
A Proof Sketch for Finding Second-order Stationary Points

In previous Section 5.2, we only discuss some high-level proof ideas for finding a second-order
stationary point with high probability due to the space limit. In this appendix, we give a more detailed
proof sketch for finding a second-order stationary point with high probability (Theorem 2). The
complete proof of Theorem 2 is deferred to Appendix C.1.1.

We divide the proof into two situations, i.e., large gradients and around saddle points. According
to (16), a natural way to prove the convergence result is that the function value will decrease at
a desired rate with high probability. Note that the amount for function value decrease is at most
∆f := f(x0)− f∗.
Large gradients: ‖∇f(x)‖ ≥ gthres

In this situation, due to the large gradients, it is sufficient to adjust the first-order analysis to show that
the function value will decrease a lot in an epoch. Concretely, we want to show the function value
decrease bound (16) holds with high probability. It is not hard to see that the desired rate of function
value decrease is O(ηg2

thres) = Õ( ε
2

L ) per iteration (recall the parameters gthres = ε and η = Õ(1/L)
in our Theorem 2). Also note that we compute b+ n

m = 2
√
n stochastic gradients at each iteration

(recall m = b =
√
n in our Theorem 2). Here we amortize the full gradient computation of the

beginning point of each epoch (n stochastic gradients) into each iteration in its epoch (i.e., n/m) for
simple presentation (we will analyze this more rigorous in the complete proof in Appendix C.1.1).
Thus the number of stochastic gradient computation is at most Õ(

√
n ∆f
ε2/L ) = Õ(L∆f

√
n

ε2 ) for this
large gradients situation.

For the proof, to show the function value decrease bound (16) holds with high probability, we need to
show that the bound for variance term (‖vk −∇f(xk)‖2) holds with high probability. Note that the
estimator vk defined in (10) is correlated with previous vk−1. Fortunately, let yk := vk−∇f(xk), then
it is not hard to see that {yk} is a martingale vector sequence with respect to a filtration {Fk} such
that E[yk|Fk−1] = yk−1. Moreover, let {zk} denote the associated martingale difference sequence
with respect to the filtration {Fk}, i.e., zk := yk − E[yk|Fk−1] = yk − yk−1 and E[zk|Fk−1] = 0.
Thus to bound the variance term ‖vk − ∇f(xk)‖2 with high probability, it is sufficient to bound
the martingale sequence {yk}. This can be bounded with high probability by using the martingale
Azuma-Hoeffding inequality. Note that in order to apply Azuma-Hoeffding inequality, we first need
to use the Bernstein inequality to bound the associated difference sequence {zk}. In sum, we will get
the high probability function value decrease bound by applying these two inequalities (see (44) in
Appendix C.1).

Note that (44) only guarantees function value decrease when the summation of gradients in this epoch
is large. However, in order to connect the guarantees between first situation (large gradients) and
second situation (around saddle points), we need to show guarantees that are related to the gradient
of the starting point of each epoch (see Line 3 of Algorithm 2). Similar to [15], we achieve this by
stopping the epoch at a uniformly random point (see Line 16 of Algorithm 2). We use the following
lemma to connect these two situations (large gradients and around saddle points):

Lemma 1 (Connection of Two Situations) For any epoch s, let xt be a point uniformly sampled
from this epoch {xj}(s+1)m

j=sm . Moreover, let the step size η ≤
√

4C′2+1−1
2C′2L (where C ′ = O(log dn

ζ ) =

Õ(1)) and the minibatch size b ≥ m, there are two cases:

1. If at least half of points in this epoch have gradient norm no larger than gthres, then
‖∇f(xt)‖ ≤ gthres holds with probability at least 1/2;

2. Otherwise, we know f(xsm)− f(xt) ≥ ηmg2thres
8 holds with probability at least 1/5.

Moreover, f(xt) ≤ f(xsm) holds with high probability no matter which case happens.

Note that if Case 2 happens, the function value already decreases a lot in this epoch s (as we already
discussed at the beginning of this situation). Otherwise, Case 1 happens, we know the starting point
of the next epoch x(s+1)m = xt (i.e., Line 19 of Algorithm 2), then we know ‖∇f(x(s+1)m)‖ =
‖∇f(xt)‖ ≤ gthres. Then we will start a super epoch (see Line 3 of Algorithm 2). This corresponds
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to the following second situation around saddle points. Note that if λmin(∇2f(x(s+1)m)) > −δ, this
point x(s+1)m is already an (ε, δ)-second-order stationary point (recall gthres = ε in our Theorem 2).

Around saddle points: ‖∇f(x̃)‖ ≤ gthres and λmin(∇2f(x̃)) ≤ −δ at the initial point x̃ of a super
epoch
In this situation, we want to show that the function value will decrease a lot in a super epoch (instead
of an epoch as in the first situation) with high probability by adding a random perturbation at the
initial point x̃. To simplify the presentation, we use x0 := x̃+ ξ to denote the starting point of the
super epoch after the perturbation, where ξ uniformly ∼ B0(r) and the perturbation radius is r (see
Line 6 in Algorithm 2). Following the classical widely used two-point analysis developed in [18],
we consider two coupled points x0 and x′0 with w0 := x0 − x′0 = r0e1, where r0 is a scalar and e1

denotes the smallest eigenvector direction of Hessian∇2f(x̃). Then we get two coupled sequences
{xt} and {x′t} by running SSRGD update steps (Line 8–12 of Algorithm 2) with the same choice of
minibatches (i.e., Ib’s in Line 12 of Algorithm 2) for a super epoch. We will show that at least one
of these two coupled sequences will decrease the function value a lot (escape the saddle point) with
high probability, i.e.,

∃t ≤ tthres, such that max{f(x0)− f(xt), f(x′0)− f(x′t)} ≥ 2fthres. (19)
Similar to the classical argument in [18], according to (19), we know that in the random perturbation
ball, the stuck points can only be a short interval in the e1 direction, i.e., at least one of two points in
the e1 direction will escape the saddle point if their distance is larger than r0 = ζ′r√

d
. Thus, we know

that the probability of the starting point x0 = x̃+ ξ (where ξ uniformly ∼ B0(r)) located in the stuck
region is less than ζ ′ (see (50) in Appendix C.1). By a union bound (x0 is not in a stuck region and
(19) holds), with high probability, we have

∃t ≤ tthres , f(x0)− f(xt) ≥ 2fthres. (20)

Note that the initial point of this super epoch is x̃ before the perturbation (see Line 6 of Algorithm 2),
thus we also need to show that the perturbation step x0 = x̃+ ξ (where ξ uniformly ∼ B0(r)) does
not increase the function value a lot, i.e.,

f(x0) ≤ f(x̃) + 〈∇f(x̃), x0 − x̃〉+
L

2
‖x0 − x̃‖2

≤ f(x̃) + gthres · r +
L

2
r2

= f(x̃) + fthres, (21)
where the last inequality holds since the initial point x̃ satisfying ‖∇f(x̃)‖ ≤ gthres and the pertur-
bation radius is r , and the last equality holds by letting the perturbation radius r small enough. By
combining (20) and (21), we obtain with high probability

f(x̃)− f(xt) = f(x̃)− f(x0) + f(x0)− f(xt) ≥ −fthres + 2fthres = fthres. (22)

Now, we can obtain the desired rate of function value decrease in this situation is fthres
tthres

=

Õ( δ
3/ρ2

1/(ηδ) ) = Õ( δ4

Lρ2 ) per iteration (recall the parameters fthres = Õ(δ3/ρ2), tthres = Õ(1/(ηδ))

and η = Õ(1/L) in our Theorem 2). Same as before, we compute b+ n
m = 2

√
n stochastic gradients

at each iteration (recall m = b =
√
n in our Theorem 2). Thus the number of stochastic gradient

computation is at most Õ(
√
n ∆f
δ4/(Lρ2) ) = Õ(Lρ

2∆f
√
n

δ4 ) for this around saddle points situation.

Now, the remaining thing is to prove (19). It can be proved by contradiction. Assume the contrary,
f(x0) − f(xt) < 2fthres and f(x′0) − f(x′t) < 2fthres. First, we show that if function value does
not decrease a lot, then all iteration points are not far from the starting point with high probability.

Lemma 2 (Localization) Let {xt} denote the sequence by running SSRGD update steps (Line 8–12
of Algorithm 2) from x0. Moreover, let the step size η ≤ 1

2C′L and minibatch size b ≥ m, with
probability 1− ζ, we have

∀t, ‖xt − x0‖ ≤
√

4t(f(x0)− f(xt))

C ′L
, (23)

where C ′ = O(log dt
ζ ) = Õ(1).
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Then we will show that the stuck region is relatively small in the random perturbation ball, i.e., at
least one of xt and x′t will go far away from their starting point x0 and x′0 with high probability.

Lemma 3 (Small Stuck Region) If the initial point x̃ satisfies−γ := λmin(∇2f(x̃)) ≤ −δ, then let
{xt} and {x′t} be two coupled sequences by running SSRGD update steps (Line 8–12 of Algorithm 2)
with the same choice of minibatches (i.e., Ib’s in Line 12) from x0 and x′0 with w0 := x0−x′0 = r0e1,
where x0 ∈ Bx̃(r), x′0 ∈ Bx̃(r) , r0 = ζ′r√

d
and e1 denotes the smallest eigenvector direction of

Hessian ∇2f(x̃). Moreover, let the super epoch length tthres =
2 log( 8δ

√
d

C1ρζ
′r )

ηδ = Õ( 1
ηδ ), the step size

η ≤ min
(

1

8 log( 8δ
√
d

C1ρζ
′r )L

, 1
4C2L log tthres

)
= Õ( 1

L ), minibatch size b ≥ m and the perturbation radius

r ≤ δ
C1ρ

, then with probability 1− ζ, we have

∃T ≤ tthres, max{‖xT − x0‖, ‖x′T − x′0‖} ≥
δ

C1ρ
, (24)

where C1 ≥ 20C2

ηL and C2 = O(log dtthres
ζ ) = Õ(1).

Based on these two lemmas, we are ready to show that (19) holds with high probability. Without loss
of generality, we assume ‖xT − x0‖ ≥ δ

C1ρ
in (24) (note that (23) holds for both {xt} and {x′t}),

then by plugging it into (23) to obtain√
4T (f(x0)− f(xT ))

C ′L
≥ δ

C1ρ

f(x0)− f(xT ) ≥ C ′Lδ2

4C2
1ρ

2T

≥ ηC ′Lδ3

8C2
1ρ

2 log( 8δ
√
d

C1ρζ′r
)

=
δ3

C ′1ρ
2

= 2fthres,

where the last inequality is due to T ≤ tthres and the first equality holds by letting C ′1 =
8C2

1 log( 8δ
√
d

C1ρζ
′r )

ηC′L = Õ(1) (recall the parameters fthres = Õ(δ3/ρ2) and η = Õ(1/L) in our The-
orem 2). Now, the high-level proof for this situation is finished.

In sum, the number of stochastic gradient computation is at most Õ(L∆f
√
n

ε2 ) for the large gradients

situation and is at most Õ(Lρ
2∆f
√
n

δ4 ) for the around saddle points situation. Moreover, for the

classical version where δ =
√
ρε [25, 18], then Õ(Lρ

2∆f
√
n

δ4 ) = Õ(L∆f
√
n

ε2 ), i.e., both situations get
the same stochastic gradient complexity. It also matches the convergence result for finding first-order
stationary points (see our Theorem 1) if we ignore the logarithmic factor.

Finally, we point out that there is an extra term ρ2∆fn
δ3 in Theorem 2 beyond these two terms obtained

from the above two situations. The reason is that we amortize the full gradient computation of the
beginning point of each epoch (n stochastic gradients) into each iteration in its epoch (i.e., n/m)
for simple presentation. We will analyze this more rigorous in Appendix C.1.1, which incurs the
term ρ2∆fn

δ3 . For the more general online problem (2), the high-level proofs are almost the same as
the finite-sum problem (1). The difference is that we need to use more concentration bounds in the
detailed proofs since the full gradients are not available in online case.
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B Tools

In this appendix, we recall some classical concentration bounds for matrices and vectors.

Proposition 1 (Bernstein Inequality [31]) Consider a finite sequence {Zk} of independent, random
matrices with dimension d1 × d2. Assume that each random matrix satisfies

E[Zk] = 0 and ‖Zk‖ ≤ R almost surely.

Define
σ2 := max

{∥∥∑
k

E[ZkZ
∗
k ]
∥∥,∥∥∑

k

E[Z∗kZk]
∥∥}.

Then, for all t ≥ 0,

P
{∥∥∑

k

Zk
∥∥ ≥ t} ≤ (d1 + d2) exp

( −t2/2
σ2 +Rt/3

)
.

In our proof, we only need its special case vector version as follows, where zk = vk − E[vk].

Proposition 2 (Bernstein Inequality [31]) Consider a finite sequence {vk} of independent, random
vectors with dimension d. Assume that each random matrix satisfies

‖vk − E[vk]‖ ≤ R almost surely.

Define
σ2 :=

∑
k

E‖vk − E[vk]‖2.

Then, for all t ≥ 0,

P
{∥∥∑

k

(vk − E[vk])
∥∥ ≥ t} ≤ (d+ 1) exp

( −t2/2
σ2 +Rt/3

)
.

Moreover, we also need the martingale concentration bounds, i.e., Azuma-Hoffding inequality. Now,
we will only write the vector version not repeat the more general matrix version.

Proposition 3 (Azuma-Hoeffding Inequality [17, 30]) Consider a martingale vector sequence
{yk} with dimension d, and let {zk} denote the associated martingale difference sequence with
respect to a filtration {Fk}, i.e., zk := yk − E[yk|Fk−1] = yk − yk−1 and E[zk|Fk−1] = 0.
Suppose that {zk} satisfies

‖zk‖ = ‖yk − yk−1‖ ≤ ck almost surely. (25)

Then, for all t ≥ 0,

P
{
‖yk − y0‖ ≥ t

}
≤ (d+ 1) exp

( −t2

8
∑k
i=1 c

2
i

)
.

However, the assumption that ‖zk‖ ≤ ck in (25) with probability one sometime fails. Fortunately,
the Azuma-Hoffding inequality also holds with a slackness if ‖zk‖ ≤ ck with high probability.

Proposition 4 (Azuma-Hoeffding Inequality with High Probability [7, 29]) Consider a martin-
gale vector sequence {yk} with dimension d, and let {zk} denote the associated martingale differ-
ence sequence with respect to a filtration {Fk}, i.e., zk := yk − E[yk|Fk−1] = yk − yk−1 and
E[zk|Fk−1] = 0. Suppose that {zk} satisfies

‖zk‖ = ‖yk − yk−1‖ ≤ ck with high probability 1− ζk.

Then, for all t ≥ 0,

P
{
‖yk − y0‖ ≥ t

}
≤ (d+ 1) exp

( −t2

8
∑k
i=1 c

2
i

)
+

k∑
i=1

ζk.
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C Missing Proofs

In this appendix, we provide the detailed proofs for Theorem 1–4.

C.1 Proofs for Finite-sum Problem

In this section, we provide the detailed proofs for finite-sum problem (1) (i.e., Theorem 1–2).

First, we obtain the relation between f(xt) and f(xt−1) as follows similar to [23, 15], where we let
xt := xt−1 − ηvt−1 and x̄t := xt−1 − η∇f(xt−1),

f(xt) ≤f(xt−1) + 〈∇f(xt−1), xt − xt−1〉+
L

2
‖xt − xt−1‖2 (26)

=f(xt−1) + 〈∇f(xt−1)− vt−1, xt − xt−1〉+ 〈vt−1, xt − xt−1〉+
L

2
‖xt − xt−1‖2

=f(xt−1) + 〈∇f(xt−1)− vt−1,−ηvt−1〉 −
(1

η
− L

2

)
‖xt − xt−1‖2

=f(xt−1) + η‖∇f(xt−1)− vt−1‖2 − η〈∇f(xt−1)− vt−1,∇f(xt−1)〉 −
(1

η
− L

2

)
‖xt − xt−1‖2

=f(xt−1) + η‖∇f(xt−1)− vt−1‖2 −
1

η
〈xt − x̄t, xt−1 − x̄t〉 −

(1

η
− L

2

)
‖xt − xt−1‖2

=f(xt−1) + η‖∇f(xt−1)− vt−1‖2 −
(1

η
− L

2

)
‖xt − xt−1‖2

− 1

2η

(
‖xt − x̄t‖2 + ‖xt−1 − x̄t‖2 − ‖xt − xt−1‖2

)
=f(xt−1) +

η

2
‖∇f(xt−1)− vt−1‖2 −

η

2
‖∇f(xt−1)‖2 −

( 1

2η
− L

2

)
‖xt − xt−1‖2, (27)

where (26) holds since f has L-Lipschitz continuous gradient (Assumption 1). Now, we bound the
variance term as follows, where we take expectations with the history:

E[‖vt−1 −∇f(xt−1)‖2]

= E
[∥∥∥1

b

∑
i∈Ib

(
∇fi(xt−1)−∇fi(xt−2)

)
+ vt−2 −∇f(xt−1)

∥∥∥2]
= E

[∥∥∥1

b

∑
i∈Ib

((
∇fi(xt−1)−∇fi(xt−2)

)
−
(
∇f(xt−1)−∇f(xt−2)

))
+ vt−2 −∇f(xt−2)

∥∥∥2]
= E

[∥∥∥1

b

∑
i∈Ib

((
∇fi(xt−1)−∇fi(xt−2)

)
−
(
∇f(xt−1)−∇f(xt−2)

))∥∥∥2]
+ E[‖vt−2 −∇f(xt−2)‖2]

(28)

=
1

b2
E
[∑
i∈Ib

∥∥∥(∇fi(xt−1)−∇fi(xt−2)
)
−
(
∇f(xt−1)−∇f(xt−2)

)∥∥∥2]
+ E[‖vt−2 −∇f(xt−2)‖2]

(29)

≤ 1

b2
E
[∑
i∈Ib

∥∥∥∇fi(xt−1)−∇fi(xt−2)
∥∥∥2]

+ E[‖vt−2 −∇f(xt−2)‖2] (30)

≤ L2

b
E[‖xt−1 − xt−2‖2] + E[‖vt−2 −∇f(xt−2)‖2], (31)

where (28) and (29) use the law of total expectation and E[‖x1 +x2 + · · ·+xk‖2] =
∑k
i=1 E[‖xi‖2]

if x1, x2, . . . , xk are independent and of mean zero, (30) uses the fact E[‖x− Ex‖2] ≤ E[‖x‖2], and
(31) holds due to the gradient Lipschitz Assumption 1.
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Note that for E[‖vt−2 −∇f(xt−2)‖2] in (31), we can reuse the same computation above. Thus we
can sum up (31) from the beginning of this epoch sm to the point t− 1,

E[‖vt−1 −∇f(xt−1)‖2] ≤ L2

b

t−1∑
j=sm+1

E[‖xj − xj−1‖2] + E[‖vsm −∇f(xsm)‖2] (32)

≤ L2

b

t−1∑
j=sm+1

E[‖xj − xj−1‖2], (33)

where (33) holds since we compute the full gradient at the beginning point of this epoch, i.e.,
vsm = ∇f(xsm) (see Line 5 of Algorithm 1). Now, we take expectations for (27) and then sum it up
from the beginning of this epoch s, i.e., iterations from sm to t, by plugging the variance (33) into
them to get:

E[f(xt)] ≤ E[f(xsm)]− η

2

t∑
j=sm+1

E[‖∇f(xj−1)‖2]−
( 1

2η
− L

2

) t∑
j=sm+1

E[‖xj − xj−1‖2]

+
ηL2

2b

t−1∑
k=sm+1

k∑
j=sm+1

E[‖xj − xj−1‖2]

≤ E[f(xsm)]− η

2

t∑
j=sm+1

E[‖∇f(xj−1)‖2]−
( 1

2η
− L

2

) t∑
j=sm+1

E[‖xj − xj−1‖2]

+
ηL2(t− 1− sm)

2b

t∑
j=sm+1

E[‖xj − xj−1‖2]

≤ E[f(xsm)]− η

2

t∑
j=sm+1

E[‖∇f(xj−1)‖2]−
( 1

2η
− L

2

) t∑
j=sm+1

E[‖xj − xj−1‖2]

+
ηL2

2

t∑
j=sm+1

E[‖xj − xj−1‖2] (34)

≤ E[f(xsm)]− η

2

t∑
j=sm+1

E[‖∇f(xj−1)‖2], (35)

where (34) holds if the minibatch size b ≥ m (note that here t ≤ (s + 1)m), and (35) holds if the
step size η ≤

√
5−1
2L .

Proof of Theorem 1. Let b = m =
√
n and step size η ≤

√
5−1
2L , then (35) holds. Now, the proof is

directly obtained by summing up (35) for all epochs 0 ≤ s ≤ S as follows:

E[f(xT )] ≤ E[f(x0)]− η

2

T∑
j=1

E[‖∇f(xj−1)‖2]

E[‖∇f(x̂)‖] ≤
√
E[‖∇f(x̂)‖2] ≤

√
2(f(x0)− f∗)

ηT
= ε, (36)

where (36) holds by choosing x̂ uniformly from {xt−1}t∈[T ] and letting Sm ≤ T = 2(f(x0)−f∗)
ηε2 =

O(L(f(x0)−f∗)
ε2 ). Note that the total number of computation of stochastic gradients equals to

Sn+ Smb ≤
⌈ T
m

⌉
n+ Tb ≤

( T√
n

+ 1
)
n+ T

√
n = n+ 2T

√
n = O

(
n+

L(f(x0)− f∗)
√
n

ε2

)
.

�
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C.1.1 Proof of Theorem 2

For proving the second-order guarantee, we divide the proof into two situations. The first situation
(large gradients) is almost the same as the above arguments for first-order guarantee, where the
function value will decrease a lot since the gradients are large (see (35)). For the second situation
(around saddle points), we will show that the function value can also decrease a lot by adding a
random perturbation. The reason is that saddle points are usually unstable and the stuck region is
relatively small in a random perturbation ball.

Large Gradients: First, we need a high probability bound for the variance term instead of the
expectation one (33). Then we use it to get a high probability bound of (35) for function value
decrease. Recall that vk = 1

b

∑
i∈Ib

(
∇fi(xk)−∇fi(xk−1)

)
+vk−1 (see Line 9 of Algorithm 1), we

let yk := vk−∇f(xk) and zk := yk−yk−1. It is not hard to verify that {yk} is a martingale sequence
and {zk} is the associated martingale difference sequence. In order to apply the Azuma-Hoeffding
inequalities to get a high probability bound, we first need to bound the difference sequence {zk}. We
use the Bernstein inequality to bound the differences as follows.

zk = yk − yk−1 = vk −∇f(xk)− (vk−1 −∇f(xk−1))

=
1

b

∑
i∈Ib

(
∇fi(xk)−∇fi(xk−1)

)
+ vk−1 −∇f(xk)− (vk−1 −∇f(xk−1))

=
1

b

∑
i∈Ib

(
∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1))

)
. (37)

We define ui := ∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1)), and then we have

‖ui‖ = ‖∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1))‖ ≤ 2‖xk − xk−1‖, (38)

where the last inequality holds due to the gradient Lipschitz Assumption 1. Then, consider the
variance term σ2

σ2 =
∑
i∈Ib

E[‖ui‖2]

=
∑
i∈Ib

E[‖∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1))‖2]

≤
∑
i∈Ib

E[‖∇fi(xk)−∇fi(xk−1)‖2]

≤ bL2‖xk − xk−1‖2, (39)

where the first inequality uses the fact E[‖x − Ex‖2] ≤ E[‖x‖2], and the last inequality uses the
gradient Lipschitz Assumption 1. According to (38) and (39), we can bound the difference zk by
Bernstein inequality (Proposition 2) as

P
{∥∥zk∥∥ ≥ t

b

}
≤ (d+ 1) exp

( −t2/2
σ2 +Rt/3

)
= (d+ 1) exp

( −t2/2
bL2‖xk − xk−1‖2 + 2‖xk − xk−1‖t/3

)
= ζk,

where the last equality holds by letting t = CL
√
b‖xk − xk−1‖, where C = O(log d

ζk
) = Õ(1).

Now, we have a high probability bound for the difference sequence {zk}, i.e.,

‖zk‖ ≤
CL‖xk − xk−1‖√

b
with probability 1− ζk. (40)

Now, we are ready to get a high probability bound for our original variance term (33) by using the
martingale Azuma-Hoeffding inequality. Consider in a specifical epoch s, i.e, iterations t from sm+1
to current sm+ k, where k is less than m (note that we only need to consider the current epoch since
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each epoch we start with y = 0), we use a union bound for the difference sequence {zt} by letting
ζk = ζ/m such that

‖zt‖ ≤ ct =
CL‖xt − xt−1‖√

b
for all sm+ 1 ≤ t ≤ sm+ k with probability 1− ζ. (41)

Then according to Azuma-Hoeffding inequality (Proposition 4) and noting that ζk = ζ/m, we have

P
{∥∥ysm+k − ysm

∥∥ ≥ β} ≤ (d+ 1) exp
( −β2

8
∑sm+k
t=sm+1 c

2
t

)
+ ζ

= 2ζ,

where the last equality holds by letting β =
√

8
∑sm+k
t=sm+1 c

2
t log d

ζ =
C′L

√∑sm+k
t=sm+1 ‖xt−xt−1‖2
√
b

,

where C ′ = O(C
√

log d
ζ ) = Õ(1). Recall that yk := vk −∇f(xk) and at the beginning point of

this epoch ysm = 0 due to vsm = ∇f(xsm) (see Line 5 of Algorithm 1), thus we have

‖vt−1 −∇f(xt−1)‖ = ‖yt−1‖ ≤
C ′L

√∑t−1
j=sm+1 ‖xj − xj−1‖2
√
b

(42)

with probability 1− 2ζ, where t belongs to [sm+ 1, (s+ 1)m].

Now, we use this high probability version (42) instead of the expectation one (33) to obtain the high
probability bound for function value decrease (see (35)). We sum up (27) from the beginning of this
epoch s, i.e., iterations from sm to t, by plugging (42) into them to get:

f(xt) ≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
( 1

2η
− L

2

) t∑
j=sm+1

‖xj − xj−1‖2

+
η

2

t−1∑
k=sm+1

C ′2L2
∑k
j=sm+1 ‖xj − xj−1‖2

b

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
( 1

2η
− L

2

) t∑
j=sm+1

‖xj − xj−1‖2

+
ηC ′2L2

2b

t−1∑
k=sm+1

k∑
j=sm+1

‖xj − xj−1‖2

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
( 1

2η
− L

2

) t∑
j=sm+1

‖xj − xj−1‖2

+
ηC ′2L2(t− 1− sm)

2b

t∑
j=sm+1

‖xj − xj−1‖2

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
( 1

2η
− L

2
− ηC ′2L2

2

) t∑
j=sm+1

‖xj − xj−1‖2 (43)

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2, (44)

where (43) holds if the minibatch size b ≥ m (note that here t ≤ (s + 1)m), and (44) holds if the
step size η ≤

√
4C′2+1−1
2C′2L .

Note that (44) only guarantees function value decrease when the summation of gradients in this epoch
is large. However, in order to connect the guarantees between first situation (large gradients) and
second situation (around saddle points), we need to show guarantees that are related to the gradient
of the starting point of each epoch (see Line 3 of Algorithm 2). Similar to [15], we achieve this by
stopping the epoch at a uniformly random point (see Line 16 of Algorithm 2).

Now we recall Lemma 1 to connect these two situations (large gradients and around saddle points):
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Lemma 1 (Connection of Two Situations) For any epoch s, let xt be a point uniformly sampled
from this epoch {xj}(s+1)m

j=sm . Moreover, let the step size η ≤
√

4C′2+1−1
2C′2L (where C ′ = O(log dn

ζ ) =

Õ(1)) and the minibatch size b ≥ m, there are two cases:

1. If at least half of points in this epoch have gradient norm no larger than gthres, then
‖∇f(xt)‖ ≤ gthres holds with probability at least 1/2;

2. Otherwise, we know f(xsm)− f(xt) ≥ ηmg2thres
8 holds with probability at least 1/5.

Moreover, f(xt) ≤ f(xsm) holds with high probability no matter which case happens.

Proof of Lemma 1. There are two cases in this epoch:

1. If at least half of points of in this epoch {xj}(s+1)m
j=sm have gradient norm no larger than gthres,

then it is easy to see that a uniformly sampled point xt has gradient norm ‖∇f(xt)‖ ≤ gthres

with probability at least 1/2.

2. Otherwise, at least half of points have gradient norm larger than gthres. Then, as
long as the sampled point xt falls into the last quarter of {xj}(s+1)m

j=sm , we know∑t
j=sm+1 ‖∇f(xj−1)‖2 ≥ mg2thres

4 . This holds with probability at least 1/4 since
xt is uniformly sampled. Then combining with (44), i.e., f(xsm) − f(xt) ≥
η
2

∑t
j=sm+1 ‖∇f(xj−1)‖2, we obtain the function value decrease f(xsm) − f(xt) ≥

ηmg2thres

8 . Note that (44) holds with high probability if we choose the minibatch size
b ≥ m and the step size η ≤

√
4C′2+1−1
2C′2L . By a union bound, the function value decrease

f(xsm)− f(xt) ≥ ηmg2thres

8 with probability at least 1/5.

Again according to (44), f(xt) ≤ f(xsm) always holds with high probability. �

Note that if Case 2 happens, the function value already decreases a lot in this epoch s (corresponding
to the first situation large gradients). Otherwise, Case 1 happens, we know the starting point of
the next epoch x(s+1)m = xt (i.e., Line 19 of Algorithm 2), then we know ‖∇f(x(s+1)m)‖ =
‖∇f(xt)‖ ≤ gthres. Then we will start a super epoch (corresponding to the second situation
around saddle points). Note that if λmin(∇2f(x(s+1)m)) > −δ, this point x(s+1)m is already an
(ε, δ)-second-order stationary point (recall that gthres = ε in our Theorem 2).

Around Saddle Points ‖∇f(x̃)‖ ≤ gthres and λmin(∇2f(x̃)) ≤ −δ: In this situation, we will
show that the function value decreases a lot in a super epoch (instead of an epoch as in the first
situation) with high probability by adding a random perturbation at the initial point x̃. To simplify the
presentation, we use x0 := x̃+ ξ to denote the starting point of the super epoch after the perturbation,
where ξ uniformly ∼ B0(r) and the perturbation radius is r (see Line 6 in Algorithm 2). Following
the classical widely used two-point analysis developed in [18], we consider two coupled points x0

and x′0 with w0 := x0 − x′0 = r0e1, where r0 is a scalar and e1 denotes the smallest eigenvector
direction of HessianH := ∇2f(x̃). Then we get two coupled sequences {xt} and {x′t} by running
SSRGD update steps (Line 8–12 of Algorithm 2) with the same choice of minibatches (i.e., Ib’s
in Line 12 of Algorithm 2) for a super epoch. We will show that at least one of these two coupled
sequences will decrease the function value a lot (escape the saddle point), i.e.,

∃t ≤ tthres, such that max{f(x0)− f(xt), f(x′0)− f(x′t)} ≥ 2fthres. (45)

We will prove (45) by contradiction. Assume the contrary, f(x0) − f(xt) < 2fthres and f(x′0) −
f(x′t) < 2fthres. First, we show that if function value does not decrease a lot, then all iteration points
are not far from the starting point with high probability. Then we will show that the stuck region is
relatively small in the random perturbation ball, i.e., at least one of xt and x′t will go far away from
their starting point x0 and x′0 with high probability. Thus there is a contradiction. We recall these two
lemmas here and their proofs are deferred to the end of this section.

Lemma 2 (Localization) Let {xt} denote the sequence by running SSRGD update steps (Line 8–12
of Algorithm 2) from x0. Moreover, let the step size η ≤ 1

2C′L and minibatch size b ≥ m, with
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probability 1− ζ, we have

∀t, ‖xt − x0‖ ≤
√

4t(f(x0)− f(xt))

C ′L
, (46)

where C ′ = O(log dt
ζ ) = Õ(1).

Lemma 3 (Small Stuck Region) If the initial point x̃ satisfies−γ := λmin(∇2f(x̃)) ≤ −δ, then let
{xt} and {x′t} be two coupled sequences by running SSRGD update steps (Line 8–12 of Algorithm 2)
with the same choice of minibatches (i.e., Ib’s in Line 12) from x0 and x′0 with w0 := x0−x′0 = r0e1,
where x0 ∈ Bx̃(r), x′0 ∈ Bx̃(r) , r0 = ζ′r√

d
and e1 denotes the smallest eigenvector direction of

Hessian ∇2f(x̃). Moreover, let the super epoch length tthres =
2 log( 8δ

√
d

C1ρζ
′r )

ηδ = Õ( 1
ηδ ), the step size

η ≤ min
(

1

8 log( 8δ
√
d

C1ρζ
′r )L

, 1
4C2L log tthres

)
= Õ( 1

L ), minibatch size b ≥ m and the perturbation radius

r ≤ δ
C1ρ

, then with probability 1− ζ, we have

∃T ≤ tthres, max{‖xT − x0‖, ‖x′T − x′0‖} ≥
δ

C1ρ
, (47)

where C1 ≥ 20C2

ηL and C2 = O(log dtthres
ζ ) = Õ(1).

Based on these two lemmas, we are ready to show that (45) holds with high probability. Without loss
of generality, we assume ‖xT − x0‖ ≥ δ

C1ρ
in (47) (note that (46) holds for both {xt} and {x′t}),

then plugging it into (46) to obtain√
4T (f(x0)− f(xT ))

C ′L
≥ δ

C1ρ

f(x0)− f(xT ) ≥ C ′Lδ2

4C2
1ρ

2T

≥ ηC ′Lδ3

8C2
1ρ

2 log( 8δ
√
d

C1ρζ′r
)

=
δ3

C ′1ρ
2

(48)

= 2fthres,

where the last inequality is due to T ≤ tthres and (48) holds by letting C ′1 =
8C2

1 log( 8δ
√
d

C1ρζ
′r )

ηC′L . Thus,
we already prove that at least one of sequences {xt} and {x′t} escapes the saddle point with high
probability, i.e.,

∃T ≤ tthres ,max{f(x0)− f(xT ), f(x′0)− f(x′T )} ≥ 2fthres, (49)

if their starting points x0 and x′0 satisfying w0 := x0 − x′0 = r0e1, where r0 = ζ′r√
d

and e1 denotes
the smallest eigenvector direction of Hessian H := ∇2f(x̃). Similar to the classical argument in
[18], we know that in the random perturbation ball, the stuck points can only be a short interval in the
e1 direction, i.e., at least one of two points in the e1 direction will escape the saddle point if their
distance is larger than r0 = ζ′r√

d
. Thus, we know that the probability of the starting point x0 = x̃+ ξ

(where ξ uniformly ∼ B0(r)) located in the stuck region is less than

r0Vd−1(r)

Vd(r)
=

r0Γ(d2 + 1)
√
πrΓ(d2 + 1

2 )
≤ r0√

πr

(d
2

+ 1
)1/2 ≤ r0

√
d

r
= ζ ′, (50)

where Vd(r) denotes the volume of a Euclidean ball with radius r in d dimension, and the first
inequality holds due to Gautschi’s inequality. By a union bound for (50) and (48) (holds with high
probability if x0 is not in a stuck region), we know

f(x0)− f(xT ) ≥ 2fthres =
δ3

C ′1ρ
2

(51)
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with high probability. Note that the initial point of this super epoch is x̃ before the perturbation
(see Line 6 of Algorithm 2), thus we need to show that the perturbation step x0 = x̃+ ξ (where ξ
uniformly ∼ B0(r)) does not increase the function value a lot, i.e.,

f(x0) ≤ f(x̃) + 〈∇f(x̃), x0 − x̃〉+
L

2
‖x0 − x̃‖2

≤ f(x̃) + ‖∇f(x̃)‖‖x0 − x̃‖+
L

2
‖x0 − x̃‖2

≤ f(x̃) + gthres · r +
L

2
r2

≤ f(x̃) +
δ3

2C ′1ρ
2

= f(x̃) + fthres, (52)

where the last inequality holds by letting the perturbation radius r ≤ min{ δ3

4C′1ρ
2gthres

,
√

δ3

2C′1ρ
2L}.

Now we combine with (51) and (52) to obtain with high probability

f(x̃)− f(xT ) = f(x̃)− f(x0) + f(x0)− f(xT ) ≥ −fthres + 2fthres =
δ3

2C ′1ρ
2
. (53)

Thus we have finished the proof for the second situation (around saddle points), i.e., we show that the

function value decrease a lot (fthres = δ3

2C′1ρ
2 ) in a super epoch (recall that T ≤ tthres =

2 log( 8δ
√
d

C1ρζ
′r )

ηδ )
by adding a random perturbation ξ ∼ B0(r) at the initial point x̃.

Combing these two situations (large gradients and around saddle points) to prove Theorem 2:
First, we recall Theorem 2 here since we want to recall the parameter setting.

Theorem 2 Under Assumption 1 and 2 (i.e. (3) and (5)), let ∆f := f(x0) − f∗, where x0 is the
initial point and f∗ is the optimal value of f . By letting step size η = Õ( 1

L ), epoch length m =
√
n,

minibatch size b =
√
n, perturbation radius r = Õ

(
min( δ

3

ρ2ε ,
δ3/2

ρ
√
L

)
)
, threshold gradient gthres = ε,

threshold function value fthres = Õ( δ
3

ρ2 ) and super epoch length tthres = Õ( 1
ηδ ), SSRGD will at

least once get to an (ε, δ)-second-order stationary point with high probability using

Õ
(L∆f

√
n

ε2
+
Lρ2∆f

√
n

δ4
+
ρ2∆fn

δ3

)
stochastic gradients for nonconvex finite-sum problem (1).

Proof of Theorem 2. Now, we prove this theorem by distinguishing the epochs into three types as
follows:

1. Type-1 useful epoch: If at least half of points in this epoch have gradient norm larger than
gthres (Case 2 of Lemma 1);

2. Wasted epoch: If at least half of points in this epoch have gradient norm no larger than
gthres and the starting point of the next epoch has gradient norm larger than gthres (it means
that this epoch does not guarantee decreasing the function value a lot as the large gradients
situation, also it cannot connect to the second super epoch situation since the starting point
of the next epoch has gradient norm larger than gthres);

3. Type-2 useful super epoch: If at least half of points in this epoch have gradient norm no
larger than gthres and the starting point of the next epoch (here we denote this point as
x̃) has gradient norm no larger than gthres (i.e., ‖∇f(x̃)‖ ≤ gthres) (Case 1 of Lemma 1),
according to Line 3 of Algorithm 2, we will start a super epoch. So here we denote this
epoch along with its following super epoch as a type-2 useful super epoch.

First, it is easy to see that the probability of a wasted epoch happened is less than 1/2 due to the
random stop (see Case 1 of Lemma 1 and Line 16 of Algorithm 2) and different wasted epoch are
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independent. Thus, with high probability, there are at most Õ(1) wasted epochs happened before
a type-1 useful epoch or type-2 useful super epoch. Now, we use N1 and N2 to denote the number
of type-1 useful epochs and type-2 useful super epochs that the algorithm is needed. Recall that
∆f := f(x0)− f∗, where x0 is the initial point and f∗ is the optimal value of f . Also recall that the
function value always does not increase with high probability (see Lemma 1).

For type-1 useful epoch, according to Case 2 of Lemma 1, we know that the function value decreases
at least ηmg

2
thres

8 with probability at least 1/5. Using a standard concentration, we know that with

high probability N1 type-1 useful epochs will decrease the function value at least ηmg
2
thresN1

80 , note

that the function value can decrease at most ∆f . So ηmg2thresN1

80 ≤ ∆f , we get N1 ≤ 80∆f
ηmg2thres

.

For type-2 useful super epoch, first we know that the starting point of the super epoch x̃ has gradient
norm ‖∇f(x̃)‖ ≤ gthres. Now if λmin(∇2f(x̃)) ≥ −δ, then x̃ is already a (ε, δ)-second-order
stationary point. Otherwise, ‖∇f(x̃)‖ ≤ gthres and λmin(∇2f(x̃)) ≤ −δ, this is exactly our second
situation (around saddle points). According to (53), we know that the the function value decrease
(f(x̃)− f(xT )) is at least fthres = δ3

2C′1ρ
2 with high probability. Similar to type-1 useful epoch, we

know N2 ≤ C′′1 ρ
2∆f
δ3 by a union bound (so we change C ′1 to C ′′1 , anyway we also have C ′′1 = Õ(1)).

Now, we are ready to compute the convergence results to finish the proof for Theorem 2.

N1(Õ(1)n+ n+mb) +N2(Õ(1)n+
⌈ tthres

m

⌉
n+ tthresb)

≤ Õ
( ∆fn

ηmg2
thres

+
ρ2∆f

δ3
(n+

√
n

ηδ
)
)

≤ Õ
(L∆f

√
n

ε2
+
Lρ2∆f

√
n

δ4
+
ρ2∆fn

δ3

)
(54)

�

Now, the only remaining thing is to prove Lemma 2 and 3. We provide these two proofs as follows.

Lemma 2 (Localization) Let {xt} denote the sequence by running SSRGD update steps (Line 8–12
of Algorithm 2) from x0. Moreover, let the step size η ≤ 1

2C′L and minibatch size b ≥ m, with
probability 1− ζ, we have

∀t, ‖xt − x0‖ ≤
√

4t(f(x0)− f(xt))

C ′L
,

where C ′ = O(log dt
ζ ) = Õ(1).

Proof of Lemma 2. First, we assume the variance bound (42) holds for all 0 ≤ j ≤ t − 1 (this is
true with high probability using a union bound by letting C ′ = O(log dt

ζ )). Then, according to (43),
we know for any τ ≤ t in some epoch s

f(xτ ) ≤ f(xsm)− η

2

τ∑
j=sm+1

‖∇f(xj−1)‖2 −
( 1

2η
− L

2
− ηC ′2L2

2

) τ∑
j=sm+1

‖xj − xj−1‖2

≤ f(xsm)−
( 1

2η
− L

2
− ηC ′2L2

2

) τ∑
j=sm+1

‖xj − xj−1‖2

≤ f(xsm)− C ′L

4

τ∑
j=sm+1

‖xj − xj−1‖2, (55)

where the last inequality holds since the step size η ≤ 1
2C′L and assuming C ′ ≥ 1. Now, we sum up

(55) for all epochs before iteration t,

f(xt) ≤ f(x0)− C ′L

4

t∑
j=1

‖xj − xj−1‖2.
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Then, the proof is finished as

‖xt − x0‖ ≤
t∑

j=1

‖xj − xj−1‖ ≤

√√√√t

t∑
j=1

‖xj − xj−1‖2 ≤
√

4t(f(x0)− f(xt))

C ′L
.

�

Lemma 3 (Small Stuck Region) If the initial point x̃ satisfies−γ := λmin(∇2f(x̃)) ≤ −δ, then let
{xt} and {x′t} be two coupled sequences by running SSRGD update steps (Line 8–12 of Algorithm 2)
with the same choice of minibatches (i.e., Ib’s in Line 12) from x0 and x′0 with w0 := x0−x′0 = r0e1,
where x0 ∈ Bx̃(r), x′0 ∈ Bx̃(r) , r0 = ζ′r√

d
and e1 denotes the smallest eigenvector direction of

Hessian ∇2f(x̃). Moreover, let the super epoch length tthres =
2 log( 8δ

√
d

C1ρζ
′r )

ηδ = Õ( 1
ηδ ), the step size

η ≤ min
(

1

8 log( 8δ
√
d

C1ρζ
′r )L

, 1
4C2L log tthres

)
= Õ( 1

L ), minibatch size b ≥ m and the perturbation radius

r ≤ δ
C1ρ

, then with probability 1− ζ, we have

∃T ≤ tthres, max{‖xT − x0‖, ‖x′T − x′0‖} ≥
δ

C1ρ
,

where C1 ≥ 20C2

ηL and C2 = O(log dtthres
ζ ) = Õ(1).

Proof of Lemma 3. We prove this lemma by contradiction. Assume the contrary,

∀t ≤ tthres , ‖xt − x0‖ ≤
δ

C1ρ
and ‖x′t − x′0‖ ≤

δ

C1ρ
(56)

We will show that the distance between these two coupled sequences wt := xt − x′t will grow
exponentially since they have a gap in the e1 direction at the beginning, i.e., w0 := x0 − x′0 = r0e1,
where r0 = ζ′r√

d
and e1 denotes the smallest eigenvector direction of HessianH := ∇2f(x̃). However,

‖wt‖ = ‖xt − x′t‖ ≤ ‖xt − x0‖+ ‖x0 − x̃‖+ ‖x′t − x′0‖+ ‖x′0 − x̃‖ ≤ 2r + 2 δ
C1ρ

according to
(56) and the perturbation radius r. It is not hard to see that the exponential increase will break this
upper bound, thus we get a contradiction.

In the following, we prove the exponential increase of wt by induction. First, we need the expression
of wt (recall that xt = xt−1 − ηvt−1 (see Line 11 of Algorithm 2)):

wt = wt−1 − η(vt−1 − v′t−1)

= wt−1 − η
(
∇f(xt−1)−∇f(x′t−1) + vt−1 −∇f(xt−1)− v′t−1 +∇f(x′t−1)

)
= wt−1 − η

(∫ 1

0

∇2f(x′t−1 + θ(xt−1 − x′t−1))dθ(xt−1 − x′t−1)

+ vt−1 −∇f(xt−1)− v′t−1 +∇f(x′t−1)
)

= (I − ηH)wt−1 − η(∆t−1wt−1 + yt−1)

= (I − ηH)tw0 − η
t−1∑
τ=0

(I − ηH)t−1−τ (∆τwτ + yτ ) (57)

where ∆τ :=
∫ 1

0
(∇2f(x′τ + θ(xτ − x′τ ))−H)dθ and yτ := vτ −∇f(xτ )− v′τ +∇f(x′τ ). Note

that the first term of (57) is in the e1 direction and is exponential with respect to t, i.e., (1 + ηγ)tr0e1,
where −γ := λmin(H) = λmin(∇2f(x̃)) ≤ −δ. To prove the exponential increase of wt, it is
sufficient to show that the first term of (57) will dominate the second term. We inductively prove the
following two bounds

1. 1
2 (1 + ηγ)tr0 ≤ ‖wt‖ ≤ 3

2 (1 + ηγ)tr0

2. ‖yt‖ ≤ ηγL(1 + ηγ)tr0

24



First, check the base case t = 0, ‖w0‖ = ‖r0e1‖ = r0 and ‖y0‖ = ‖v0−∇f(x0)−v′0 +∇f(x′0)‖ =
‖∇f(x0)−∇f(x0)−∇f(x′0) +∇f(x′0)‖ = 0. Assume they hold for all τ ≤ t− 1, we now prove
they hold for t one by one. For Bound 1, it is enough to show the second term of (57) is dominated
by half of the first term.

‖η
t−1∑
τ=0

(I − ηH)t−1−τ (∆τwτ )‖ ≤ η
t−1∑
τ=0

(1 + ηγ)t−1−τ‖∆τ‖‖wτ‖

≤ 3

2
η(1 + ηγ)t−1r0

t−1∑
τ=0

‖∆τ‖ (58)

≤ 3

2
η(1 + ηγ)t−1r0

t−1∑
τ=0

ρDx
τ (59)

≤ 3

2
η(1 + ηγ)t−1r0tρ

( δ

C1ρ
+ r
)

(60)

≤ 3

C1
ηδt(1 + ηγ)t−1r0 (61)

≤
6 log( 8δ

√
d

C1ρζ′r
)

C1
(1 + ηγ)t−1r0 (62)

≤ 1

4
(1 + ηγ)tr0, (63)

where (58) uses the induction for wτ with τ ≤ t − 1, (59) uses the definition Dx
τ := max{‖xτ −

x̃‖, ‖x′τ − x̃‖}, (60) follows from ‖xt − x̃‖ ≤ ‖xt − x0‖ + ‖x0 − x̃‖ = δ
C1ρ

+ r due to (56) and
the perturbation radius r, (61) holds by letting the perturbation radius r ≤ δ

C1ρ
, (62) holds since

t ≤ tthres =
2 log( 8δ

√
d

C1ρζ
′r )

ηδ , and (63) holds by letting C1 ≥ 24 log(8δ
√
d

ρζ′r ).

‖η
t−1∑
τ=0

(I − ηH)t−1−τyτ‖ ≤ η
t−1∑
τ=0

(1 + ηγ)t−1−τ‖yτ‖

≤ η
t−1∑
τ=0

(1 + ηγ)t−1−τηγL(1 + ηγ)τr0 (64)

= ηηγLt(1 + ηγ)t−1r0

≤ ηηγL
2 log( 8δ

√
d

C1ρζ′r
)

ηδ
(1 + ηγ)t−1r0 (65)

≤ 2η log(
8δ
√
d

C1ρζ ′r
)L(1 + ηγ)t−1r0 (66)

≤ 1

4
(1 + ηγ)tr0, (67)

where (64) uses the induction for yτ with τ ≤ t − 1, (65) holds since t ≤ tthres =
2 log( 8δ

√
d

C1ρζ
′r )

ηδ ,
(66) holds γ ≥ δ (recall −γ := λmin(H) = λmin(∇2f(x̃)) ≤ −δ), and (67) holds by letting
η ≤ 1

8 log( 8δ
√
d

C1ρζ
′r )L

.

Combining (63) and (67), we proved the second term of (57) is dominated by half of the first term.
Note that the first term of (57) is ‖(I − ηH)tw0‖ = (1 + ηγ)tr0. Thus, we have

1

2
(1 + ηγ)tr0 ≤ ‖wt‖ ≤

3

2
(1 + ηγ)tr0 (68)
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Now, the remaining thing is to prove the second bound ‖yt‖ ≤ ηγL(1 + ηγ)tr0. First, we write the
concrete expression of yt:

yt = vt −∇f(xt)− v′t +∇f(x′t)

=
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(xt−1)

)
+ vt−1 −∇f(xt)

− 1

b

∑
i∈Ib

(
∇fi(x′t)−∇fi(x′t−1)

)
− v′t−1 +∇f(x′t) (69)

=
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(xt−1)

)
+∇f(xt−1)−∇f(xt)

− 1

b

∑
i∈Ib

(
∇fi(x′t)−∇fi(x′t−1)

)
−∇f(x′t−1) +∇f(x′t)

+ vt−1 −∇f(xt−1)− v′t−1 +∇f(x′t−1)

=
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(x′t)−∇fi(xt−1) +∇fi(x′t−1)

)
−
(
∇f(xt)−∇f(x′t)−∇f(xt−1) +∇f(x′t−1)

)
+ yt−1,

where (69) due to the definition of the estimator vt (see Line 12 of Algorithm 2). We further define
the difference zt := yt − yt−1. It is not hard to verify that {yt} is a martingale sequence and {zt} is
the associated martingale difference sequence. We will apply the Azuma-Hoeffding inequalities to
get an upper bound for ‖yt‖ and then we prove ‖yt‖ ≤ ηγL(1 + ηγ)tr0 based on that upper bound.
In order to apply the Azuma-Hoeffding inequalities for martingale sequence ‖yt‖, we first need to
bound the difference sequence {zt}. We use the Bernstein inequality to bound the differences as
follows.

zt = yt − yt−1 =
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(x′t)−∇fi(xt−1) +∇fi(x′t−1)

)
−
(
∇f(xt)−∇f(x′t)−∇f(xt−1) +∇f(x′t−1)

)
=

1

b

∑
i∈Ib

((
∇fi(xt)−∇fi(x′t)

)
−
(
∇fi(xt−1)−∇fi(x′t−1)

)
−
(
∇f(xt)−∇f(x′t)

)
+
(
∇f(xt−1)−∇f(x′t−1)

))
. (70)

We define ui :=
(
∇fi(xt) − ∇fi(x′t)

)
−
(
∇fi(xt−1) − ∇fi(x′t−1)

)
−
(
∇f(xt) − ∇f(x′t)

)
+(

∇f(xt−1)−∇f(x′t−1)
)
, and then we have

‖ui‖ = ‖
(
∇fi(xt)−∇fi(x′t)

)
−
(
∇fi(xt−1)−∇fi(x′t−1)

)
−
(
∇f(xt)−∇f(x′t)

)
+
(
∇f(xt−1)−∇f(x′t−1)

)
‖

≤
∥∥∥∫ 1

0

∇2fi(x
′
t + θ(xt − x′t))dθ(xt − x′t)−

∫ 1

0

∇2fi(x
′
t−1 + θ(xt−1 − x′t−1))dθ(xt−1 − x′t−1)

−
∫ 1

0

∇2f(x′t + θ(xt − x′t))dθ(xt − x′t) +

∫ 1

0

∇2f(x′t−1 + θ(xt−1 − x′t−1))dθ(xt−1 − x′t−1)
∥∥∥

= ‖Hiwt + ∆i
twt − (Hiwt−1 + ∆i

t−1wt−1)− (Hwt + ∆twt) + (Hwt−1 + ∆t−1wt−1)‖
(71)

≤ ‖(Hi −H)(wt − wt−1)‖+ ‖(∆i
t −∆t)wt − (∆i

t−1 −∆t−1)wt−1‖
≤ 2L‖wt − wt−1‖+ 2ρDx

t ‖wt‖+ 2ρDx
t−1‖wt−1‖, (72)

where (71) holds since we define ∆t :=
∫ 1

0
(∇2f(x′t+θ(xt−x′t))−H)dθ and ∆i

t :=
∫ 1

0
(∇2fi(x

′
t+

θ(xt − x′t))−Hi)dθ, and the last inequality holds due to the gradient Lipschitz Assumption 1 and
Hessian Lipschitz Assumption 2 (recall Dx

t := max{‖xt − x̃‖, ‖x′t − x̃‖}). Then, consider the
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variance term σ2

σ2 =
∑
i∈Ib

E[‖ui‖2]

≤
∑
i∈Ib

E[‖
(
∇fi(xt)−∇fi(x′t)

)
−
(
∇fi(xt−1)−∇fi(x′t−1)

)
‖2]

=
∑
i∈Ib

E[‖Hiwt + ∆i
twt − (Hiwt−1 + ∆i

t−1wt−1)‖2]

≤ b(L‖wt − wt−1‖+ ρDx
t ‖wt‖+ ρDx

t−1‖wt−1‖)2, (73)

where the first inequality uses the fact E[‖x − Ex‖2] ≤ E[‖x‖2], and the last inequality uses the
gradient Lipschitz Assumption 1 and Hessian Lipschitz Assumption 2. According to (72) and (73),
we can bound the difference zk by Bernstein inequality (Proposition 2) as (where R = 2L‖wt −
wt−1‖+ 2ρDx

t ‖wt‖+ 2ρDx
t−1‖wt−1‖ and σ2 = b(L‖wt−wt−1‖+ ρDx

t ‖wt‖+ ρDx
t−1‖wt−1‖)2)

P
{∥∥zt∥∥ ≥ α

b

}
≤ (d+ 1) exp

( −α2/2

σ2 +Rα/3

)
= ζk,

where the last equality holds by letting α = C4

√
b(L‖wt − wt−1‖+ ρDx

t ‖wt‖+ ρDx
t−1‖wt−1‖),

where C4 = O(log d
ζk

) = Õ(1).

Now, we have a high probability bound for the difference sequence {zk}, i.e.,

‖zk‖ ≤ ck =
C4(L‖wt − wt−1‖+ ρDx

t ‖wt‖+ ρDx
t−1‖wt−1‖)√

b
with probability 1− ζk.

(74)

Now, we are ready to get an upper bound for yt by using the martingale Azuma-Hoeffding inequality.
Note that we only need to consider the current epoch that contains the iteration t since each epoch we
start with y = 0. Let s denote the current epoch, i.e, iterations from sm + 1 to current t, where t
is no larger than (s+ 1)m. According to Azuma-Hoeffding inequality (Proposition 4) and letting
ζk = ζ/m, we have

P
{∥∥yt − ysm∥∥ ≥ β} ≤ (d+ 1) exp

( −β2

8
∑t
k=sm+1 c

2
k

)
+ ζ

= 2ζ,

where the last equality holds by letting β =
√

8
∑t
k=sm+1 c

2
k log d

ζ =

C3

√∑t
k=sm+1(L‖wt−wt−1‖+ρDxt ‖wt‖+ρDxt−1‖wt−1‖)2√

b
, where C3 = O(C4

√
log d

ζ ) = Õ(1).

Recall that yk := vk −∇f(xk)− v′k +∇f(x′k) and at the beginning point of this epoch ysm = 0
due to vsm = ∇f(xsm) and v′sm = ∇f(x′sm) (see Line 5 of Algorithm 1), thus we have

‖yt‖ = ‖yt − ysm‖ ≤
C3

√∑t
k=sm+1(L‖wt − wt−1‖+ ρDx

t ‖wt‖+ ρDx
t−1‖wt−1‖)2

√
b

(75)

with probability 1− 2ζ, where t belongs to [sm+ 1, (s+ 1)m]. Note that we can further relax the
parameter C3 in (75) to C2 = O(log dtthres

ζ ) (see (76)) for making sure the above arguments hold
with probability 1− ζ for all t ≤ tthres by using a union bound for ζt’s:

‖yt‖ = ‖yt − ysm‖ ≤
C2

√∑t
k=sm+1(L‖wt − wt−1‖+ ρDx

t ‖wt‖+ ρDx
t−1‖wt−1‖)2

√
b

. (76)

Now, we will show how to bound the right-hand-side of (76) to finish the proof, i.e., prove the
remaining second bound ‖yt‖ ≤ ηγL(1 + ηγ)tr0.
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First, we show that the last two terms in the right-hand-side of (76) can be bounded as

ρDx
t ‖wt‖+ ρDx

t−1‖wt−1‖ ≤ ρ
( δ

C1ρ
+ r
)3

2
(1 + ηγ)tr0 + ρ

( δ

C1ρ
+ r
)3

2
(1 + ηγ)t−1r0

≤ 3ρ
( δ

C1ρ
+ r
)
(1 + ηγ)tr0

≤ 6δ

C1
(1 + ηγ)tr0, (77)

where the first inequality follows from the induction of ‖wt−1‖ ≤ 3
2 (1 + ηγ)t−1r0 and the already

proved ‖wt‖ ≤ 3
2 (1 + ηγ)tr0 in (68), and the last inequality holds by letting the perturbation radius

r ≤ δ
C1ρ

.

Now, we show that the first term of right-hand-side of (76) can be bounded as
L‖wt − wt−1‖

= L
∥∥− ηH(I − ηH)t−1w0 − η

t−2∑
τ=0

ηH(I − ηH)t−2−τ (∆τwτ + yτ ) + η(∆t−1wt−1 + yt−1)
∥∥

≤ Lηγ(1 + ηγ)t−1r0 + L
∥∥η t−2∑

τ=0

ηH(I − ηH)t−2−τ (∆τwτ + yτ )
∥∥+ L‖η(∆t−1wt−1 + yt−1)‖

≤ Lηγ(1 + ηγ)t−1r0 + Lη
∥∥ t−2∑
τ=0

ηH(I − ηH)t−2−τ∥∥ max
0≤k≤t−2

‖∆kwk + yk‖

+ Lηρ
( δ

C1ρ
+ r
)
‖wt−1‖+ Lη‖yt−1‖ (78)

≤ Lηγ(1 + ηγ)t−1r0 + Lη

t−2∑
τ=0

1

t− 1− τ
max

0≤k≤t−2
‖∆kwk + yk‖

+ Lηρ
( δ

C1ρ
+ r
)
‖wt−1‖+ Lη‖yt−1‖ (79)

≤ Lηγ(1 + ηγ)t−1r0 + Lη log t max
0≤k≤t−2

‖∆kwk + yk‖

+ Lηρ
( δ

C1ρ
+ r
)
‖wt−1‖+ Lη‖yt−1‖

≤ Lηγ(1 + ηγ)t−1r0 + Lη log t max
0≤k≤t−2

‖∆kwk + yk‖

+ Lηρ
( δ

C1ρ
+ r
)3

2
(1 + ηγ)t−1r0 + LηηγL(1 + ηγ)t−1r0 (80)

≤ Lηγ(1 + ηγ)t−1r0 + Lη log t
(
ρ
( δ

C1ρ
+ r
)3

2
(1 + ηγ)t−2r0 + ηγL(1 + ηγ)t−2r0

)
+ Lηρ

( δ

C1ρ
+ r
)3

2
(1 + ηγ)t−1r0 + LηηγL(1 + ηγ)t−1r0 (81)

≤ Lηγ(1 + ηγ)t−1r0 + Lη log t
( 3δ

C1
(1 + ηγ)t−2r0 + ηγL(1 + ηγ)t−2r0

)
+

3Lηδ

C1
(1 + ηγ)t−1r0 + LηηγL(1 + ηγ)t−1r0 (82)

≤
( 4

C1
log t+ 2Lη log t

)
ηγL(1 + ηγ)tr0, (83)

where the first equality follows from (57), (78) holds from the following (84),

‖∆t‖ ≤ ρDx
t ≤ ρ

( δ

C1ρ
+ r
)
, (84)

where (84) holds due to Hessian Lipschitz Assumption 2, (56) and the perturbation radius r (recall that
∆t :=

∫ 1

0
(∇2f(x′t+θ(xt−x′t))−H)dθ,H := ∇2f(x̃) andDx

t := max{‖xt− x̃‖, ‖x′t− x̃‖}), (79)
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holds due to ‖ηH(I−ηH)t‖ ≤ 1
t+1 , (80) holds by plugging the induction ‖wt−1‖ ≤ 3

2 (1 + ηγ)t−1r0

and ‖yt−1‖ ≤ ηγL(1 + ηγ)t−1r0, (81) follows from (84), the induction ‖wk‖ ≤ 3
2 (1 + ηγ)kr0

and ‖yk‖ ≤ ηγL(1 + ηγ)kr0 (hold for all k ≤ t− 1), (82) holds by letting the perturbation radius
r ≤ δ

C1ρ
, and the last inequality holds due to γ ≥ δ (recall−γ := λmin(H) = λmin(∇2f(x̃)) ≤ −δ).

By plugging (77) and (83) into (76), we have

‖yt‖ ≤ C2

(
6δ

C1
(1 + ηγ)tr0 +

( 4

C1
log t+ 2Lη log t

)
ηγL(1 + ηγ)tr0

)
≤ C2

( 6

C1ηL
+

4

C1
log t+ 2Lη log t

)
ηγL(1 + ηγ)tr0

≤ ηγL(1 + ηγ)tr0, (85)

where the second inequality holds due to γ ≥ δ, and the last inequality holds by letting C1 ≥ 20C2

ηL

and η ≤ 1
4C2L log t . Recall that C2 = O(log dtthres

ζ ) is enough to let the arguments in this proof hold
with probability 1− ζ for all t ≤ tthres.

From (68) and (85), we know that the two induction bounds hold for t. We recall the first induction
bound here:

1. 1
2 (1 + ηγ)tr0 ≤ ‖wt‖ ≤ 3

2 (1 + ηγ)tr0

Thus, we know that ‖wt‖ ≥ 1
2 (1 + ηγ)tr0 = 1

2 (1 + ηγ)t ζ
′r√
d

. However, ‖wt‖ := ‖xt − x′t‖ ≤
‖xt−x0‖+‖x0−x̃‖+‖x′t−x′0‖+‖x′0−x̃‖ ≤ 2r+2 δ

C1ρ
≤ 4δ

C1ρ
according to (56) and the perturbation

radius r. The last inequality is due to the perturbation radius r ≤ δ
C1ρ

(we already used this condition

in the previous arguments). This will give a contradiction for (56) if 1
2 (1 + ηγ)t ζ

′r√
d
≥ 4δ

C1ρ
and it

will happen if t ≥
2 log( 8δ

√
d

C1ρζ
′r )

ηδ .

So the proof of this lemma is finished by contradiction if we let tthres :=
2 log( 8δ

√
d

C1ρζ
′r )

ηδ , i.e., we have

∃T ≤ tthres, max{‖xT − x0‖, ‖x′T − x′0‖} ≥
δ

C1ρ
.

�
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C.2 Proofs for Online Problem

In this section, we provide the detailed proofs for online problem (2) (i.e., Theorem 3–4). We will
reuse some parts of our previous proofs for finite-sum problem (1) in previous Section C.1.

First, we recall the previous key relation (27) between f(xt) and f(xt−1) as follows (recall xt :=
xt−1 − ηvt−1):

f(xt) ≤f(xt−1) +
η

2
‖∇f(xt−1)− vt−1‖2 −

η

2
‖∇f(xt−1)‖2 −

( 1

2η
− L

2

)
‖xt − xt−1‖2. (86)

Next, we recall the previous bound (31) for the variance term:

E[‖vt−1 −∇f(xt−1)‖2] ≤ L2

b
E[‖xt−1 − xt−2‖2] + E[‖vt−2 −∇f(xt−2)‖2]. (87)

Now, the following bound for the variance term will be different from the previous finite-sum case.
Similar to (32), we sum up (87) from the beginning of this epoch sm to the point t− 1,

E[‖vt−1 −∇f(xt−1)‖2] ≤ L2

b

t−1∑
j=sm+1

E[‖xj − xj−1‖2] + E[‖vsm −∇f(xsm)‖2] (88)

=
L2

b

t−1∑
j=sm+1

E[‖xj − xj−1‖2] + E
[∥∥∥ 1

B

∑
j∈IB

∇fj(xsm)−∇f(xsm)
∥∥∥2]

(89)

≤ L2

b

t−1∑
j=sm+1

E[‖xj − xj−1‖2] +
σ2

B
, (90)

where (88) is the same as (32), (89) uses the modification (11) (i.e., vsm = 1
B

∑
j∈IB ∇fj(xsm)

instead of the full gradient computation vsm = ∇f(xsm) in the finite-sum case), and the last
inequality (90) follows from the bounded variance Assumption 3.

Now, we take expectations for (86) and then sum it up from the beginning of this epoch s, i.e.,
iterations from sm to t, by plugging the variance (90) into them to get:

E[f(xt)] ≤ E[f(xsm)]− η

2

t∑
j=sm+1

E[‖∇f(xj−1)‖2]−
( 1

2η
− L

2

) t∑
j=sm+1

E[‖xj − xj−1‖2]

+
ηL2

2b

t−1∑
k=sm+1

k∑
j=sm+1

E[‖xj − xj−1‖2] +
η

2

t∑
j=sm+1

σ2

B

≤ E[f(xsm)]− η

2

t∑
j=sm+1

E[‖∇f(xj−1)‖2]−
( 1

2η
− L

2

) t∑
j=sm+1

E[‖xj − xj−1‖2]

+
ηL2(t− 1− sm)

2b

t∑
j=sm+1

E[‖xj − xj−1‖2] +
(t− sm)ησ2

2B

≤ E[f(xsm)]− η

2

t∑
j=sm+1

E[‖∇f(xj−1)‖2]−
( 1

2η
− L

2

) t∑
j=sm+1

E[‖xj − xj−1‖2]

+
ηL2

2

t∑
j=sm+1

E[‖xj − xj−1‖2] +
(t− sm)ησ2

2B
(91)

≤ E[f(xsm)]− η

2

t∑
j=sm+1

E[‖∇f(xj−1)‖2] +
(t− sm)ησ2

2B
, (92)

where (91) holds if the minibatch size b ≥ m (note that here t ≤ (s+ 1)m), (92) holds if the step
size η ≤

√
5−1
2L .
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Proof of Theorem 3. Let b = m = 2σ
ε and step size η ≤

√
5−1
2L , then (92) holds. Now, the proof is

directly obtained by summing up (92) for all epochs 0 ≤ s ≤ S as follows:

E[f(xT )] ≤ E[f(x0)]− η

2

T∑
j=1

E[‖∇f(xj−1)‖2] +
Tησ2

2B

E[‖∇f(x̂)‖] ≤
√
E[‖∇f(x̂)‖2] ≤

√
2(f(x0)− f∗)

ηT
+
σ2

B
=
ε

2
+
ε

2
= ε, (93)

where (93) holds by choosing x̂ uniformly from {xt−1}t∈[T ] and letting Sm ≤ T = 8(f(x0)−f∗)
ηε2 =

O(L(f(x0)−f∗)
ε2 ) and B = 4σ2

ε2 . Note that the total number of computation of stochastic gradients
equals to

SB + Smb ≤
⌈ T
m

⌉
B + Tb ≤

( T

2σ/ε
+ 1
)4σ2

ε2
+ T

2σ

ε
= O

(σ2

ε2
+
L(f(x0)− f∗)σ

ε3

)
.

�

C.2.1 Proof of Theorem 4

Similar to the proof of Theorem 2, for proving the second-order guarantee, we will divide the
proof into two situations. The first situation (large gradients) is also almost the same as the above
arguments for first-order guarantee, where the function value will decrease a lot since the gradients
are large (see (92)). For the second situation (around saddle points), we will show that the function
value can also decrease a lot by adding a random perturbation. The reason is that saddle points are
usually unstable and the stuck region is relatively small in a random perturbation ball.

Large Gradients: First, we need a high probability bound for the variance term instead of the
expectation one (90). Then we use it to get a high probability bound of (92) for function value
decrease. Note that in this online case, vsm = 1

B

∑
j∈IB ∇fj(xsm) at the beginning of each epoch

(see (11)) instead of vsm = ∇f(xsm) in the previous finite-sum case. Thus we first need a high
probability bound for ‖vsm −∇f(xsm)‖. According to Assumption 4, we have

‖∇fj(x)−∇f(x)‖ ≤ σ,∑
j∈IB

‖∇fj(x)−∇f(x)‖2 ≤ Bσ2.

By applying Bernstein inequality (Proposition 2), we get the high probability bound for ‖vsm −
∇f(xsm)‖ as follows:

P
{∥∥vsm −∇f(xsm)

∥∥ ≥ t

B

}
≤ (d+ 1) exp

( −t2/2
Bσ2 + σt/3

)
= ζ,

where the last equality holds by letting t = C
√
Bσ, where C = O(log d

ζ ) = Õ(1). Now, we have a
high probability bound for ‖vsm −∇f(xsm)‖, i.e.,∥∥vsm −∇f(xsm)

∥∥ ≤ Cσ√
B

with probability 1− ζ. (94)

Now we will try to obtain a high probability bound for the variance term of other points beyond the
starting points. Recall that vk = 1

b

∑
i∈Ib

(
∇fi(xk)−∇fi(xk−1)

)
+ vk−1 (see Line 9 of Algorithm

1), we let yk := vk −∇f(xk) and zk := yk − yk−1. It is not hard to verify that {yk} is a martingale
sequence and {zk} is the associated martingale difference sequence. In order to apply the Azuma-
Hoeffding inequalities to get a high probability bound, we first need to bound the difference sequence
{zk}. We use the Bernstein inequality to bound the differences as follows.
zk = yk − yk−1 = vk −∇f(xk)− (vk−1 −∇f(xk−1))

=
1

b

∑
i∈Ib

(
∇fi(xk)−∇fi(xk−1)

)
+ vk−1 −∇f(xk)− (vk−1 −∇f(xk−1))

=
1

b

∑
i∈Ib

(
∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1))

)
. (95)
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We define ui := ∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1)), and then we have

‖ui‖ = ‖∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1))‖ ≤ 2‖xk − xk−1‖, (96)

where the last inequality holds due to the gradient Lipschitz Assumption 1. Then, consider the
variance term ∑

i∈Ib

E[‖ui‖2]

=
∑
i∈Ib

E[‖∇fi(xk)−∇fi(xk−1)− (∇f(xk)−∇f(xk−1))‖2]

≤
∑
i∈Ib

E[‖∇fi(xk)−∇fi(xk−1)‖2]

≤ bL2‖xk − xk−1‖2, (97)

where the first inequality uses the fact E[‖x − Ex‖2] ≤ E[‖x‖2], and the last inequality uses the
gradient Lipschitz Assumption 1. According to (96) and (97), we can bound the difference zk by
Bernstein inequality (Proposition 2) as

P
{∥∥zk∥∥ ≥ t

b

}
≤ (d+ 1) exp

( −t2/2
σ2 +Rt/3

)
= (d+ 1) exp

( −t2/2
bL2‖xk − xk−1‖2 + 2‖xk − xk−1‖t/3

)
= ζk,

where the last equality holds by letting t = CL
√
b‖xk − xk−1‖, where C = O(log d

ζk
) = Õ(1).

Now, we have a high probability bound for the difference sequence {zk}, i.e.,

‖zk‖ ≤ ck =
CL‖xk − xk−1‖√

b
with probability 1− ζk. (98)

Now, we are ready to get a high probability bound for our original variance term (90) by using the
martingale Azuma-Hoeffding inequality. Consider in a specifical epoch s, i.e, iterations t from sm+1
to current sm+ k, where k is less than m. According to Azuma-Hoeffding inequality (Proposition 4)
and letting ζk = ζ/m, we have

P
{∥∥ysm+k − ysm

∥∥ ≥ β} ≤ (d+ 1) exp
( −β2

8
∑sm+k
t=sm+1 c

2
t

)
+ ζ

= 2ζ,

where the last equality holds by letting β =
√

8
∑sm+k
t=sm+1 c

2
t log d

ζ =
C′L

√∑sm+k
t=sm+1 ‖xt−xt−1‖2
√
b

,

where C ′ = O(C
√

log d
ζ ) = Õ(1). Recall that yk := vk−∇f(xk) and at the beginning point of this

epoch ‖ysm‖ = ‖vsm−∇f(xsm)‖ ≤ Cσ/
√
B with probability 1−ζ , where C = O(log d

ζ ) = Õ(1)

(see (94)). Combining with (94) and using a union bound, we have

‖vt−1 −∇f(xt−1)‖ = ‖yt−1‖ ≤ β + ‖ysm‖ ≤
C ′L

√∑t−1
j=sm+1 ‖xj − xj−1‖2
√
b

+
Cσ√
B

(99)

with probability 1− 3ζ, where t belongs to [sm+ 1, (s+ 1)m].

Now, we use this high probability version (99) instead of the expectation one (90) to obtain the high
probability bound for function value decrease (see (92)). We sum up (86) from the beginning of this
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epoch s, i.e., iterations from sm to t, by plugging (99) into them to get:

f(xt) ≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
( 1

2η
− L

2

) t∑
j=sm+1

‖xj − xj−1‖2

+
η

2

t−1∑
k=sm+1

2C ′2L2
∑k
j=sm+1 ‖xj − xj−1‖2

b
+
η

2

t∑
j=sm+1

2C2σ2

B

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
( 1

2η
− L

2

) t∑
j=sm+1

‖xj − xj−1‖2

+
ηC ′2L2

b

t−1∑
k=sm+1

k∑
j=sm+1

‖xj − xj−1‖2 +
(t− sm)ηC2σ2

B

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
( 1

2η
− L

2

) t∑
j=sm+1

‖xj − xj−1‖2

+
ηC ′2L2(t− 1− sm)

b

t∑
j=sm+1

‖xj − xj−1‖2 +
(t− sm)ηC2σ2

B

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 −
( 1

2η
− L

2
− ηC ′2L2

) t∑
j=sm+1

‖xj − xj−1‖2

+
(t− sm)ηC2σ2

B
(100)

≤ f(xsm)− η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 +
(t− sm)ηC2σ2

B
, (101)

where (100) holds if the minibatch size b ≥ m (note that here t ≤ (s+ 1)m), and (101) holds if the
step size η ≤

√
8C′2+1−1
4C′2L .

Similar to the previous finite-sum case, (101) only guarantees function value decrease when the sum-
mation of gradients in this epoch is large. However, in order to connect the guarantees between first
situation (large gradients) and second situation (around saddle points), we need to show guarantees
that are related to the gradient of the starting point of each epoch (see Line 3 of Algorithm 2). As we
discussed in previous Section C.1.1, we achieve this by stopping the epoch at a uniformly random
point (see Line 16 of Algorithm 2).

We want to point out that the second situation will have a bit difference due to (11), i.e., the full
gradient of the starting point is not available (see Line 3 of Algorithm 2). Thus some modifications
are needed for previous Lemma 1, we use the following lemma to connect these two situations (large
gradients and around saddle points):

Lemma 4 (Connection of Two Situations) For any epoch s, let xt be a point uniformly sampled
from this epoch {xj}(s+1)m

j=sm . Moreover, let the step size η ≤
√

8C′2+1−1
4C′2L (where C ′ = O(log dm

ζ ) =

Õ(1)), the minibatch size b ≥ m and batch size B ≥ 256C2σ2

g2thres
(where C = O(log d

ζ ) = Õ(1)), there
are two cases:

1. If at least half of points in this epoch have gradient norm no larger than gthres
2 , then

‖∇f(x(s+1)m)‖ ≤ gthres

2 and ‖v(s+1)m‖ ≤ gthres hold with probability at least 1/3;

2. Otherwise, we know f(xsm)− f(xt) ≥ 7ηmg2thres
256 holds with probability at least 1/5.

Moreover, f(xt) ≤ f(xsm)+ (t−sm)ηC2σ2

B holds with high probability no matter which case happens.

Proof of Lemma 4. There are two cases in this epoch:
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1. If at least half of points of in this epoch {xj}(s+1)m
j=sm have gradient norm no larger than gthres

2 ,
then it is easy to see that a uniformly sampled point xt has gradient norm ‖∇f(xt)‖ ≤ gthres

2
with probability at least 1/2. Moreover, note that the starting point of the next epoch
x(s+1)m = xt (i.e., Line 19 of Algorithm 2), thus we have ‖∇f(x(s+1)m)‖ ≤ gthres

2

with probability 1/2. According to (94), we have ‖v(s+1)m −∇f(x(s+1)m)‖ ≤ Cσ√
B

with

probability 1 − ζ, where C = O(log d
ζ ) = Õ(1). By a union bound, with probability at

least 1/3, we have

‖v(s+1)m‖ ≤
Cσ√
B

+
gthres

2
≤ gthres

16
+
gthres

2
≤ gthres.

2. Otherwise, at least half of points have gradient norm larger than gthres
2 . Then, as

long as the sampled point xt falls into the last quarter of {xj}(s+1)m
j=sm , we know∑t

j=sm+1 ‖∇f(xj−1)‖2 ≥ mg2thres
16 . This holds with probability at least 1/4 since xt

is uniformly sampled. Then by combining with (101), we obtain the function value decrease

f(xsm)− f(xt) ≥
η

2

t∑
j=sm+1

‖∇f(xj−1)‖2 − (t− sm)ηC2σ2

B

≥ ηmg2
thres

32
− ηmg2

thres

256
=

7ηmg2
thres

256
,

where the last inequality is due to B ≥ 256C2σ2

g2thres
. Note that (101) holds with high probability

if we choose the minibatch size b ≥ m and the step size η ≤
√

8C′2+1−1
4C′2L . By a union bound,

the function value decrease f(xsm)− f(xt) ≥ 7ηmg2thres
256 with probability at least 1/5.

Again according to (101), f(xt) ≤ f(xsm) + (t−sm)ηC2σ2

B always holds with high probability. �

Note that if Case 2 happens, the function value already decreases a lot in this epoch s (corresponding
to the first situation large gradients). Otherwise, Case 1 happens, we know the starting point of the
next epoch x(s+1)m = xt (i.e., Line 19 of Algorithm 2), then we know ‖∇f(x(s+1)m)‖ ≤ gthres

2
and ‖v(s+1)m‖ ≤ gthres. Then we will start a super epoch (corresponding to the second situation
around saddle points). Note that if λmin(∇2f(x(s+1)m)) > −δ, this point x(s+1)m is already an
(ε, δ)-second-order stationary point (recall that gthres ≤ ε in our Theorem 4).

Around Saddle Points ‖v(s+1)m‖ ≤ gthres and λmin(∇2f(x(s+1)m)) ≤ −δ: In this situation, we
will show that the function value decreases a lot in a super epoch (instead of an epoch as in the first
situation) with high probability by adding a random perturbation at the initial point x̃ = x(s+1)m.
To simplify the presentation, we use x0 := x̃ + ξ to denote the starting point of the super epoch
after the perturbation, where ξ uniformly ∼ B0(r) and the perturbation radius is r (see Line 6 in
Algorithm 2). Following the classical widely used two-point analysis developed in [18], we consider
two coupled points x0 and x′0 with w0 := x0 − x′0 = r0e1, where r0 is a scalar and e1 denotes
the smallest eigenvector direction of Hessian H := ∇2f(x̃). Then we get two coupled sequences
{xt} and {x′t} by running SSRGD update steps (Line 8–12 of Algorithm 2) with the same choice of
batches and minibatches (i.e., IB’s (see (11) and Line 8) and Ib’s (see Line 12))for a super epoch.
We will show that at least one of these two coupled sequences will decrease the function value a lot
(escape the saddle point), i.e.,

∃t ≤ tthres, such that max{f(x0)− f(xt), f(x′0)− f(x′t)} ≥ 2fthres. (102)

We will prove (102) by contradiction. Assume the contrary, f(x0)− f(xt) < 2fthres and f(x′0)−
f(x′t) < 2fthres. First, we show that if function value does not decrease a lot, then all iteration points
are not far from the starting point with high probability. Then we will show that the stuck region is
relatively small in the random perturbation ball, i.e., at least one of xt and x′t will go far away from
their starting point x0 and x′0 with high probability. Thus there is a contradiction. Similar to Lemma
2 and Lemma 3, we need the following two lemmas. Their proofs are deferred to the end of this
section.
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Lemma 5 (Localization) Let {xt} denote the sequence by running SSRGD update steps (Line 8–12
of Algorithm 2) from x0. Moreover, let the step size η ≤ 1

4C′L and minibatch size b ≥ m, with
probability 1− ζ, we have

∀t, ‖xt − x0‖ ≤
√

4t(f(x0)− f(xt))

5C ′L
+

4t2ηC2σ2

5C ′LB
, (103)

where C ′ = O(log dt
ζ ) = Õ(1) and C = O(log dt

ζm ) = Õ(1).

Lemma 6 (Small Stuck Region) If the initial point x̃ satisfies −γ := λmin(∇2f(x̃)) ≤ −δ, then
let {xt} and {x′t} be two coupled sequences by running SSRGD update steps (Line 8–12 of Algorithm
2) with the same choice of batches and minibatches (i.e., IB’s (see (11) and Line 8) and Ib’s (see Line
12)) from x0 and x′0 with w0 := x0 − x′0 = r0e1, where x0 ∈ Bx̃(r), x′0 ∈ Bx̃(r) , r0 = ζ′r√

d
and e1

denotes the smallest eigenvector direction of Hessian∇2f(x̃). Moreover, let the super epoch length

tthres =
2 log( 8δ

√
d

C1ρζ
′r )

ηδ = Õ( 1
ηδ ), the step size η ≤ min

(
1

16 log( 8δ
√
d

C1ρζ
′r )L

, 1
8C2L log tthres

)
= Õ( 1

L ),

minibatch size b ≥ m, batch size B = Õ( σ2

g2thres
) and the perturbation radius r ≤ δ

C1ρ
, then with

probability 1− ζ, we have

∃T ≤ tthres, max{‖xT − x0‖, ‖x′T − x′0‖} ≥
δ

C1ρ
, (104)

where C1 ≥ 20C2

ηL , C2 = O(log dtthres

ζ ) = Õ(1) and C ′2 = O(log dtthres
ζm ) = Õ(1).

Based on these two lemmas, we are ready to show that (102) holds with high probability. Without
loss of generality, we assume ‖xT − x0‖ ≥ δ

C1ρ
in (104) (note that (103) holds for both {xt} and

{x′t}), then plugging it into (103) to obtain√
4T (f(x0)− f(xT ))

5C ′L
+

4T 2ηC2σ2

5C ′LB
≥ δ

C1ρ

f(x0)− f(xT ) ≥ 5C ′Lδ2

4C2
1ρ

2T
− TηC2σ2

B

≥ 5ηC ′Lδ3

8C2
1ρ

2 log( 8δ
√
d

C1ρζ′r
)
−

2C2σ2 log( 8δ
√
d

C1ρζ′r
)

Bδ
(105)

≥ δ3

C ′1ρ
2

(106)

= 2fthres,

where (105) is due to T ≤ tthres and (106) holds by letting C ′1 =
8C2

1 log( 8δ
√
d

C1ρζ
′r )

4ηC′L . Recall that

B = Õ( σ2

g2thres
) and gthres ≤ δ2/ρ. Thus, we already prove that at least one of sequences {xt} and

{x′t} escapes the saddle point with high probability, i.e.,

∃T ≤ tthres ,max{f(x0)− f(xT ), f(x′0)− f(x′T )} ≥ 2fthres, (107)

if their starting points x0 and x′0 satisfying w0 := x0 − x′0 = r0e1, where r0 = ζ′r√
d

and e1 denotes
the smallest eigenvector direction of Hessian H := ∇2f(x̃). Similar to the classical argument in
[18], we know that in the random perturbation ball, the stuck points can only be a short interval in the
e1 direction, i.e., at least one of two points in the e1 direction will escape the saddle point if their
distance is larger than r0 = ζ′r√

d
. Thus, we know that the probability of the starting point x0 = x̃+ ξ

(where ξ uniformly ∼ B0(r)) located in the stuck region is less than

r0Vd−1(r)

Vd(r)
=

r0Γ(d2 + 1)
√
πrΓ(d2 + 1

2 )
≤ r0√

πr

(d
2

+ 1
)1/2 ≤ r0

√
d

r
= ζ ′, (108)
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where Vd(r) denotes the volume of a Euclidean ball with radius r in d dimension, and the first
inequality holds due to Gautschi’s inequality. By a union bound for (108) and (106) (holds with high
probability if x0 is not in a stuck region), we know

f(x0)− f(xT ) ≥ 2fthres =
δ3

C ′1ρ
2

(109)

with high probability. Note that the initial point of this super epoch is x̃ before the perturbation
(see Line 6 of Algorithm 2), thus we need to show that the perturbation step x0 = x̃+ ξ (where ξ
uniformly ∼ B0(r)) does not increase the function value a lot, i.e.,

f(x0) ≤ f(x̃) + 〈∇f(x̃), x0 − x̃〉+
L

2
‖x0 − x̃‖2

≤ f(x̃) + ‖∇f(x̃)‖‖x0 − x̃‖+
L

2
‖x0 − x̃‖2

≤ f(x̃) + gthres · r +
L

2
r2

≤ f(x̃) +
δ3

2C ′1ρ
2

= f(x̃) + fthres, (110)

where the last inequality holds by letting the perturbation radius r ≤ min{ δ3

4C′1ρ
2gthres

,
√

δ3

2C′1ρ
2L}.

Now we combine with (109) and (110) to obtain with high probability

f(x̃)− f(xT ) = f(x̃)− f(x0) + f(x0)− f(xT ) ≥ −fthres + 2fthres =
δ3

2C ′1ρ
2
. (111)

Thus we have finished the proof for the second situation (around saddle points), i.e., we show that the

function value decrease a lot (fthres = δ3

2C′1ρ
2 ) in a super epoch (recall that T ≤ tthres =

2 log( 8δ
√
d

C1ρζ
′r )

ηδ )
by adding a random perturbation ξ ∼ B0(r) at the initial point x̃.

Combing these two situations (large gradients and around saddle points) to prove Theorem 4:
First, we recall Theorem 4 here since we want to recall the parameter setting.

Theorem 4 Under Assumption 1, 2 (i.e. (4) and (6)) and Assumption 4, let ∆f := f(x0) − f∗,
where x0 is the initial point and f∗ is the optimal value of f . By letting step size η = Õ( 1

L ), batch
size B = Õ( σ2

g2thres
) = Õ(σ

2

ε2 ), minibatch size b =
√
B = Õ(σε ), epoch length m = b, perturbation

radius r = Õ
(

min( δ
3

ρ2ε ,
δ3/2

ρ
√
L

)
)
, threshold gradient gthres = ε ≤ δ2/ρ, threshold function value

fthres = Õ( δ
3

ρ2 ) and super epoch length tthres = Õ( 1
ηδ ), SSRGD will at least once get to an

(ε, δ)-second-order stationary point with high probability using

Õ
(L∆fσ

ε3
+
ρ2∆fσ2

ε2δ3
+
Lρ2∆fσ

εδ4

)
stochastic gradients for nonconvex online problem (2).

Proof of Theorem 4. Now, we prove this theorem by distinguishing the epochs into three types as
follows:

1. Type-1 useful epoch: If at least half of points in this epoch have gradient norm larger than
gthres (Case 2 of Lemma 4);

2. Wasted epoch: If at least half of points in this epoch have gradient norm no larger than gthres

and the starting point of the next epoch has estimated gradient norm larger than gthres (it
means that this epoch does not guarantee decreasing the function value a lot as the large
gradients situation, also it cannot connect to the second super epoch situation since the
starting point of the next epoch has estimated gradient norm larger than gthres);
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3. Type-2 useful super epoch: If at least half of points in this epoch have gradient norm no
larger than gthres and the starting point of the next epoch (here we denote this point as
x(s+1)m)) has estimated gradient norm no larger than gthres (i.e., ‖v(s+1)m‖ ≤ gthres) (Case
1 of Lemma 4), according to Line 3 of Algorithm 2, we will start a super epoch. So here we
denote this epoch along with its following super epoch as a type-2 useful super epoch.

First, it is easy to see that the probability of a wasted epoch happened is less than 2/3 due to the
random stop (see Case 1 of Lemma 4 and Line 16 of Algorithm 2) and different wasted epoch are
independent. Thus, with high probability, there are at most Õ(1) wasted epochs happened before
a type-1 useful epoch or type-2 useful super epoch. Now, we use N1 and N2 to denote the number
of type-1 useful epochs and type-2 useful super epochs that the algorithm is needed. Recall that
∆f := f(x0)− f∗, where x0 is the initial point and f∗ is the optimal value of f .

For type-1 useful epoch, according to Case 2 of Lemma 4, we know that the function value decreases
at least 7ηmg2thres

256 with probability at least 1/5. Using a standard concentration, we know that with

high probability N1 type-1 useful epochs will decrease the function value at least 7ηmg2thresN1

1536 , note

that the function value can decrease at most ∆f . So 7ηmg2thresN1

1536 ≤ ∆f , we get N1 ≤ 1536∆f
7ηmg2thres

.

For type-2 useful super epoch, first we know that the starting point of the super epoch x̃ := x(s+1)m

has gradient norm ‖∇f(x̃)‖ ≤ gthres/2 and estimated gradient norm ‖v(s+1)m‖ ≤ gthres. Now
if λmin(∇2f(x̃)) ≥ −δ, then x̃ is already a (ε, δ)-second-order stationary point. Otherwise,
‖v(s+1)m‖ ≤ gthres and λmin(∇2f(x̃)) ≤ −δ, this is exactly our second situation (around sad-
dle points). According to (111), we know that the the function value decrease (f(x̃)− f(xT )) is at
least fthres = δ3

2C′1ρ
2 with high probability. Similar to type-1 useful epoch, we know N2 ≤ C′′1 ρ

2∆f
δ3

by a union bound (so we change C ′1 to C ′′1 , anyway we also have C ′′1 = Õ(1)).

Now, we are ready to compute the convergence results to finish the proof for Theorem 4.

N1(Õ(1)B +B +mb) +N2(Õ(1)B +
⌈ tthres

m

⌉
B + tthresb) (112)

≤ Õ
( ∆fσ

ηg2
thresε

+
ρ2∆f

δ3
(
σ2

ε2
+

σ

ηδε
)
)

≤ Õ
(L∆fσ

ε3
+
ρ2∆fσ2

ε2δ3
+
Lρ2∆fσ

εδ4

)
(113)

�

Now, the only remaining thing is to prove Lemma 5 and 6. We provide these two proofs as follows.

Lemma 5 (Localization) Let {xt} denote the sequence by running SSRGD update steps (Line 8–12
of Algorithm 2) from x0. Moreover, let the step size η ≤ 1

4C′L and minibatch size b ≥ m, with
probability 1− ζ, we have

∀t, ‖xt − x0‖ ≤
√

4t(f(x0)− f(xt))

5C ′L
+

4t2ηC2σ2

5C ′LB
,

where C ′ = O(log dt
ζ ) = Õ(1) and C = O(log dt

ζm ) = Õ(1).

Proof of Lemma 5. First, we assume the variance bound (99) holds for all 0 ≤ j ≤ t− 1 (this is true
with high probability using a union bound by letting C ′ = O(log dt

ζ ) and C = O(log dt
ζm )). Then,
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according to (100), we know for any τ ≤ t in some epoch s

f(xτ ) ≤ f(xsm)− η

2

τ∑
j=sm+1

‖∇f(xj−1)‖2 −
( 1

2η
− L

2
− ηC ′2L2

) τ∑
j=sm+1

‖xj − xj−1‖2

+
(τ − sm)ηC2σ2

B

≤ f(xsm)−
( 1

2η
− L

2
− ηC ′2L2

) τ∑
j=sm+1

‖xj − xj−1‖2 +
(τ − sm)ηC2σ2

B

≤ f(xsm)− 5C ′L

4

τ∑
j=sm+1

‖xj − xj−1‖2 +
(τ − sm)ηC2σ2

B
, (114)

where the last inequality holds since the step size η ≤ 1
4C′L and assuming C ′ ≥ 1. Now, we sum up

(114) for all epochs before iteration t,

f(xt) ≤ f(x0)− 5C ′L

4

t∑
j=1

‖xj − xj−1‖2 +
tηC2σ2

B
.

Then, the proof is finished as

‖xt − x0‖ ≤
t∑

j=1

‖xj − xj−1‖ ≤

√√√√t

t∑
j=1

‖xj − xj−1‖2 ≤
√

4t(f(x0)− f(xt))

5C ′L
+

4t2ηC2σ2

5C ′LB
.

�

Lemma 6 (Small Stuck Region) If the initial point x̃ satisfies −γ := λmin(∇2f(x̃)) ≤ −δ, then
let {xt} and {x′t} be two coupled sequences by running SSRGD update steps (Line 8–12 of Algorithm
2) with the same choice of batches and minibatches (i.e., IB’s (see (11) and Line 8) and Ib’s (see Line
12)) from x0 and x′0 with w0 := x0 − x′0 = r0e1, where x0 ∈ Bx̃(r), x′0 ∈ Bx̃(r) , r0 = ζ′r√

d
and e1

denotes the smallest eigenvector direction of Hessian∇2f(x̃). Moreover, let the super epoch length

tthres =
2 log( 8δ

√
d

C1ρζ
′r )

ηδ = Õ( 1
ηδ ), the step size η ≤ min

(
1

16 log( 8δ
√
d

C1ρζ
′r )L

, 1
8C2L log tthres

)
= Õ( 1

L ),

minibatch size b ≥ m, batch size B = Õ( σ2

g2thres
) and the perturbation radius r ≤ δ

C1ρ
, then with

probability 1− ζ, we have

∃T ≤ tthres, max{‖xT − x0‖, ‖x′T − x′0‖} ≥
δ

C1ρ
,

where C1 ≥ 20C2

ηL , C2 = O(log dtthres

ζ ) = Õ(1) and C ′2 = O(log dtthres
ζm ) = Õ(1).

Proof of Lemma 6. We prove this lemma by contradiction. Assume the contrary,

∀t ≤ tthres , ‖xt − x0‖ ≤
δ

C1ρ
and ‖x′t − x′0‖ ≤

δ

C1ρ
(115)

We will show that the distance between these two coupled sequences wt := xt − x′t will grow
exponentially since they have a gap in the e1 direction at the beginning, i.e., w0 := x0 − x′0 = r0e1,
where r0 = ζ′r√

d
and e1 denotes the smallest eigenvector direction of HessianH := ∇2f(x̃). However,

‖wt‖ = ‖xt − x′t‖ ≤ ‖xt − x0‖+ ‖x0 − x̃‖+ ‖x′t − x′0‖+ ‖x′0 − x̃‖ ≤ 2r + 2 δ
C1ρ

according to
(115) and the perturbation radius r. It is not hard to see that the exponential increase will break this
upper bound, thus we get a contradiction.
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In the following, we prove the exponential increase of wt by induction. First, we need the expression
of wt (recall that xt = xt−1 − ηvt−1 (see Line 11 of Algorithm 2)):

wt = wt−1 − η(vt−1 − v′t−1)

= wt−1 − η
(
∇f(xt−1)−∇f(x′t−1) + vt−1 −∇f(xt−1)− v′t−1 +∇f(x′t−1)

)
= wt−1 − η

(∫ 1

0

∇2f(x′t−1 + θ(xt−1 − x′t−1))dθ(xt−1 − x′t−1)

+ vt−1 −∇f(xt−1)− v′t−1 +∇f(x′t−1)
)

= (I − ηH)wt−1 − η(∆t−1wt−1 + yt−1)

= (I − ηH)tw0 − η
t−1∑
τ=0

(I − ηH)t−1−τ (∆τwτ + yτ ) (116)

where ∆τ :=
∫ 1

0
(∇2f(x′τ +θ(xτ −x′τ ))−H)dθ and yτ := vτ −∇f(xτ )−v′τ +∇f(x′τ ). Note that

the first term of (116) is in the e1 direction and is exponential with respect to t, i.e., (1 + ηγ)tr0e1,
where −γ := λmin(H) = λmin(∇2f(x̃)) ≤ −δ. To prove the exponential increase of wt, it is
sufficient to show that the first term of (116) will dominate the second term. We inductively prove the
following two bounds

1. 1
2 (1 + ηγ)tr0 ≤ ‖wt‖ ≤ 3

2 (1 + ηγ)tr0

2. ‖yt‖ ≤ 2ηγL(1 + ηγ)tr0

First, check the base case t = 0, ‖w0‖ = ‖r0e1‖ = r0 holds for Bound 1. However, for Bound 2, we
use Bernstein inequality (Proposition 2) to show that ‖y0‖ = ‖v0−∇f(x0)−v′0+∇f(x′0)‖ ≤ ηγLr0.
According to (11), we know that v0 = 1

B

∑
j∈IB ∇fj(x0) and v′0 = 1

B

∑
j∈IB ∇fj(x

′
0) (recall that

these two coupled sequence {xt} and {x′t} use the same choice of batches and minibatches (i.e., IB’s
and Ib’s). Now, we have

y0 = v0 −∇f(x0)− v′0 +∇f(x′0)

=
1

B

∑
j∈IB

∇fj(x0)−∇f(x0)− 1

B

∑
j∈IB

∇fj(x′0) +∇f(x′0)

=
1

B

∑
j∈IB

(
∇fj(x0)−∇fj(x′0)− (∇f(x0)−∇f(x′0))

)
. (117)

We first bound each individual term of (117):
‖∇fj(x0)−∇fj(x′0)− (∇f(x0)−∇f(x′0))‖ ≤ 2L‖x0 − x′0‖ = 2L‖w0‖ = 2Lr0, (118)

where the inequality holds due to the gradient Lipschitz Assumption 1. Then, consider the variance
term of (117): ∑

j∈IB

E[‖∇fj(x0)−∇fj(x′0)− (∇f(x0)−∇f(x′0))‖2]

≤
∑
j∈IB

E[‖∇fj(x0)−∇fj(x′0)‖2]

≤ BL2‖x0 − x′0‖2

= BL2‖w0‖2 = BL2r2
0, (119)

where the first inequality uses the fact E[‖x − Ex‖2] ≤ E[‖x‖2], and the last inequality uses the
gradient Lipschitz Assumption 1. According to (118) and (119), we can bound y0 by Bernstein
inequality (Proposition 2) as

P
{∥∥y0

∥∥ ≥ α

B

}
≤ (d+ 1) exp

( −α2/2

σ2 +Rα/3

)
= (d+ 1) exp

( −α2/2

BL2r2
0 + 2Lr0α/3

)
= ζ,
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where the last equality holds by letting α = C5L
√
Br0, where C5 = O(log d

ζ ). Note that we can

further relax the parameter C5 to C ′2 = O(log dtthres
ζm ) = Õ(1) for making sure the above arguments

hold with probability 1− ζ for all epoch starting points ysm with sm ≤ tthres. Thus, we have with
probability 1− ζ,

‖y0‖ ≤
C ′2Lr0√

B
≤ ηγLr0, (120)

where the last inequality holds due to B = Õ( σ2

g2thres
) (recall that −γ := λmin(H) =

λmin(∇2f(x̃)) ≤ −δ and gthres ≤ δ2/ρ).

Now, we know that Bound 1 and Bound 2 hold for the base case t = 0 with high probability. Assume
they hold for all τ ≤ t− 1, we now prove they hold for t one by one. For Bound 1, it is enough to
show the second term of (116) is dominated by half of the first term.

‖η
t−1∑
τ=0

(I − ηH)t−1−τ (∆τwτ )‖ ≤ η
t−1∑
τ=0

(1 + ηγ)t−1−τ‖∆τ‖‖wτ‖

≤ 3

2
η(1 + ηγ)t−1r0

t−1∑
τ=0

‖∆τ‖ (121)

≤ 3

2
η(1 + ηγ)t−1r0

t−1∑
τ=0

ρDx
τ (122)

≤ 3

2
η(1 + ηγ)t−1r0tρ

( δ

C1ρ
+ r
)

(123)

≤ 3

C1
ηδt(1 + ηγ)t−1r0 (124)

≤
6 log( 8δ

√
d

C1ρζ′r
)

C1
(1 + ηγ)t−1r0 (125)

≤ 1

4
(1 + ηγ)tr0, (126)

where (121) uses the induction for wτ with τ ≤ t− 1, (122) uses the definition Dx
τ := max{‖xτ −

x̃‖, ‖x′τ − x̃‖}, (123) follows from ‖xt − x̃‖ ≤ ‖xt − x0‖+ ‖x0 − x̃‖ = δ
C1ρ

+ r due to (115) and
the perturbation radius r, (124) holds by letting the perturbation radius r ≤ δ

C1ρ
, (125) holds since

t ≤ tthres =
2 log( 8δ

√
d

C1ρζ
′r )

ηδ , and (126) holds by letting C1 ≥ 24 log( 8δ
√
d

ρζ′r ).

‖η
t−1∑
τ=0

(I − ηH)t−1−τyτ‖ ≤ η
t−1∑
τ=0

(1 + ηγ)t−1−τ‖yτ‖

≤ η
t−1∑
τ=0

(1 + ηγ)t−1−τ2ηγL(1 + ηγ)τr0 (127)

= 2ηηγLt(1 + ηγ)t−1r0

≤ 2ηηγL
2 log( 8δ

√
d

C1ρζ′r
)

ηδ
(1 + ηγ)t−1r0 (128)

≤ 4η log(
8δ
√
d

C1ρζ ′r
)L(1 + ηγ)t−1r0 (129)

≤ 1

4
(1 + ηγ)tr0, (130)

where (127) uses the induction for yτ with τ ≤ t− 1, (128) holds since t ≤ tthres =
2 log( 8δ

√
d

C1ρζ
′r )

ηδ ,
(129) holds γ ≥ δ (recall −γ := λmin(H) = λmin(∇2f(x̃)) ≤ −δ), and (130) holds by letting
η ≤ 1

16 log( 8δ
√
d

C1ρζ
′r )L

.
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Combining (126) and (130), we proved the second term of (116) is dominated by half of the first
term. Note that the first term of (116) is ‖(I − ηH)tw0‖ = (1 + ηγ)tr0. Thus, we have

1

2
(1 + ηγ)tr0 ≤ ‖wt‖ ≤

3

2
(1 + ηγ)tr0 (131)

Now, the remaining thing is to prove the second bound ‖yt‖ ≤ ηγL(1 + ηγ)tr0. First, we write the
concrete expression of yt:

yt = vt −∇f(xt)− v′t +∇f(x′t)

=
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(xt−1)

)
+ vt−1 −∇f(xt)

− 1

b

∑
i∈Ib

(
∇fi(x′t)−∇fi(x′t−1)

)
− v′t−1 +∇f(x′t) (132)

=
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(xt−1)

)
+∇f(xt−1)−∇f(xt)

− 1

b

∑
i∈Ib

(
∇fi(x′t)−∇fi(x′t−1)

)
−∇f(x′t−1) +∇f(x′t)

+ vt−1 −∇f(xt−1)− v′t−1 +∇f(x′t−1)

=
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(x′t)−∇fi(xt−1) +∇fi(x′t−1)

)
−
(
∇f(xt)−∇f(x′t)−∇f(xt−1) +∇f(x′t−1)

)
+ yt−1,

where (132) due to the definition of the estimator vt (see Line 12 of Algorithm 2). We further define
the difference zt := yt − yt−1. It is not hard to verify that {yt} is a martingale sequence and {zt} is
the associated martingale difference sequence. We will apply the Azuma-Hoeffding inequalities to
get an upper bound for ‖yt‖ and then we prove ‖yt‖ ≤ 2ηγL(1 + ηγ)tr0 based on that upper bound.
In order to apply the Azuma-Hoeffding inequalities for martingale sequence ‖yt‖, we first need to
bound the difference sequence {zt}. We use the Bernstein inequality to bound the differences as
follows.

zt = yt − yt−1

=
1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(x′t)−∇fi(xt−1) +∇fi(x′t−1)

)
−
(
∇f(xt)−∇f(x′t)−∇f(xt−1) +∇f(x′t−1)

)
=

1

b

∑
i∈Ib

((
∇fi(xt)−∇fi(x′t)

)
−
(
∇fi(xt−1)−∇fi(x′t−1)

)
−
(
∇f(xt)−∇f(x′t)

)
+
(
∇f(xt−1)−∇f(x′t−1)

))
. (133)

We define ui :=
(
∇fi(xt) − ∇fi(x′t)

)
−
(
∇fi(xt−1) − ∇fi(x′t−1)

)
−
(
∇f(xt) − ∇f(x′t)

)
+(

∇f(xt−1)−∇f(x′t−1)
)
, and then we have

‖ui‖ = ‖
(
∇fi(xt)−∇fi(x′t)

)
−
(
∇fi(xt−1)−∇fi(x′t−1)

)
−
(
∇f(xt)−∇f(x′t)

)
+
(
∇f(xt−1)−∇f(x′t−1)

)
‖

≤
∥∥∥∫ 1

0

∇2fi(x
′
t + θ(xt − x′t))dθ(xt − x′t)−

∫ 1

0

∇2fi(x
′
t−1 + θ(xt−1 − x′t−1))dθ(xt−1 − x′t−1)

−
∫ 1

0

∇2f(x′t + θ(xt − x′t))dθ(xt − x′t) +

∫ 1

0

∇2f(x′t−1 + θ(xt−1 − x′t−1))dθ(xt−1 − x′t−1)
∥∥∥

= ‖Hiwt + ∆i
twt − (Hiwt−1 + ∆i

t−1wt−1)− (Hwt + ∆twt) + (Hwt−1 + ∆t−1wt−1)‖
(134)

≤ ‖(Hi −H)(wt − wt−1)‖+ ‖(∆i
t −∆t)wt − (∆i

t−1 −∆t−1)wt−1‖
≤ 2L‖wt − wt−1‖+ 2ρDx

t ‖wt‖+ 2ρDx
t−1‖wt−1‖, (135)
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where (134) holds since we define ∆t :=
∫ 1

0
(∇2f(x′t+θ(xt−x′t))−H)dθ and ∆i

t :=
∫ 1

0
(∇2fi(x

′
t+

θ(xt − x′t))−Hi)dθ, and the last inequality holds due to the gradient Lipschitz Assumption 1 and
Hessian Lipschitz Assumption 2 (recall Dx

t := max{‖xt − x̃‖, ‖x′t − x̃‖}). Then, consider the
variance term ∑

i∈Ib

E[‖ui‖2]

≤
∑
i∈Ib

E[‖
(
∇fi(xt)−∇fi(x′t)

)
−
(
∇fi(xt−1)−∇fi(x′t−1)

)
‖2]

=
∑
i∈Ib

E[‖Hiwt + ∆i
twt − (Hiwt−1 + ∆i

t−1wt−1)‖2]

≤ b(L‖wt − wt−1‖+ ρDx
t ‖wt‖+ ρDx

t−1‖wt−1‖)2, (136)

where the first inequality uses the fact E[‖x − Ex‖2] ≤ E[‖x‖2], and the last inequality uses the
gradient Lipschitz Assumption 1 and Hessian Lipschitz Assumption 2. According to (135) and (136),
we can bound the difference zk by Bernstein inequality (Proposition 2) as (where R = 2L‖wt −
wt−1‖+ 2ρDx

t ‖wt‖+ 2ρDx
t−1‖wt−1‖ and σ2 = b(L‖wt−wt−1‖+ ρDx

t ‖wt‖+ ρDx
t−1‖wt−1‖)2)

P
{∥∥zt∥∥ ≥ α

b

}
≤ (d+ 1) exp

( −α2/2

σ2 +Rα/3

)
= ζk,

where the last equality holds by letting α = C4

√
b(L‖wt − wt−1‖+ ρDx

t ‖wt‖+ ρDx
t−1‖wt−1‖),

where C4 = O(log d
ζk

) = Õ(1).

Now, we have a high probability bound for the difference sequence {zk}, i.e.,

‖zk‖ ≤ ck =
C4(L‖wt − wt−1‖+ ρDx

t ‖wt‖+ ρDx
t−1‖wt−1‖)√

b
with probability 1− ζk.

(137)

Now, we are ready to get an upper bound for yt by using the martingale Azuma-Hoeffding inequality.
Note that we only need to focus on the current epoch that contains the iteration t since the martingale
sequence {yt} starts with a new point ysm for each epoch s due to the estimator vsm. Also note
that the starting point ysm can be bounded with the same upper bound (120) for all epoch s. Let s
denote the current epoch, i.e, iterations from sm+ 1 to current t, where t is no larger than (s+ 1)m.
According to Azuma-Hoeffding inequality (Proposition 4) and letting ζk = ζ/m, we have

P
{∥∥yt − ysm∥∥ ≥ β} ≤ (d+ 1) exp

( −β2

8
∑t
k=sm+1 c

2
k

)
+ ζ

= 2ζ,

where the last equality is due to β =
√

8
∑t
k=sm+1 c

2
k log d

ζ =

C3

√∑t
k=sm+1(L‖wt−wt−1‖+ρDxt ‖wt‖+ρDxt−1‖wt−1‖)2√

b
, where C3 = O(C4

√
log d

ζ ) = Õ(1).

Recall that yk := vk − ∇f(xk) − v′k + ∇f(x′k) and at the beginning point of this epoch
ysm = ‖vsm − ∇f(xsm) − v′sm + ∇f(x′sm)‖ ≤ ηγLr0 with probability 1 − ζ (see (120)).
Combining with (120) and using a union bound, we have

‖yt‖ ≤ β + ‖ysm‖ ≤
C3

√∑t
k=sm+1(L‖wt − wt−1‖+ ρDx

t ‖wt‖+ ρDx
t−1‖wt−1‖)2

√
b

+ ηγLr0

(138)

with probability 1− 3ζ, where t belongs to [sm+ 1, (s+ 1)m]. Note that we can further relax the
parameter C3 in (138) to C2 = O(log dtthres

ζ ) (see (139)) for making sure the above arguments hold
with probability 1− ζ for all t ≤ tthres by using a union bound for ζt’s:
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‖yt‖ ≤
C2

√∑t
k=sm+1(L‖wt − wt−1‖+ ρDx

t ‖wt‖+ ρDx
t−1‖wt−1‖)2

√
b

+ ηγLr0, (139)

where t belongs to [sm+ 1, (s+ 1)m].

Now, we will show how to bound the right-hand-side of (139) to finish the proof, i.e., prove the
remaining second bound ‖yt‖ ≤ 2ηγL(1 + ηγ)tr0.

First, we show that the last two terms in the first term of right-hand-side of (139) can be bounded as

ρDx
t ‖wt‖+ ρDx

t−1‖wt−1‖ ≤ ρ
( δ

C1ρ
+ r
)3

2
(1 + ηγ)tr0 + ρ

( δ

C1ρ
+ r
)3

2
(1 + ηγ)t−1r0

≤ 3ρ
( δ

C1ρ
+ r
)
(1 + ηγ)tr0

≤ 6δ

C1
(1 + ηγ)tr0, (140)

where the first inequality follows from the induction of ‖wt−1‖ ≤ 3
2 (1 + ηγ)t−1r0 and the already

proved ‖wt‖ ≤ 3
2 (1 + ηγ)tr0 in (131), and the last inequality holds by letting the perturbation radius

r ≤ δ
C1ρ

.

Now, we show that the first term in (139) can be bounded as

L‖wt − wt−1‖

= L
∥∥− ηH(I − ηH)t−1w0 − η

t−2∑
τ=0

ηH(I − ηH)t−2−τ (∆τwτ + yτ ) + η(∆t−1wt−1 + yt−1)
∥∥

≤ Lηγ(1 + ηγ)t−1r0 + L
∥∥η t−2∑

τ=0

ηH(I − ηH)t−2−τ (∆τwτ + yτ )
∥∥+ L‖η(∆t−1wt−1 + yt−1)‖

≤ Lηγ(1 + ηγ)t−1r0 + Lη
∥∥ t−2∑
τ=0

ηH(I − ηH)t−2−τ∥∥ max
0≤k≤t−2

‖∆kwk + yk‖

+ Lηρ
( δ

C1ρ
+ r
)
‖wt−1‖+ Lη‖yt−1‖ (141)

≤ Lηγ(1 + ηγ)t−1r0 + Lη

t−2∑
τ=0

1

t− 1− τ
max

0≤k≤t−2
‖∆kwk + yk‖

+ Lηρ
( δ

C1ρ
+ r
)
‖wt−1‖+ Lη‖yt−1‖ (142)

≤ Lηγ(1 + ηγ)t−1r0 + Lη log t max
0≤k≤t−2

‖∆kwk + yk‖

+ Lηρ
( δ

C1ρ
+ r
)
‖wt−1‖+ Lη‖yt−1‖

≤ Lηγ(1 + ηγ)t−1r0 + Lη log t max
0≤k≤t−2

‖∆kwk + yk‖

+ Lηρ
( δ

C1ρ
+ r
)3

2
(1 + ηγ)t−1r0 + 2LηηγL(1 + ηγ)t−1r0 (143)

≤ Lηγ(1 + ηγ)t−1r0 + Lη log t
(
ρ
( δ

C1ρ
+ r
)3

2
(1 + ηγ)t−2r0 + 2ηγL(1 + ηγ)t−2r0

)
+ Lηρ

( δ

C1ρ
+ r
)3

2
(1 + ηγ)t−1r0 + 2LηηγL(1 + ηγ)t−1r0 (144)
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≤ Lηγ(1 + ηγ)t−1r0 + Lη log t
( 3δ

C1
(1 + ηγ)t−2r0 + 2ηγL(1 + ηγ)t−2r0

)
+

3Lηδ

C1
(1 + ηγ)t−1r0 + 2LηηγL(1 + ηγ)t−1r0 (145)

≤
( 4

C1
log t+ 4Lη log t

)
ηγL(1 + ηγ)tr0, (146)

where the first equality follows from (116), (141) holds from the following (147),

‖∆t‖ ≤ ρDx
t ≤ ρ

( δ

C1ρ
+ r
)
, (147)

where (147) holds due to Hessian Lipschitz Assumption 2, (115) and the perturbation radius r
(recall that ∆t :=

∫ 1

0
(∇2f(x′t + θ(xt − x′t)) − H)dθ, H := ∇2f(x̃) and Dx

t := max{‖xt −
x̃‖, ‖x′t − x̃‖}), (142) holds due to ‖ηH(I − ηH)t‖ ≤ 1

t+1 , (143) holds by plugging the induction
‖wt−1‖ ≤ 3

2 (1 + ηγ)t−1r0 and ‖yt−1‖ ≤ 2ηγL(1 + ηγ)t−1r0, (144) follows from (147), the
induction ‖wk‖ ≤ 3

2 (1 + ηγ)kr0 and ‖yk‖ ≤ 2ηγL(1 + ηγ)kr0 (hold for all k ≤ t − 1), (145)
holds by letting the perturbation radius r ≤ δ

C1ρ
, and the last inequality holds due to γ ≥ δ (recall

−γ := λmin(H) = λmin(∇2f(x̃)) ≤ −δ).

By plugging (140) and (146) into (139), we have

‖yt‖ ≤ C2

(
6δ

C1
(1 + ηγ)tr0 +

( 4

C1
log t+ 4Lη log t

)
ηγL(1 + ηγ)tr0

)
+ ηγLr0

≤ C2

( 6

C1ηL
+

4

C1
log t+ 4Lη log t

)
ηγL(1 + ηγ)tr0 + ηγLr0

≤ 2ηγL(1 + ηγ)tr0, (148)

where the second inequality holds due to γ ≥ δ, and the last inequality holds by letting C1 ≥ 20C2

ηL

and η ≤ 1
8C2L log t . Recall that C2 = O(log dtthres

ζ ) is enough to let the arguments in this proof hold
with probability 1− ζ for all t ≤ tthres.

From (131) and (148), we know that the two induction bounds hold for t. We recall the first induction
bound here:

1. 1
2 (1 + ηγ)tr0 ≤ ‖wt‖ ≤ 3

2 (1 + ηγ)tr0

Thus, we know that ‖wt‖ ≥ 1
2 (1 + ηγ)tr0 = 1

2 (1 + ηγ)t ζ
′r√
d

. However, ‖wt‖ := ‖xt−x′t‖ ≤ ‖xt−
x0‖+‖x0− x̃‖+‖x′t−x′0‖+‖x′0− x̃‖ ≤ 2r+2 δ

C1ρ
≤ 4δ

C1ρ
according to (115) and the perturbation

radius r. The last inequality is due to the perturbation radius r ≤ δ
C1ρ

(we already used this condition

in the previous arguments). This will give a contradiction for (115) if 1
2 (1 + ηγ)t ζ

′r√
d
≥ 4δ

C1ρ
and it

will happen if t ≥
2 log( 8δ

√
d

C1ρζ
′r )

ηδ .

So the proof of this lemma is finished by contradiction if we let tthres :=
2 log( 8δ

√
d

C1ρζ
′r )

ηδ , i.e., we have

∃T ≤ tthres, max{‖xT − x0‖, ‖x′T − x′0‖} ≥
δ

C1ρ
.

�
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