te such that t /∈Me contributes exactly dt to
∑Te

τ=Te−1+1
mτ ,

since the t-th feedback is missing for dt rounds some time between Te−1 + 1 and Te. Therefore

∑
t∈Te,t/∈Me

dt ≤
Te∑

τ=Te−1+1

mτ ≤
(a)

2e−1 (43)

where (a) uses that if
∑Te

τ=Te−1+1
mτ > 2e−1 then

∑Te

τ=1mτ ≥ 2e−1 + 2e−1 = 2e so epoch e+ 1

should have been already started. We apply Theorem 1 separately on every epoch, which yields

Re � Ea

{∑
t∈Te

l
(at)
t −min

i

∑
t∈Te

l
(i)
t

}
≤ lnK

ηe
+ ηe

⎛
⎝K

2
|Te|+ 4

∑
t∈Te ,t/∈Me

dt

⎞
⎠+ |Me| . (44)
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Now we want to find the maximal |Me| such that
∑Te

τ=Te−1+1
mτ ≤ 2e−1 is still possible. The

“cheapest” way to increase |Me| is when the feedback from round Te is delayed by one (con-

tributes 1 to
∑Te

τ=Te−1+1
mτ ), the feedback from round Te − 1 is delayed by two (contributes 2 to∑Te

τ=Te−1+1
mτ ) and so on, which gives

|Me|∑
i=1

i =
|Me| (|Me|+ 1)

2
≤ 2e−1 =⇒ |Me| ≤ 2

e
2 (45)

so by choosing ηe =
√

lnK
2e we obtain

Re ≤
√
lnK

⎛
⎝2 e

2 + 2−
e
2

⎛
⎝K

2
|Te|+ 4

∑
t∈Te,t/∈Me

dt

⎞
⎠
⎞
⎠+ 2

e
2 ≤
(a)

3 · 2 e
2

√
lnK + 2−

e
2−1 |Te|K

√
lnK + 2

e
2 (46)

where (a) follows from (43). Denote the last epoch by E. Hence, we conclude that

Ea {R (T )} =
E∑

e=1

Re ≤
(
3
√
lnK + 1

) E∑
e=1

2
e
2 +

K

2

√
lnK

E∑
e=1

|Te| 2−
e
2 ≤

√
2
(
3
√
lnK + 1

) 2E
2 − 1√
2− 1

+
K

2

√
lnK

E∑
e=1

|Te| 2−
e
2 ≤
(a)

15
(√

lnK + 1
)√√√√ T∑

t=1

dt +
5

2
K
√
T lnK = O

⎛
⎝
√√√√lnK

(
K2T +

T∑
t=1

dt

)⎞⎠ (47)

where in (a) we used that

T∑
t=1

dt ≥
T∑

t=1

min {dt, T − t+ 1} =
T∑

t=1

mt ≥
TE∑
t=1

mt ≥ 2E−1 (48)

and also that
∑E

e=1 |Te| 2−
e
2 subject to

∑E
e=1 |Te| = T is maximized when there are only 
log2 T �

epochs with length 2e to epoch e (maximal length possible), so

E∑
e=1

|Te| 2−
e
2 ≤

�log2 T�∑
e=1

2
e
2 ≤

√
2
2
�log2 T�

2 − 1√
2− 1

≤ 5
√
T (49)

5.3 Proof of Theorem 3

Proof. We need to show that (p̄T , q̄T ) converges in L1 to the set of NE of the game as T →∞. Let
ε > 0. Define the ergodic average of the value of the game by

UT =

∑T
t=1 ηtU (pt, qt)∑T

t=1 ηt
. (50)

By using EXP3 with cost sequence l
(i)
r,t = U (i, qt) we know from Lemma 1 that the row player

guarantees that for any column strategy, in particular qt, and any row strategy p, possibly random,
we have

Ea

{
T∑

t=1

ηt (U (pt, qt)− U (p, qt))

}
≤ lnK +

K

2

T∑
t=1

η2t + 4

T∑
t=1

η2t d
r
t +

∑
t∈Mr

ηt (51)
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where the set of missing samples is Mr = {t | t+ drt > T}. Define t∗ (T ) = minMr, and note
that t∗ (T )→∞ as T →∞ since t+drt ≥ t, and f (t) = t is increasing. Since ηt is non-increasing
then ∑

t∈Mr

ηt ≤ |Mr| ηt∗(T ) ≤ (T − t∗ (T ) + 1) ηt∗(T ) ≤ drt∗(T )ηt∗(T ). (52)

Therefore there exists a T1 > 0 such that for all T > T1

Ea
{
UT − U (p, q̄T )

}
= Ea

{∑T
t=1 ηt (U (pt, qt)− U (p, qt))∑T

t=1 ηt

}
≤
(a)

drt∗(T )ηt∗(T ) + lnK + K
2

∑T
t=1 η

2
t + 4

∑T
t=1 η

2
t d

r
t∑T

t=1 ηt
≤
(b)

ε

2
(53)

where (a) is (51) and (b) follows since drtηt → 0 as t → ∞,
∑∞

t=1 ηt = ∞ and
∑∞

t=1 d
r
tη
2
t < ∞.

By also using EXP3 with cost sequence l
(j)
c,t = 1 − U (pt, j), we know from Lemma 1 that the

column player guarantees that for any row strategy, in particular pt and any column strategy q,
possibly random, we have

Ea

{
T∑

t=1

ηt (U (pt, q)− U (pt, qt))

}
≤ lnK +

K

2

T∑
t=1

η2t + 4

T∑
t=1

η2t d
c
t +
∑

t∈Mc

ηt. (54)

Therefore there exists a T2 > 0 such that for all T > T2

Ea
{
U (p̄T , q)− UT

}
=

Ea
{∑T

t=1 ηt (U (pt, q)− U (pt, qt))
}

∑T
t=1 ηt

≤
(a)

dct∗(T )ηt∗(T ) + lnK + K
2

∑T
t=1 η

2
t + 4

∑T
t=1 η

2
t d

c
t∑T

t=1 ηt
≤
(b)

ε

2
(55)

where (a) is (54) and (b) follows since dctηt → 0 as t→∞,
∑∞

t=1 ηt =∞ and
∑∞

t=1 d
c
tη
2
t <∞.

Now, define pb
T as the best-response to q̄T , which is a random vector that is a function of the random

vector q̄T

pb
T = argmin

p′
U (p′, q̄T ) (56)

together with qb
T , the best-response to p̄T , which is a random vector that is a function of the random

vector p̄T :

qb
T = argmax

q′
U (p̄T , q

′) . (57)

Hence, by choosing p = pb
T , q = q̄T in (53) and (55) and adding them together we conclude that

for all T > max {T1, T2}

Ea

{∣∣∣∣U (p̄T , q̄T )−min
p′

U (p′, q̄T )

∣∣∣∣
}
=
(a)

Ea
{
UT − U

(
pb
T , q̄T

)}
+Ea

{
U (p̄T , q̄T )− UT

}
≤ ε

(58)
where (a) follows since U (p̄T , q̄T ) ≥ U

(
pb
T , q̄T

)
. By choosing instead p = p̄T , q = qb

T in (53)

and (55) and adding them together we conclude that for all T > max {T1, T2}

Ea

{∣∣∣∣U (p̄T , q̄T )−max
q′

U (p̄T , q
′)

∣∣∣∣
}
=
(a)

Ea
{
UT − U (p̄T , q̄T )

}
+Ea

{
U
(
p̄T , q

b
T

)
− UT

}
≤ ε

(59)
where (a) follows since U (p̄T , q̄T ) ≤ U

(
p̄T , q

b
T

)
. Equations (58) and (59) show that (p̄T , q̄T )

is in Nε in the L1 sense. Since ε > 0 is arbitrary, and Nε is monotonically decreasing to N0 as
ε → 0, we conclude that (p̄T , q̄T ) converges in L1 to N0, which is the set of NE of the game. By
Markov’s inequality, it follows that (p̄T , q̄T ) converges in probability to the set of NE. Since U is
linear, U (p̄T , q̄T ) converges to the value of the game
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