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Abstract
Logistic regression is commonly used for modeling dichotomous outcomes. In
the classical setting, where the number of observations is much larger than the
number of parameters, properties of the maximum likelihood estimator in logistic
regression are well understood. Recently, Sur and Candes [27] have studied logistic
regression in the high-dimensional regime, where the number of observations and
parameters are comparable, and show, among other things, that the maximum
likelihood estimator is biased. In the high-dimensional regime the underlying
parameter vector is often structured (sparse, block-sparse, finite-alphabet, etc.) and
so in this paper we study regularized logistic regression (RLR), where a convex
regularizer that encourages the desired structure is added to the negative of the
log-likelihood function. An advantage of RLR is that it allows parameter recovery
even for instances where the (unconstrained) maximum likelihood estimate does
not exist. We provide a precise analysis of the performance of RLR via the solution
of a system of six nonlinear equations, through which any performance metric
of interest (mean, mean-squared error, probability of support recovery, etc.) can
be explicitly computed. Our results generalize those of Sur and Candes and we
provide a detailed study for the cases of `22-RLR and sparse (`1-regularized) logistic
regression. In both cases, we obtain explicit expressions for various performance
metrics and can find the values of the regularizer parameter that optimizes the
desired performance. The theory is validated by extensive numerical simulations
across a range of parameter values and problem instances.

1 Introduction
Logistic regression is the most commonly used statistical model for predicting dichotomous out-
comes [11]. It has been extensively employed in many areas of engineering and applied sciences,
such as in the medical [3, 34] and social sciences [15]. As an example, in medical studies logistic
regression can be used to predict the risk of developing a certain disease (e.g. diabetes) based on a set
of observed characteristics from the patient (age, gender, weight, etc.)
Linear regression is a very useful tool for predicting a quantitive response. However, in many
situations the response variable is qualitative (or categorical) and linear regression is no longer appro-
priate [12]. This is mainly due to the fact that least-squares often succeeds under the assumption that
the error components are independent with normal distribution. In categorical predictions, however,
the error components are neither inependent nor normally distributed [20].
In logistic regression we model the probability that the label, Y , belongs to a certain category. When
no prior knowledge is available regarding the structure of the parameters, maximum likelihood is
often used for fitting the model. Maximum likelihood estimation (MLE) is a special case of maximum
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a posteriori estimation (MAP) that assumes a uniform prior distribution on the parameters.
In many applications in statistics, machine learning, signal processing, etc., the underlying parameter
obeys some sort of structure (sparse, group-sparse, low-rank, finite-alphabet, etc.). For instance,
in modern applications where the number of features far exceeds the number of observations, one
typically enforces the solution to contain only a few non-zero entries. To exploit such structural
information, inspired by the Lasso [33] algorithm for linear models, researchers have studied reg-
ularization methods for generalized linear models [25, 9]. From a statistical viewpoint, adding a
regularization term provides a MAP estimate with a non-uniform prior distribution that has higher
densities in the set of structured solutions.

1.1 Prior work
Classical results in logistic regression mainly concern the regime where the sample size, n, is over-
whelmingly larger than the feature dimension p. It can be shown that in the limit of large samples
when p is fixed and n → ∞, the maximum likelihood estimator provides an efficient estimate of
the underlying parameter, i.e., an unbiased estimate with covariance matrix approaching the inverse
of the the Fisher information [36, 18]. However, in most modern applications in data science, the
datasets often have a huge number of features, and therefore, the assumption n

p � 1 is not valid. Sur
and Candes [5, 27, 28] have recently studied the performance of the maximum likeliood estimator for
logistic regression in the regime where n is proportional to p. Their findings challenge the conven-
tional wisdom, as they have shown that in the linear asymptotic regime the maximum likelikehood
estimate is not even unbiased. Their analysis provides the precise performance of the maximum
likelihood estimator.
There have been many studies in the literature on the performance of regularized (penalized) lo-
gistic regression, where a regularizer is added to the negative log-likelihood function (a partial list
includes [4, 14, 35]). These studies often require the underlying parameter to be heavily structured.
For example, if the parameters are sparse the sparsity is taken to be o(p). Furthermore, they provide
orderwise bounds on the performance but do not give a precise characterization of the quality of the
resulting estimate. A major advantage of adding a regularization term is that it allows for recovery of
the parameter vector even in regimes where the maximum likelihood estimate does not exist (due to
an insufficient number of observations.)

1.2 Summary of contributions

In this paper, we study regularized logistic regression (RLR) for parameter estimation in high-
dimensional logistic models. Inspired by recent advances in the performance analysis of M-estimators
for linear models [7, 8, 30], we precisely characterize the assymptotic performance of the RLR esti-
mate. Our characterization is through a system of six nonlinear equations in six unknowns, through
whose solution all locally-Lipschitz performance measures such as the mean, mean-squared error,
probability of support recovery, etc., can be determined. In the special case when the regularization
term is absent, our 6 nonlinear equations reduce to the 3 nonlinear equations reported in [27]. When
the regularizer is quadratic in parameters, the 6 equations also simplifies to 3. When the regularizer is
the `1 norm, which corresponds to the popular sparse logistic regression [16, 17], our equations can
be expressed in terms of q-functions, and quantities such as the probability of correct support recovery
can be explicitly computed. Numerous numerical simulations validate the theoretical findings across
a range of problem settings. To the extent of our knowledge, this is the first work that precisely
characterizes the performance of the regularized logistic regression in high dimensions.
For our analysis, we utilize the recently developed Convex Gaussian Min-max Theorem
(CGMT) [31] which is a strengthened version of a classical Gaussian comparison inequality due to
Gordon [10], and whose origins are in [26]. Previously, the CGMT has been successfully applied to
derive the precise performance in a number of applications such as regularized M-estimators [30],
analysis of the generalized lasso [19, 31], data detection in massive MIMO [1, 2, 32], and PhaseMax
in phase retrieval [6, 24, 23].

2 Preliminaries
2.1 Notations

We gather here the basic notations that are used throughout this paper. N (µ, σ2) denotes the normal
distribution with mean µ and variance σ2. X ∼ pX implies that the random variable X has a density
pX . P−→ and d−→ represent convergence in probability and in distribution, respectively. Lower letters
are reserved for vectors and upper letters are for matrices. 1d, and Id respectively denote the all-one
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vector and the identity matrix in dimension d. For a vector v, vi denotes its ith entry, and ||v||p (for
p ≥ 1), is its `p norm, where we remove the subscript when p = 2. A function f : Rp → R is called
(invariantly) separable if f(w) =

∑p
i=1 f̃(wi) for all w ∈ Rp, where f̃(·) is a real-valued function.

For a function Φ : Rd → R, the Moreau envelope associated with Φ(·) is defined as,

MΦ(v, t) = min
x∈Rd

1

2t
||v − x||2 + Φ(x) , (1)

and the proximal operator is the solution to this optimization, i.e.,

ProxtΦ(·)(v) = arg min
x∈Rd

1

2t
||v − x||2 + Φ(x) . (2)

2.2 Mathematical Setup

Assume we have n samples from a logistic model with parameter β∗ ∈ Rp. Let D = {(xi, yi)}ni=1
denote the set of samples (a.k.a. the training data), where for i = 1, 2, . . . , n, xi ∈ Rp is the feature
vector and the label yi ∈ {0, 1} is a Bernouli random variable with,

P[yi = 1|xi] = ρ′(xTi β
∗) , for i = 1, 2, . . . , n , (3)

where ρ′(t) := et

1+et is the standard logistic function. The goal is to compute an estimate for β∗ from
the training data D. The maximum likelihood estimator, β̂ML, is defined as,

β̂ML = arg max
β∈Rp

n∏
i=1

Pβ(yi|xi) = arg max
β∈Rp

n∏
i=1

eyi(x
T
i β)

1 + ex
T
i β

= arg min
β∈Rp

n∑
i=1

ρ(xTi β)− yi(xTi β) .

(4)

Where ρ(t) := log(1 + et) is the link function which has the standard logistic function as its
derivative. The last optimization is simply minimization over the negative log-likelihood. This is a
convex optimization program as the log-likelihood is concave with respect to β.
As explained earlier in Section 1, in many interesting settings the underlying parameter possesses
cerain structure(s) (sparse, low-rank, finite-alphabet, etc.). In order to exploit this structure we assume
f : Rp → R is a convex function that measures the (so-called) "complexity" of the structured solution.
We fit this model by the regularized maximum (binomial) likelihood defined as follows,

β̂ = arg min
β∈Rp

1

n
·
[ n∑
i=1

ρ(xTi β)− yi(xTi β)
]

+
λ

p
f(β) . (5)

Here, λ ∈ R+ is the regularization parameter that must be tuned properly. In this paper, we study
the linear asymptotic regime in which the problem dimensions p, n grow to infinity at a proportional
rate, δ := n

p > 0. Our main result characterizes the performance of β̂ in terms of the ratio, δ, and

the signal strength, κ = ||β∗||√
p . For our analysis we assume that the regularizer f(·) is separable,

f(w) =
∑
i f̃(wi), and the data points are drawn independently from the Gaussian distribution,

{xi}ni=1
i.i.d.∼ N (0, 1

pIp). Note that the assumptions considered in the analysis of the We further
assume that the entries of β∗ are drawn from a distribution Π. Our main result characterizes the
performance of the resulting estimator through the solution of a system of six nonlinear equations
with six unknowns. In particular, we use the solution to compute some common descriptive statistics
of the estimate, such as the mean and the variance.

3 Main Results

In this section, we present the main result of the paper, that is the characterization of the asymptotic
performance of regularized logistic regression (RLR). When the estimation performance is measured
via a locally- Lipschitz function (e.g. mean-squared error), Theorem 1 precisely predicts the asymp-
totic behavior of the error. The derived expression captures the role of the regularizer, f(·), and
the particular distribution of β∗, through a set of scalars derived by solving a system of nonlinear
equations. In Section 3.1 we present this system of nonlinear equations along with some insights on
how to numerically compute its solution. After formally stating our result in Section 3.2, we use that
to predict the general behavior of β̂. In particular, in Section 3.3 we compute its correlation with the
true signal as well as its mean-squared error.
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3.1 A nonlinear system of equations
As we will see in Theorem 1, given the signal strength κ, and the ratio δ, the asymptotic performance
of RLR is characterized by the solution to the following system of nonlinear equations with six
unknowns (α, σ, γ, θ, τ, r).

κ2α = E
[
β Proxλστf̃(·)

(
στ(θβ +

r√
δ
Z)
)]
,

γ =
1

r
√
δ
E
[
Z Proxλστf̃(·)

(
στ(θβ +

r√
δ
Z)
)]
,

κ2α2 + σ2 = E
[
Proxλστf̃(·)

(
στ(θβ +

r√
δ
Z)
)2]

,

γ2 =
2

r2
E
[
ρ′(−κZ1)

(
καZ1 + σZ2 − Proxγρ(·)(καZ1 + σZ2)

)2]
,

θγ = −2 E
[
ρ′′(−κZ1)Proxγρ(·)

(
καZ1 + σZ2

)]
,

1− γ

στ
= E

[ 2ρ′(−κZ1)

1 + γρ′′
(
Proxγρ(·)(καZ1 + σZ2)

)] .

(6)

Here Z,Z1, Z2 are standard normal variables, and β ∼ Π, where Π denotes the distribution on the
entries of β∗. The following remarks provide some insights on solving the nonlinear system.
Remark 1 (Proximal Operators). It is worth noting that the equations in (6) include the expectation
of functionals of two proximal operators. The first three equations are in terms of Proxf̃(·), which
can be computed explicitly for most widely used regularizers. For instance, in `1-regularization, the
proximal operator is the well-known shrinkage function defined as η(x, t) := x

|x| (|x| − t)+. The
remaining equations depend on computing the proximal operator of the link function ρ(·). For x ∈ R,
Proxtρ(·)(x) is the unique solution of z + tρ′(z) = x.

Remark 2 (Numerical Evaluation). Define v := [α, σ, γ, θ, τ, r]T as the vector of unknonws. The
nonlinear system (6) can be reformulated as v = S(v) for a properly defined S : R6 → R6. We have
empirically observed in our numerical simulations that a fixed-point iterative method, vt+1 = S(vt),
converges to v∗, such that v∗ = S(v∗).

3.2 Asymptotic performance of regularized logistic regression
We are now able to present our main result. Theorem 1 below describes the average behavior of
the entries of β̂, the solution of the RLR. The derived expression is in terms of the solution of the
nonlinear system (6), denoted by (ᾱ, σ̄, γ̄, θ̄, τ̄ , r̄). An informal statement of our result is that as
n→∞, the entries of β̂ converge as follows,

β̂j
d→ Γ(β∗j , Z) , for j = 1, 2, . . . , p , (7)

where Z is a standard normal random variable, and Γ : R2 → R is defined as,

Γ(c, d) := Proxλσ̄τ̄ f̃(·)
(
σ̄τ̄(θ̄c+

r̄√
δ
d)
)
. (8)

In other words, the RLR solution has the same behavior as applying the proximal operator on the
"perturbed signal", i.e., the true signal added with a Gaussian noise.
Theorem 1. Consider the optimization program (5), where for i = 1, 2, . . . , n, xi has the multi-
variate Gaussian distribution N (0, 1

pIp), and yi = Ber(xTi β
∗), and the entries of β∗ are drawn

independently from a distribution Π. Assume the parameters δ, κ, and λ are such that the nonlinear
system (6) has a unique solution (ᾱ, σ̄, γ̄, θ̄, τ̄ , r̄). Then, as p → ∞, for any locally-Lipschitz2

function Ψ : R× R→ R , we have,

1

p

p∑
j=1

Ψ(β̂j ,β
∗
j )

P−→ E
[
Ψ
(
Γ(β, Z), β

)]
, (9)

where Z ∼ N (0, 1), β ∼ Π is independent of Z, and the function Γ(·, ·) is defined in (8).
2A function Φ : Rd → R is said to be locally-Lipschitz if,

∀M > 0, ∃LM ≥ 0, such that ∀x,y ∈
[
−M,+M

]d
: |Φ(x)− Φ(y)| ≤ LM ||x− y|| .
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We defer the detailed proof to the Appendix. In short, to show this result we first represnt the
optimization as a bilinear form uTXv, where X is the measurement matrix. Applying the CGMT
to derive an equivalent optimization, we then simplify this optimization to obtain an unconstrained
optimization with six scalar variables. The nonlinear system (6) represents the first-order optimality
condition of the resulting scalar optimization.
Before stating the consequences of this result, a few remarks are in order.
Remark 3 (Assumptions). The assumptions in Theorem 1 are chosen in a conservative manner. In
particular, we could relax the separability condition on f(·), to some milder condition in terms of
asymptotic convergence of its proximal operator. Furthermore, one can relax the assumption on the
entries of β∗ being i.i.d. to a weaker assumption on the empirical distribution of its entries. However,
for the applications of this paper, the theorem in its current form is adequate.
Remark 4 (Choosing Ψ). The performance measure in Theorem 1 is computed in terms of evaluation
of a locally-Lipschitz function, Ψ(·, ·) . As an example, Ψ(u, v) = (u− v)2 can be used to compute
the mean-squared error. Later on, we will appeal to this theorem with various choices of Ψ to evaluate
different performance measures on β̂.

3.3 Correlation and variance of the RLR estimate
As the first application of Theorem 1 we compute common descriptive statistics of the estimate β̂. In
the following corollaries, we establish that the parametrs ᾱ, and σ̄ in (6) correspond to the correlation
and the mean-squared error of the resulting estimate.

Corollary 1. As p→∞, 1
||β∗||2 β̂Tβ∗

P−→ ᾱ .

Proof. Recall that ||β∗||2 = pκ2. Applying Theorem 1 with Ψ(u, v) = uv gives,

1

||β∗||2
β̂Tβ∗ =

1

κ2p

p∑
j=1

β̂jβ
∗
j

P−→ 1

κ2
E
[
β Proxλσ̄τ̄ f̃(·)

(
σ̄τ̄(θ̄β +

r̄√
δ
Z)
)]

= ᾱ , (10)

where the last equality is derived from the first equation in the nonlinear system (6), along with the
fact that (ᾱ, σ̄, γ̄, θ̄, τ̄ , r̄) is a solution to this system.

Corollary 1 states that upon centering β̂ around ᾱβ∗, it becomes decorrelated from β∗. Therefore,
we define a new estimate β̃ := β̂

ᾱ and compute its mean-squared error in the following corollary.

Corollary 2. As p→∞, 1
p ||β̃ − β∗||2 P−→ σ̄2

ᾱ2 .

Proof. We appeal to Theorem 1 with Ψ(u, v) = (u− ᾱv)2,

1

p
||β̃ − β∗||2 =

1

ᾱ2

(1

p
||β̂ − ᾱβ∗||2

) P−→ 1

ᾱ2
E
[(

Proxλσ̄τ̄ f̃(·)
(
σ̄τ̄(θ̄β +

r̄√
δ
Z)
)
− ᾱβ

)2]
=
σ̄2

ᾱ2
,

(11)
where the last equality is derived from the third equation in the nonlinear system (6) together with the
result of Corollary 1.

In the next two sections, we investigate other properties of the estimate β̂ under `1 and `2 regulariza-
tion.

4 RLR with `22-regularization
The `2 norm regularization is commonly used in machine learning applications to stabilize the model.
Adding this regularization would simply shrink all the parameters toward the origin and hence
decrease the variance of the resulting model. Here, we provide a precise performance analysis of the
RLR with `22-regularization, i.e.,

β̂ = arg min
β∈Rp

1

n
·
[ n∑
i=1

ρ(xTi β)− yi(xTi β)
]

+
λ

2p

p∑
i=1

β2
i . (12)

To analyze (12), we use the result of Theorem 1. It can be shown that in the nonlinear system (6), θ̄,
τ̄ , r̄ can be derived explicitely from solving the first three equations. This is due to the fact that the
proximal operator of f̃(·) = 1

2 (·)2 can be expressed in the following closed-form,

Proxtf̃(·)(x) = arg min
y∈R

1

2t
(y − x)2 +

1

2
y2 =

x

1 + t
. (13)
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(a) (b)

(c)

Figure 1: The performance of the regularized logistic regression under `22 penalty (a) the correlation factor ᾱ
(b) the variance σ̄2, and (c) the mean-squared error 1

p
||β̂ − β∗||

2
. The dashed lines depict the theoretical result

derived from Theorem 2, and the dots are the result of empirical simulations. The empirical results is the average
over 100 independent trials with p = 250 and κ = 1 .

This indicates that the proximal operator in this case is just a simple rescaling. Substituting (13) in
the nonlinear system (6), we can rewrite the first three equations as follows,

θ =
α

γδ
,

τ =
δγ

σ
(
1− λδγ

) ,
r =

σ

γ
√
δ
.

(14)

Therefore we can state the following Theorem for `22-regularization:

Theorem 2. Consider the optimization (12) with parameters κ, δ, and γ, and the same assumptions
as in Theorem 1. As p → ∞, for any locally-Lipschitz function Ψ(·, ·), the following convergence
holds,

1

p

p∑
j=1

Ψ(β̂j − ᾱβ∗j ,β∗j )
P−→ E

[
Ψ
(
σ̄Z, β

)]
, (15)

where Z is standard norma, β ∼ Π, and ᾱ,σ̄ are the unique solution to the following nonlinear
system of equations,

σ2

2δ
= E

[
ρ′(−κZ1)

(
καZ1 + σZ2 − Proxγρ(·)(καZ1 + σZ2)

)2]
,

− α

2δ
= E

[
ρ′′(−κZ1)Proxγρ(·)

(
καZ1 + σZ2

)]
,

1− 1

δ
+ λγ = E

[ 2ρ′(−κZ1)

1 + γρ′′
(
Proxγρ(·)(καZ1 + σZ2)

)] .
(16)
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The proof is deferred to the Appendix. Theorem 2 states that upon centering the estimate β̂, it
becomes decorrelated from β∗ and the distribution of the entries approach a zero-mean Gaussian
distribution with variance σ̄2.
Figure 1 depicts the performance of the regularized estimate for different values of λ. As observed
in the figure, increasing the value of λ reduces the correlation factor ᾱ (Figure 1a) and the variance
σ̄2 (Figure 1b). Figure 1c shows the mean-squared-error of the estimate as a function of λ . It
indicates that for different values of δ there exist an optimal value λopt that achieves the minimum
mean-squared error.

4.1 Unstructured case
When λ = 0 in (12), we obtain the optimization with no regularization, i.e., the maximum likelihood
estimate. When we set λ to zero in (16), Theorem 2 gives the same result as Sur and Candes reported
in [27]. In their analysis, they have also provided an interesting interpretation of γ̄ in terms of the
likelihood ratio statistics. Studying the likelihood ratio test is beyond the scope of this paper.

5 Sparse Logistic Regression
In this section we study the performance of our estimate when the regularizer is the `1 norm. In
modern machine learning applications the number of features, p, is often overwhelmingly large.
Therefore, to avoid overfitting one typically needs to perform feature selection, that is, to exclude
irrelevent variables from the regression model [12]. Adding an `1 penalty to the loss function is the
most popular approach for feature selection.
As a natural consequence of the result of Theorem 1, we study the performance of RLR with `1
regularizer (referred to as "sparse LR") and evaluate its success in recovery of the sparse signals. In
Section 5.1, we extend our general analysis to the case of sparse LR. In other words, we will precisely
analyze the performance of the solution of the following optimization,

β̂ = arg min
β∈Rp

1

n
·
[ n∑
i=1

ρ(xTi β)− yi(xTi β)
]

+
λ

p
||β||1 . (17)

In Section 5.1, we explicitly describe the expectations in the nonlinear system (6) using two q-
functions3. In Section 5.2, we analyze the support recovery in the resulting estimate and show that
the two q-functions represent the probability of on and off support recovery.

5.1 Convergence behavior of sparse LR
For our analysis in this section, we assume each entry β∗i , for i = 1, . . . , p, is sampled i.i.d. from a
distribution,

Π(β) = (1− s) · δ0(β) + s ·
(φ( β

κ√
s

)

κ√
s

)
, (18)

where s ∈ (0, 1) is the sparsity factor, φ(t) := e−t
2/2

√
2π

is the density of the standard normal
distribution, and δ0(·) is the Dirac delta function. In other words, entries of β∗ are zero with
probability 1− s, and the non-zero entries have a Gaussian distribution with appropriately defined
variance. Although our analysis can be extended further, here we only present the result for a
Gaussian distribution on the non-zero entries. The proximal operator of f̃(·) = | · | is the soft-
thresholding operator defined as, η(x, t) = x

|x| (x− t)+ . Therefore, we are able to explicitly compute

the expectations with respect to f̃(·) in the nonlinear system (6). To streamline the representation, we
define the following two proxies,

t1 =
λ√

r2

δ + θ2κ2

s

, t2 =
λ
r√
δ

. (19)

In the next section, we provide an interpretation for t1 and t2. In particular, we will show that Q(t̄1),
and Q(t̄2) are related to the probabilities of on and off support recovery. We can rewrite the first three

3The q-function is the tail distribution of the standard normal r.v. defined as, Q(t) :=
∫∞
t

e−x
2/2

√
2π

dx .
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(a) (b)

(c)

Figure 2: The performance of the regularized logistic regression under `1 penalty (a) the correlation factor ᾱ
(b) the variance σ̄2, and (c) the mean-squared error 1

p
||β̂ − β∗||

2
. The dashed lines are the theoretical result

derived from Theorem 1, and the dots are the result of empirical simulations. For the numerical simulations, the
result is the average over 100 independent trials with p = 250 and κ = 1 .

equations in (6) as follows,

α

2στ
= θ ·Q(t1) ,

δγ

2στ
= s ·Q

(
t1
)

+ (1− s) ·Q
(
t2
)
,

κ2α2 + σ2

2σ2τ2
=
δγλ2

2στ
+
γr2

2στ
+ κ2θ2 ·Q

(
t1
)
− λ2(s · φ(t1)

t1
+ (1− s) · φ(t2)

t2
) .

(20)

Appending the three equations in (20) to the last three equations in (6) gives the nonlinear system for
sparse LR. Upon solving these equations, we can use the result of Theorem 1 to compute various
performance measure on the estimate β̂. Figure 2 shows the performance of our estimate as a
function of λ. It can be seen that the bound derived from our theoretical result matches the empirical
simulations. Also, it can be inferrred from Figure 2c that the optimal value of λ (λopt that achieves
the minimum mean-squared error) is a decreasing function of δ.
5.2 Support recovery
In this section, we study the support recovery in sparse LR. As mentioned earlier, sparse LR is
often used when the underlying paramter has few non-zero entries. We define the support of β∗ as
Ω := {j|1 ≤ j ≤ p,β∗j 6= 0}. Here, we would like to compute the probability of success in recovery
of the support of β∗.
Let β̂ denote the solution of the optimization (17). We fix the value ε > 0 as a hard-threshold based
on which we decide whether an entry is on the support or not. In other words, we form the following
set as our estimate of the support given β̂,

Ω̂ = {j|1 ≤ j ≤ p, |β̂j | > ε} (21)
In order to evaluate the success in support recovery, we define the following two error measures,

E1(ε) = Prob{j ∈ Ω̂|j 6∈ Ω} , E2(ε) = Prob{j 6∈ Ω̂|j ∈ Ω} . (22)
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(a) (b)

Figure 3: The support recovery in the regularized logistic regression with `1 penalty for (a) E1: the probability
of false detection, (b) E2: the probability of missing an entry of the support. The dashed lines are the theoretical
results derived from Lemma 1, and the dots are the result of empirical simulations. For the numerical simulations,
the result is the average over 100 independent trials with p = 250 and κ = 1 and ε = 0.001 .

In our estimation, E1 represents the probability of false alarm, and E2 is the probability of misdetec-
tion of an entry of the support. The following lemma indicates the asymptotic behavior of both errors
as ε approcahes zero .

Lemma 1 (Support Recovery). Let β̂ be the solution to the optimization (17), and the entries of β∗
have distribution Π defined in (18). Assume λ is chosen such that the nonlinear system (6) has a
unique solution (ᾱ, σ̄, γ̄, θ̄, τ̄ , r̄). As p→∞ we have,

lim
ε↓0

E1(ε)
p−→ 2 Q

(
t̄1
)

where, t̄1 =
λ
r̄√
δ

, and,

lim
ε↓0

E2(ε)
p−→ 1− 2 Q

(
t̄2
)

where, t̄2 =
λ√

r̄2

δ + θ̄2κ2

s

.
(23)

6 Conclusion and Future Directions

In this paper, we analyzed the performance of the regularized logistic regression (RLR), which is
often used for parameter estimation in binary classification. We considered the setting where the
underlying parameter has certain structure (e.g. sparse, group-sparse, low-rank, etc.) that can be
enforced via a convex penalty function f(·). We precisely characterized the performance of the
regularized maximum likelihood estimator via the solution to a nonlinear system of equations. Our
main results can be used to measure the performance of RLR for a general convex penalty function
f(·). In particular, we apply our findings to two important special cases, i.e., `22-RLR and `1-RLR.
When the regularizer is quadratic in parameters, we have shown that the nonlinear system can be
simplified to three equations. When the regularization parameter, λ, is set to zero, which corresponds
to the maximum likelihood estimator, we simply derived the results reported by Sur and Candes [27].
For sparse logistic regression, we established that the nonlinear system can be represented using
two q-functions. We further show that these two q-functions represent the probability of the support
recovery.
For our analysis, we assumed the datapoints are drawn independently from a gaussian distribution
and utilized the CGMT framework. An interesting future work is to extend our analysis to non-
gaussian distributions. To this end, we can exploit the techniques that have been used to establish
the universality law (see [21, 22] and the references therein). As mentioned earlier in Section 1, an
advantage of RLR is that it allows parameter recovery even for instances where the (unconstrained)
maximum likelihood estimate does not exist. Therefore, another interesting future direction is to
analyze the conditions on λ (as a function of δ and κ) that guarantees the existence of the solution
to the RLR optimization (5). In the unstructured setting, this has been studied in a recent work by
Candes and Sur [5].

9



References
[1] Ehsan Abbasi, Fariborz Salehi, and Babak Hassibi. Performance analysis of convex data

detection in mimo. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4554–4558. IEEE, 2019.

[2] Ismail Ben Atitallah, Christos Thrampoulidis, Abla Kammoun, Tareq Y Al-Naffouri, Babak
Hassibi, and Mohamed-Slim Alouini. Ber analysis of regularized least squares for bpsk recovery.
In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 4262–4266. IEEE, 2017.

[3] Carl R Boyd, Mary Ann Tolson, and Wayne S Copes. Evaluating trauma care: the triss method.
trauma score and the injury severity score. The Journal of trauma, 27(4):370–378, 1987.

[4] Florentina Bunea et al. Honest variable selection in linear and logistic regression models via 1
and 1+ 2 penalization. Electronic Journal of Statistics, 2:1153–1194, 2008.

[5] Emmanuel J Candès and Pragya Sur. The phase transition for the existence of the maximum
likelihood estimate in high-dimensional logistic regression. arXiv preprint arXiv:1804.09753,
2018.

[6] Oussama Dhifallah, Christos Thrampoulidis, and Yue M Lu. Phase retrieval via polytope opti-
mization: Geometry, phase transitions, and new algorithms. arXiv preprint arXiv:1805.09555,
2018.

[7] David Donoho and Andrea Montanari. High dimensional robust m-estimation: Asymptotic
variance via approximate message passing. Probability Theory and Related Fields, 166(3-
4):935–969, 2016.

[8] Noureddine El Karoui, Derek Bean, Peter J Bickel, Chinghway Lim, and Bin Yu. On robust
regression with high-dimensional predictors. Proceedings of the National Academy of Sciences,
110(36):14557–14562, 2013.

[9] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

[10] Yehoram Gordon. Some inequalities for gaussian processes and applications. Israel Journal of
Mathematics, 50(4):265–289, 1985.

[11] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied logistic regression,
volume 398. John Wiley & Sons, 2013.

[12] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to
statistical learning, volume 112. Springer, 2013.

[13] Abderrahim Jourani, Lionel Thibault, and Dariusz Zagrodny. Differential properties of the
moreau envelope. Journal of Functional Analysis, 266(3):1185–1237, 2014.

[14] Sham Kakade, Ohad Shamir, Karthik Sindharan, and Ambuj Tewari. Learning exponential
families in high-dimensions: Strong convexity and sparsity. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pages 381–388, 2010.

[15] Gary King and Langche Zeng. Logistic regression in rare events data. Political analysis,
9(2):137–163, 2001.

[16] Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for large-scale
l1-regularized logistic regression. Journal of Machine learning research, 8(Jul):1519–1555,
2007.

[17] Balaji Krishnapuram, Lawrence Carin, Mario AT Figueiredo, and Alexander J Hartemink.
Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE
transactions on pattern analysis and machine intelligence, 27(6):957–968, 2005.

[18] Erich L Lehmann and Joseph P Romano. Testing statistical hypotheses. Springer Science &
Business Media, 2006.

10



[19] Léo Miolane and Andrea Montanari. The distribution of the lasso: Uniform control over sparse
balls and adaptive parameter tuning. arXiv preprint arXiv:1811.01212, 2018.

[20] John Ashworth Nelder and Robert WM Wedderburn. Generalized linear models. Journal of the
Royal Statistical Society: Series A (General), 135(3):370–384, 1972.

[21] Samet Oymak and Joel A Tropp. Universality laws for randomized dimension reduction, with
applications. Information and Inference: A Journal of the IMA, 7(3):337–446, 2017.

[22] Ashkan Panahi and Babak Hassibi. A universal analysis of large-scale regularized least squares
solutions. In Advances in Neural Information Processing Systems, pages 3381–3390, 2017.

[23] Fariborz Salehi, Ehsan Abbasi, and Babak Hassibi. Learning without the phase: Regularized
phasemax achieves optimal sample complexity. In Advances in Neural Information Processing
Systems, pages 8641–8652, 2018.

[24] Fariborz Salehi, Ehsan Abbasi, and Babak Hassibi. A precise analysis of phasemax in phase
retrieval. In 2018 IEEE International Symposium on Information Theory (ISIT), pages 976–980.
IEEE, 2018.

[25] Shirish Krishnaj Shevade and S Sathiya Keerthi. A simple and efficient algorithm for gene
selection using sparse logistic regression. Bioinformatics, 19(17):2246–2253, 2003.

[26] Mihailo Stojnic. A framework to characterize performance of lasso algorithms. arXiv preprint
arXiv:1303.7291, 2013.

[27] Pragya Sur and Emmanuel J Candès. A modern maximum-likelihood theory for high-
dimensional logistic regression. arXiv preprint arXiv:1803.06964, 2018.

[28] Pragya Sur, Yuxin Chen, and Emmanuel J Candès. The likelihood ratio test in high-dimensional
logistic regression is asymptotically a rescaled chi-square. Probability Theory and Related
Fields, pages 1–72, 2017.

[29] Christos Thrampoulidis. Recovering structured signals in high dimensions via non-smooth con-
vex optimization: Precise performance analysis. PhD thesis, California Institute of Technology,
2016.

[30] Christos Thrampoulidis, Ehsan Abbasi, and Babak Hassibi. Precise error analysis of regularized
m-estimators in high dimensions. IEEE Transactions on Information Theory, 64(8):5592–5628,
2018.

[31] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi. Regularized linear regression: A
precise analysis of the estimation error. In Conference on Learning Theory, pages 1683–1709,
2015.

[32] Christos Thrampoulidis, Ilias Zadik, and Yury Polyanskiy. A simple bound on the ber of the
map decoder for massive mimo systems. arXiv preprint arXiv:1903.03949, 2019.

[33] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[34] Jack V Tu. Advantages and disadvantages of using artificial neural networks versus logistic
regression for predicting medical outcomes. Journal of clinical epidemiology, 49(11):1225–
1231, 1996.

[35] Sara A Van de Geer et al. High-dimensional generalized linear models and the lasso. The
Annals of Statistics, 36(2):614–645, 2008.

[36] Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

[37] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge University Press, 2018.

11



Appendix

A Convex Gaussian Min-max Theorem (CGMT)

Our analysis is based on the convex gaussian min-max theorem (CGMT). Here, we formally state this
theorem. The CGMT associates with a Primary Optimization (PO) problem an Auxiliary Optimization
(AO) problem from which we can investigate various properties of the primary optimization, such
as the phase transition. In particular, the (PO) and the (AO) problems are defined respectively as
follows:

Φ(G) := min
w∈Sw

max
u∈Su

uTGw + ψ(u,w), (24a)

φ(g,h) := min
w∈Sw

max
u∈Su

||w||gTu− ||u||hTw + ψ(u,w), (24b)

where G ∈ Rm×n,g ∈ Rm,h ∈ Rn, Sw ⊂ Rn,Su ⊂ Rm and ψ : Rn × Rm → R. Denote by
wΦ := wΦ(G) and wφ := wφ(g,h) any optimal minimizers in (24a) and (24b), respectively.
Theorem 3 (CGMT). [29] In (24), let Sw, Su, be convex and compact sets, and assume ψ(·, ·) is
convex-concave on Sw × Su. Also assume that G, g, and h all have entries i.i.d. standard normal.
The following statements are true,

1. for all µ ∈ R, and t > 0,

P(|Φ(G)− µ| > t) ≤ 2P(|φ(g,h)− µ| ≥ t) . (25)

2. Let S be an arbitrary open subset of Sw and Sc := Sw/S . Denote ΦSc(G) and φSc(g,h)
be the optimal costs of the optimizations in (24a), and (24a), respectively, when the min-
imization over w is now constrained over w ∈ Sc. If there exists constants φ̄, φ̄Sc , and
η > 0 such that,

• φ̄Sc ≥ φ̄+ 3η ,

• φ(g,h) < φ̄+ η, with probability at least 1− p ,

• φSc(g,h) > φ̄Sc − η, with probability at least 1− p ,

then, P(wΦ(G) ∈ S) ≥ 1− 4p .

The probabilities are taken with respect to the randomness in G, g, and h.

We also use the following corollary that is true in the asymptotic regime,
Corollary 3 (Asymptotic CGMT). [29] using the same notations and assumptions as in Theorem 3,
suppose there exists constants φ̄ < φ̄Sc such that φ(g,h)

p−→ φ̄, and φSc(g,h) −→ φ̄Sc . Then,

lim
n→∞

P(wΦ(G) ∈ S) = 1 . (26)

We refer the interested reader to [29, 31, 30] for furder reading on the subject, its premises and
applications.

B Useful Mathematical Tools

We gathered here some useful lemmas that are used in the proof of our main results. The first lemma
provides the partial derivatives of the Moreau envelope function.
Lemma 2. Let Φ : Rd → R be a convex function. For v ∈ Rd and t ∈ R+, the Moreau envelope
function is defined as,

MΦ(·)(v, t) = min
x∈Rd

Φ(x) +
1

2t
||x− v||2 , (27)

and the proximal operator is the solution to this optimization, i.e.,

ProxtΦ(·)(v) = arg min
x∈Rd

Φ(x) +
1

2t
||x− v||2 . (28)
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The derivative of the Moreau envelope function can be computed as follows,

∂MΦ(·)

∂v
=

1

t
(v − ProxtΦ(·)(v)) ,

∂MΦ(·)

∂t
= − 1

2t2
(v − ProxtΦ(·)(v))2 . (29)

We refer the interested reader to [13] for the proof as well as a detailed study of the properties of the
Moreau envelope.

The next two lemmas present some properties of the proximal operator for the function ρ(z) =
log(1 + ez).

Lemma 3. Let ρ(z) = log(1 + ez), then the following identity holds,

Proxtρ(x+ t) = −Proxtρ(−x) . (30)

Proof. Since the function ρ(·) is differentiable the proximal operator satisfies the following equation,

1

t
(Proxtρ(·)(x)− x) + ρ′(Proxtρ(·)(x)) = 0 . (31)

Next we use the fact that ρ′(−z) = 1− ρ′(z) for z ∈ R, to rewrite the equation as follows,

1

t

(
− Proxtρ(·)(−x)− (x+ t)

)
+ ρ′(−Proxtρ(·)(−x)) = 0 , (32)

which gives the desired identity.

Lemma 4. The derivative of the proximal operator of the function ρ(·) can be computed as follows,

d

dx
Proxtρ(·)(x) =

1

1 + tρ′′
(
Proxtρ(·)(x)

) . (33)

Proof. Taking derivative with respect to x of (31),

1

t
(
d

dx
Proxtρ(·)(x)− 1) +

d

dx
Proxtρ(·)(x)× ρ

′′(
Proxtρ(·)(x)

)
= 0 , (34)

which can be written as in (33).

Lemma 5 (Stein’s lemma). [37] For a function f : R→ R, we have EZ [Zf(Z)] = EZ [f ′(Z)] .

Lemma 6. Let f : Rd → R be an invariantly separable function such that f(x) =
∑d
i=1 f̃(xi) for

all x ∈ Rd, where f̃ is a real-valued function. Then, we have:

Mf(·)(v, t) =

d∑
i=1

Mf̃(·)(vi, t) , and Proxtf(·)(v) =


Proxtf̃(·)(v1)
Proxtf̃(·)(v2)

...
Proxtf̃(·)(vd)

 . (35)

Proof. We can write,

Mf(·)(v, t) = min
x∈Rd

f(x) +
1

2t
||x− v||2 = min

x∈Rd

d∑
i=1

f̃(xi) +
(xi − vi)2

2t
,

=

d∑
i=1

min
xi

f̃(xi) +
(xi − vi)2

2t
,

=

d∑
i=1

Mf̃(·)(vi, t) .

(36)
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C Proof of Theorem 1

We present the proof of our main result that is a precise characterization on the performance of the
optimization program (5) in the limit where p, n→∞ at a fixed ratio δ := n

p . We assume the data

points are drawn independently from Gaussian distribution, xi
i.i.d.∼ N (0, 1

pIp). We first rewrite (5) as
follows,

min
β∈Rp

1

n
1T ρ(

1
√
p
Hβ)− 1

n
√
p
yTHβ +

λ

p
f(β) (37)

where the action of function ρ(·) on a vector is considered component-wise, y ∈ Rn and H ∈ Rn×p
are defined as follows,

y =


y1

y2
...
yn

 , H =
√
p ·


−xT1−
−xT2−

...
−xTn−

 . (38)

Note that the matrix H is defined in such a way that its entries have i.i.d. standard normal distribution.
We use the CGMT framework for our analysis. The proof strategy consists of three main steps:

1. Finding the auxiliary optimization: In order to apply the result of Theorem 3, we need to
rewrite the optimization as a bilinear form and find its associated auxiliary optimization.

2. Analyzing the auxiliary optimization: The goal of this step is to simplify the auxiliary opti-
mization in such a way that its performance can be characterized via a scalar optimization.

3. Finding the optimality condition on the scalar optimization: We investigate the solution to the
resulting scalar optimization. Specifically, by writing the first-order optimality conditions,
we will derive the nonlinear system of equations (6).

We explain each of the three steps in more details in the following subsections.

C.1 Finding the auxiliary optimization

In order to apply the CGMT, we need to have a min-max optimization. Introducing a new variable u,
we have the following optimization,

min
β∈Rp, u∈Rn

1

n
1T ρ(u)− 1

n
yTu +

λ

p
f(β)

s.t. u =
1
√
p
Hβ

(39)

Next, we use the Lagrange multiplier v to rewrite (39) as a min-max optimization,

min
β∈Rp,u∈Rn

max
v∈Rn

1

n
1T ρ(u)− 1

n
yTu +

λ

p
f(β) +

1

n
vT (u− 1

√
p
Hβ) . (40)

Since y depends on H we can not directly apply CGMT to the bilinear form vTHβ. To solve this
issue, we first introduce, P := 1

||β∗||22
β∗β∗T , and P⊥ := Ip − P, the projection matrices on the

direction of β∗ and its orthogonal complement, respectively. We use these projections to decompose
the matrix H as, H = H1 + H2, with H1 := H×P, and H2 := H×P⊥. Rewriting (40) with the
decomposition of H would give,

min
β∈Rp,u∈Rn

max
v∈Rn

1

n
1T ρ(u)− 1

n
yTu +

λ

p
f(β) +

1

n
vT (u− 1

√
p
H1β)− 1

n
√
p
vTH2β . (41)

It is worth noting that after performing this decomposition, the label vector (y) would be independent
of H2 since,

y = Ber
(
ρ′(

1
√
p
Hβ∗)

)
= Ber

(
ρ′(

1
√
p
HPβ∗)

)
= Ber

(
ρ′(

1
√
p
H1β

∗)
)
, (42)

where we used Pβ∗ = β∗. Exploiting this fact, one can check that all the additive terms in the
objective function of (41) except the last one are independent of H2. Also, the objective function
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is convex with respect to β and u and concave with respect to v. In order to apply the CGMT
framework, we only need an extra condition which is restricting the feasible sets of β,u, and v to
be compact and convex. We can introduce some artificial convex and bounded sets Su, Sv, and Sβ,
and perform the optimization over these sets. Note that these sets can be chosen large enough such
that they do not affect the optimization itself. For simplicity, in our arguments here we ignore the
condition on the compactness of the fesible sets and apply the CGMT whenever our feasible sets are
convex.

The optimization program (41) is suitable to be analyzed via the CGMT as the conditions are all
satisfied. Having identified (41) as the (PO) in our optimization, it is straightforward to write its
corresponding (AO) as in (24). Therefore, the Auxiliary Optimization (AO) can be written as follows,

min
β∈Rp,u∈Rn

max
v∈Rn

1

n
1T ρ(u)− 1

n
yTu +

λ

p
f(β) +

1

n
vT (u− 1

√
p
H1β)

− 1

n
√
p

(vTh||P⊥β||+ ||v||gTP⊥β) , (43)

where h ∈ Rn and g ∈ Rp have i.i.d. standard normal entries. Next, we need to analyze the
optimization (43) to characterize its performance.

C.2 Analyzing the auxiliary optimization

In this section, we analyze the auxiliary optimization (43). Ideally, we would like to solve the
optimizations with respect to the direction of the vectors, in order to finally get a scalar-valued
optimization over the magnitude of the variables.
Proceeding onwards, we first perform the maximization with respect to the direction of v. We can
write the following maximization with respect to v,

max
v∈Rn

1

n
√
p
||v||gTP⊥β +

1

n
vT
(
u− 1
√
p
H1β −

||P⊥β||
√
p

h
)
. (44)

In order to maximize the objective function, v chooses its direction to be the same as the vector it is
multiplied to. Define r := ||v||/

√
n, then maximizing over the direction of v would give,

max
r≥0

r
( 1
√
np

gTP⊥β + || 1√
n
u− 1
√
np

H1β −
||P⊥β||
√
np

h||
)
. (45)

Replacing this in (43), we would have,

min
β∈Rp,u∈Rn

max
r≥0

1

n
1T ρ(u)− 1

n
yTu +

λ

p
f(β) + r

1
√
np

gTP⊥β

+r|| 1√
n
u− 1
√
np

H (Pβ)− ||P
⊥β||
√
np

h|| , (46)

where we replaced H1 with H×P . Next, we would like to solve the minimization with respect to β.
Before continuing our analysis, we need to discuss an important point that would help us in the
remaining of this section. It will be observed that in order to simplify the optimization, we would
like to flip the orders of min and max in the (AO) optimization. Since the objective function in the
optimization (46) is not convex-concave we cannot appeal to the Sion’s min-max theorem in order
to flip min and max. However, it has been shown in [30] (see Appendix A) that flipping the order
min and max in the (AO) is allowed in the asymptotic setting. This is mainly due to the fact that
the original (PO) optimization was convex-concave with respect to its variables, and as the CGMT
suggests (AO) and (PO) are tightly related in the asymptotic setting; hence, flipping the order of
optimizations in (AO) is justified whenever such a flipping is allowed in the (PO). We appeal to this
result to flip the orders of min and max when needed.
The goal is to express the final result in terms of the expected Moreau envelope of the regularization
function, f(·) and the link function, ρ(·). Finding the optimal direction of β is cumbersome due to
the existence of the term λf(β) in the objective. So, we introduce new variables µ,w ∈ Rp and
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rewrite the optimization as follows,

min
β∈Rp,u∈Rn

µ∈Rp
max
w∈Rp
r≥0

1

n
1T ρ(u)− 1

n
yTu +

λ

p
f(µ) + r

1
√
np

gTP⊥β

+r|| 1√
n
u− 1
√
np

H (Pβ)− ||P
⊥β||
√
np

h||+ 1

p
wT (µ− β) . (47)

We are now able to perform the optimization with respect to β. As explained above, we are allowed
to flip the order of min and max in the asymptotic regime. We first analyze minβ to find the
optimal direction of β. To streamline the notations, we introduce the scalars α := βTβ∗

||β∗||2 , and
σ := 1√

p ||P
⊥β||. Also define q := 1

κ
√
pHβ∗, where q has i.i.d. standard normal entries (recall that

H has i.i.d. standard normal entries). Optimizing with respect to the direction of P⊥β yields,

min
µ∈Rp,u∈Rn
α∈R,σ≥0

max
w∈Rp
r≥0

1

n
1T ρ(u)− 1

n
yTu + λf(µ)− σ|| 1

√
p
P⊥(

r√
δ
g −w)||

+ r|| 1√
n
u− κα√

n
q− σ√

n
h||+ 1

p
(Pw)Tµ +

1

p
(P⊥w)Tµ− 1

p
(Pw)Tβ ,

(48)
where δ := n

p is the oversampling ratio. Next, we use a trick adopted from [30] where by introducing
two new scalar variables, namely υ and τ , we can change || · || to || · ||2 which simplifies the next
steps of our analysis. The new optimization would be,

min
µ∈Rp,u∈Rn
α∈R,σ≥0
υ≥0

max
w∈Rp
r,τ≥0

1

n
1T ρ(u)− 1

n
yTu +

λ

p
f(µ)− σ

2τ
− στ

2
|| 1
√
p
P⊥(

r√
δ
g −w)||2 +

r

2υ

+
rυ

2
|| 1√

n
u− κα√

n
q− σ√

n
h||2 +

1

p
(Pw)Tµ +

1

p
(P⊥w)Tµ− 1

p
(Pw)Tβ . (49)

Next, in order to compute the optimal w, we use the following completion of squares,

−στ
2
|| 1
√
p
P⊥(

r√
δ
g −w)||2 +

1

p
(P⊥w)Tµ = −στ

2
|| 1
√
p
P⊥(

r√
δ
g −w +

1

στ
µ)||2

+
1

2pστ
||P⊥µ +

στr√
δ
P⊥g||2 − στr2

2n
||P⊥g||2 .

(50)
Since g ∈ Rp has standard normal entries, we can approximate στr2

2n ||P
⊥g||2 with στr2

2δ . We
exploit (50) to solve the inner optimization with respect to w which gives,

min
µ∈Rp,u∈Rn
α∈R,σ,υ≥0
1
pβ
∗Tµ=ακ2

max
r,τ≥0

1

n
1T ρ(u)− 1

n
yTu− σ

2τ
− στr2

2δ
+

r

2υ
− κ2α2

2στ

+
rυ

2
|| 1√

n
u− κα√

n
q− σ√

n
h||2 +

1

2pστ
||µ +

στr√
δ
g||2 +

λ

p
f(µ) ,

(51)

where we also used the following equality:
1

p
||P⊥µ +

στr√
δ
P⊥g||2 =

1

p
||µ +

στr√
δ
g||2 − 1

p
||Pµ||2 − (στr)2 ||Pg||2

n
− 2στr

p
√
δ

(Pg)Tµ

p→ +∞ =
1

p
||µ +

στr√
δ
g||2 − 1

p
||Pµ||2 =

1

p
||µ +

στr√
δ
g||2 − κ2α2 .

(52)
Consequently, by flipping the order of min and max, we first compute the minimization with respect
to µ. Hence, the optimal µ would be the solution to the following optimization:

min
µ∈Rp

1

2pστ
||µ− στr√

δ
g||2 +

λ

p
f(µ)

s.t.
1

p
β∗Tµ = ακ2

(53)
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Using the Lagrange multiplier θ we can rewrite this optimization as,

min
µ∈Rp

max
θ∈R

1

2pστ
||µ− στr√

δ
g||2 +

λ

p
f(µ)− θ

p
β∗Tµ + αθκ2 (54)

Applying the completion of squares we have,

1

2pστ
||µ− στr√

δ
g||2 − θ

p
β∗Tµ =

1

2pστ
||µ− στr√

δ
g − θστβ∗||2 − στθ2κ2

2
, (55)

where we omit the term 1
pg

Tβ∗ = O( 1√
p ) as its negligible compare to the other terms (which are of

constant orders). We are able to represent the solution of (53) in terms of the Moreau envelope of the
function f(·) as follows,

min
µ∈Rp

1
pβ
∗Tµ=ακ2

1

2pστ
||µ−στr√

δ
g||2+

λ

p
f(µ) = max

θ∈R

1

p
Mλf

(
στ(

r√
δ
g+θβ∗), στ

)
+αθκ2−στθ

2κ2

2

(56)
Substituting (56) in (51), we have the following optimization:

min
u∈Rn

α∈R,σ,υ≥0

max
r,τ≥0
θ∈R

1

n
1T ρ(u)− 1

n
yTu +

rυ

2
|| 1√

n
u− κα√

n
q− σ√

n
h||2 − σ

2τ
− στr2

2δ
+

r

2υ

−κ
2α2

2στ
+ κ2αθ − κ2στθ2

2
+

1

p
Mλf(·)

(
στ(

r√
δ
g + θβ∗), στ

)
. (57)

We now focus on the optimization with respect to u. Recall that y = Ber
(
ρ′( 1√

pHβ∗)
)

=

Ber
(
ρ′(κq)

)
. We are interested in solving the following optimization:

min
u∈Rn

1

n
1T ρ(u)− 1

n
yTu +

rυ

2
|| 1√

n
u− κα√

n
q− σ√

n
h||2 , (58)

Similar to the previous steps, we first do a completion of squares as follows,

− 1

n
yTu +

rυ

2
|| 1√

n
u− κα√

n
q− σ√

n
h||2 =

rυ

2
|| 1√

n
u− κα√

n
q− σ√

n
h− 1

rυ
√
n
y||2

− 1

2rυ
||y||2 − kα

n
yTq− σ

n
yTh .

(59)

Next, we use the distribution of y to simplify the expressions in the right-hand side of (59). We can
write,

1

n
||y||2 =

1

n

n∑
i=1

y2
i

WLLN
=⇒
n→∞

E[y2
i ] = E[yi] = EZ [ρ′(κZ)] =

1

2
, (60)

and,

1

n
yTq =

1

n

n∑
i=1

yiqi =
1

n

n∑
i=1

Ber(ρ′(κqi))qi
WLLN
=⇒
n→∞

EZ [Z · ρ′(κZ)] = κ EZ [ρ′′(κZ)] , (61)

where Z ∼ N (0, 1). Also note that we can ignore the term σ
ny

Th since it is of order 1√
n

. Hence, we
are able to rewrite the optimization (58) with respect to u in the following form:

min
u∈Rn

1

n
1T ρ(u) +

rυ

2n
||u− καq− σh− 1

rυ
y||2 − 1

4rυ
− κ2αEZ [ρ′′(κZ)] . (62)

We can rewrite the equation (62) in terms of the Moreau envelope, Mρ(·), as follows,

min
σ,υ≥0
α∈R

max
r,τ≥0
θ∈R

− σ

2τ
− στr2

2δ
+

r

2υ
− κ2α2

2στ
+ κ2αθ − κ2στθ2

2
− 1

4rυ
− κ2αEZ [ρ′′(κZ)]

+
1

p
Mλf(·)

(
στ(

r√
δ
g + θβ∗), στ

)
+

1

n
Mρ(·)

(
καq + σh +

1

rυ
y,

1

rυ

)
.

(63)
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As the last step, we want to analyze the convergence properties of (AO). Recall that f(·) is a separable
function. Therefore, using the result of Lemma 6, we have:

Mλf(·)
(
στ(

r√
δ
g + θβ∗), στ

)
=

p∑
i=1

Mλf̃(·)
(
στ(

r√
δ
gi + θβ∗i ), στ

)
(64)

Using the strong law of large numbers, we have,

1

p
Mλf(·)

(
στ(

r√
δ
g + θβ∗), στ

) a.s.−→ E
[
Mλf̃(·)

(
στ(

r√
δ
Z + θβ), στ

)]
, (65)

where Z is a standard normal random variable and β ∼ Π is independent of Z. Similarly, we can
write,

1

n
Mρ(·)

(
καq + σh +

1

rυ
y,

1

rυ

) a.s.−→ E
[
Mρ(·)

(
καZ1 + σZ2 +

1

rυ
Ber(κZ1),

1

rυ

)]
. (66)

We appeal to Lemma 9 in Appendix A of [30] to analyze the convergence properties of (AO). Due to
the convergence we are getting from the LLN, applying this lemma enables us to replace the Moreau
envelopes with their expected value. Hence, We need to analyze the following optimization,

min
σ,υ≥0
α∈R

max
r,τ≥0
θ∈R

− σ

2τ
− στr2

2δ
+

r

2υ
− κ2α2

2στ
+ κ2αθ − κ2στθ2

2
− 1

4rυ
− κ2αEZ [ρ′′(κZ)]

+E
[
Mλf̃(·)

(
στ(

r√
δ
Z + θβ), στ

)]
+ E

[
Mρ(·)

(
καZ1 + σZ2 +

1

rυ
Ber(κZ1),

1

rυ

)]
. (67)

C.3 Finding the optimality condition of the scalar optimization

In this section, we conclude the proof of the main result of the paper. For this, we need to show that
the optimizer of the optimization (67) can be found by solving the nonlinear system of equations (6).
Let C(α, σ.r, τ, υ, θ) denote the objective function in (67). We want to find the optimer of C(·), i.e.,
the point (α?, σ?, r?, τ?, υ?, θ?). Since the objective function is smooth, when the optimal values are
all non-zero, they should satisfy the first order optimality condition, i.e.,

∇C = 0 . (68)

We will show that the (68) would simplify to our system of nonlinear equations. We start by putting
the derivative w.r.t. θ equal to zero. We have the following,

∂C

∂θ
= 0⇒ κ2α− κ2στθ +

1

p
E
[
β∗T

(
τσ(

r√
δ
g + θβ∗)− Proxστλf(·)(στ(

r√
δ
g + θβ∗))

)]
= 0 ,

(69)
where we used Lemma 2 for taking the derivative of the Moreau envelope, Mλf(·). We can sim-
plify (69) and reqrite it as follows,

κ2α =
1

p
E
[
β∗TProxστλf(·)(στ(

r√
δ
g + θβ∗))

)]
. (70)

Next, we take derivative of the objective function C(·) w.r.t. r and υ and put that equal to zero. We
state the following lemma which will be exploited in taking the derivatives.
Lemma 7. For fixed values of κ, α, and σ, let the function F : R+ → R be defined as follows,

F (γ) = −1

4
γ + EZ1,Z2

[
Mρ(·)

(
καZ1 + σZ2 + γBer(ρ′(κZ1)), γ

)]
(71)

, then the derivative of F (·) would be as follows:

F ′(γ) = − 1

γ2
E
[
ρ′(−κZ1)

(
καZ1 + σZ2 − Proxγρ(·)(καZ1 + σZ2)

)2]
. (72)

Proof. We have,

F ′(γ) = −1

4
+

d

dγ
EZ1,Z2

[
Mρ(·)(κα

?Z1 + σ?Z2 + γBer(ρ′(κZ1)), γ)
]

(73)
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In order to compute the last derivative we exploit Lemma 2. We have,

d

dγ
E
[
Mρ(·)(καZ1 + σZ2 + γBer(ρ′(κZ1)), γ)

]
= −E

[ρ′(−κZ1)

2γ2

(
καZ1 + σZ2 − Proxγρ(·)(κα?Z1 + σ?Z2)

)2]
− E

[ρ′(κZ1)

2γ2

(
καZ1 + σZ2 + γ − Proxγρ(·)(καZ1 + σZ2 + γ)

)2]
+ E

[ρ′(κZ1)

γ

(
καZ1 + σZ2 + γ − Proxγρ(·)(καZ1 + σZ2 + γ)

)]
,

(74)
where we used the fact that for x ∈ R, ρ′(−x) = 1− ρ′(x). To derive (72) we appeal to the result of
Lemma 3 which gives the following identity,

Proxγρ(·)(καZ1 + σZ2 + γ) = −Proxγρ(·)(−καZ1 − σZ2) . (75)

Next, we use the result of Lemma 7 to find the optimality conditions with respect to r and υ. We
have,{

∂
∂rC = 0⇒ −στrδ + 1

2υ −
1
υr2F

′( 1
υr ) + 1

pE
[
gT√
δ

(
στr√
δ
g − Proxστλf(·)(στ( r√

δ
g + θβ∗))

)]
= 0 ,

∂
∂υC = 0⇒ −r

2υ2 − 1
rυ2F

′( 1
rυ ) = 0 .

(76)

In order to simplify the equations, we define a new variable γ := 1
rυ . We can rewrite the equations (76)

as follows, {
γ = 1

pE
[

gT

r
√
δ

Proxστλf(·)
(
στ( r√

δ
g + θβ∗)

)]
,

γ2 = E
[ 2ρ′(−κZ1)

r2

(
καZ1 + σZ2 − Proxγρ(·)(καZ1 + σZ2)

)2]
.

(77)

So, far we have shown that three of the optimality conditions are the same as the nonlinear equations
1,2, and 5 in (6). Next, we take the derivative w.r.t. τ . We have,

∂

∂τ
C = 0⇒ σ

2τ2
− σr2

2δ
+
κ2α2

2στ2
− κ2σθ2

2
+

1

p

∂

∂τ
E[Mλf(·)

(
στ(

r√
δ
g + θβ∗), στ

)
] = 0 . (78)

The derivative of the expected Moreau envelope can be computed as follows,

1

p

∂

∂τ
E[Mλf(·)

(
στ(

r√
δ
g+θβ∗), στ

)
] =

σ

2
(
r2

δ
+θ2κ)− 1

2στ2
E
[
||Proxστλf(·)

(
στ(

r√
δ
g+θβ∗)

)
||22
]
.

(79)
Replacing (79) in (78) would result in,

(κα)2 + σ2 = E
[
|Proxστλf(·)

(
στ(

r√
δ
g + θβ∗)

)
||22
]
. (80)

which is the third equation in the nonlinear system (6). Next, putting the derivative w.r.t. σ equal zero
gives the following,

− 1

2τ
−τr

2

2δ
+
κ2α2

2σ2τ
−κ

2τθ2

2
+

1

p

∂

∂τ
E[Mλf(·)

(
στ(

r√
δ
g+θβ∗), στ

)
]+

∂

∂σ
E
[
Mρ(·)

(
καZ1+σZ2+γBer(κZ1), γ

)]
= 0 .

(81)
We can compute the partial derivative of the expected Moreau envelopes as follows,

1

p

∂

∂σ
E[Mλf(·)

(
στ(

r√
δ
g+θβ∗), στ

)
] =

τ

2
(
r2

δ
+θ2κ)− 1

2σ2τ
E
[
||Proxστλf(·)

(
στ(

r√
δ
g+θβ∗)

)
||22
]
,

(82)
and,

∂

∂σ
E
[
Mρ(·)

(
καZ1 + σZ2 + γBer(κZ1), γ

)]
=
σ

γ
− 2

γ
E
[
Z2ρ

′(−κZ1)Proxγρ(·)
(
καZ1 + σZ2

)]
,

=
σ

γ

(
1− 2E

[ ρ′(−κZ1)

1 + γρ′′
(
Proxγρ(·)(καZ1 + σZ2)

)]) .
(83)
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To derive the last equality, we used Lemma 4 and Lemma 5. Replacing (82), and (83) in (81) gives,

1− γ

τσ
= E

[ 2ρ′(−κZ1)

1 + γρ′′
(
Proxγρ(·)(καZ1 + σZ2)

)] . (84)

As the last step, we take the derivative with respect to α in order to derive the fourth equation in the
nonlinear system (6). We have,

∂C

∂α
=
−κ2α

στ
+κ2θ−κ2E[ρ′′(κZ)]+

∂

∂α
E[Mρ(·)

(
καZ1 +σZ2 +γBer(ρ′(κZ1)), γ

)
] = 0 . (85)

To simplify this equation we write,

−κ2E[ρ′′(κZ)]+
∂

∂α
E[Mρ(·)

(
καZ1+σZ2+γBer(ρ′(κZ1)), γ

)
] =

κ2α

γ
−2E

[κ
γ
Z1ρ

′(−κZ1)Proxγρ(·)
(
καZ1+σZ2

)]
(86)

Replacing (86) in (85) would result,
γκ

2
(θ − α

στ
) +

κα

2
= E

[
Z1ρ

′(−κZ1)Proxγρ(·)
(
καZ1 + σZ2

)]
. (87)

Using Stein’s lemma, we can rewrite the RHS as,

RHS = −E
[
κρ′′(−κZ1)Proxγρ(·)

(
καZ1 + σZ2

)]
+ καE[

ρ′(−κZ1)

1 + γρ′′
(
Proxγρ(·)(καZ1 + σZ2)

) ],

= −E
[
κρ′′(−κZ1)Proxγρ(·)

(
καZ1 + σZ2

)]
+
κα

2
− καγ

2τσ
,

(88)
where we exploit (84) to derive the last equation. Substituting in (87) would give,

γθ = −2E
[
ρ′′(−κZ1)Proxγρ(·)

(
καZ1 + σZ2

)]
. (89)

Therefore, we have shown that the nonlinear system (6) is equivalent to the optimality condition in
(67).

Recall in the process of simplifying (AO) in Section C.2, we introduced the Moreau envelope of f(·)
in (56). The optimizer of that Moreau envelope gives the solution of the Auxiliary optimization. Let
(ᾱ, σ̄, γ̄, θ̄, τ̄ , r̄) be the unique solution of the nonlinear system. Hence, we can present the solution
of the (AO) in terms of the proximal operator as follows,

β̂AOi = Γ(β∗i , Z) = Proxλσ̄τ̄ f̃(·)
(
σ̄τ̄(θ̄β∗i +

r̄√
δ
Z)
)
, for i = 1, 2, . . . p. (90)

As the last step we want to show the convergence of the locally-Lipschitz function Ψ(·, ·). Recall in
Section C.1, in order to apply the CGMT, we have introduced some artificial bounded sets on the
optimization variables and state that we can perform the optimization over these sets. Considering the
variables belong to those bounded sets, we can state the function Ψ(·, ·) is Lipschitz, as constraining
a locally-Lipschitz function to a bounded set gives a Lipschitz function. Next, using the strong law of
large numbers along with the fact that the entries of β∗ are i.i.d. and drawn from distribution Π, we
have,

1

p

p∑
i=1

Ψ(β̂AOi ,β∗i )
a.s.−→ E

[
Ψ(Γ(β, Z), β)

]
, (91)

where Z is a standard normal random variable and β ∼ Π is independent of Z.

Exploiting the assymptotic convergence of CGMT (Corollary 3), we can introduce the set S as
follows,

S = {β ∈ Rp : |1
p

p∑
i=1

Ψ(β,β∗i )− E
[
Ψ(Γ(β, Z), β)

]
| > ε} (92)

The convergence in (91) would establish that as p → ∞, β̂AO ∈ S with probability approaching
1. Therefore, as the result of Corollary 3, β̂ = β̂PO ∈ S with probability approaching 1. This
concludes the proof.
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D Proof of Theorem 2

This result can be derived using the result of Theorem 1. We just need to show that the parameters θ,
r, and τ can be explicitely computed from the first three equations in the nonlinear system (6). Recall
that we characterize the performance of the RLR in terms of the solution of the following nonlinear
equation,

κ2α = E
[
β Proxλστf̃(·)

(
στ(θβ +

r√
δ
Z)
)]
,

γ =
1

r
√
δ
E
[
Z Proxλστf̃(·)

(
στ(θβ +

r√
δ
Z)
)]
,

κ2α2 + σ2 = E
[
Proxλστf̃(·)

(
στ(θβ +

r√
δ
Z)
)2]

,

γ2 =
2

r2
E
[
ρ′(−κZ1)

(
καZ1 + σZ2 − Proxγρ(·)(καZ1 + σZ2)

)2]
,

θγ = −2 E
[
ρ′′(−κZ1)Proxγρ(·)

(
καZ1 + σZ2

)]
,

1− γ

στ
= E

[ 2ρ′(−κZ1)

1 + γρ′′
(
Proxγρ(·)(καZ1 + σZ2)

)] .

(93)

In the `22-regularization, we have f̃(·) = 1
2 (·)2, for which the proximal operator can be computed in

closed-form, i.e., we have,

Proxtf̃ (x) =
x

1 + t
. (94)

Replacing in the first equation of (93) gives,

κ2α = E
[
β Proxλστf̃(·)

(
στ(θβ +

r√
δ
Z)
)]

= E
[
β ×

στ(θβ + r√
δ
Z)

1 + λστ

]
=

στθκ2

1 + λστ
.

(95)

where we used the fact that E[β2] = κ2, and E[β · Z] = 0. Next, from the second equation in (93)
we have,

γ =
1

r
√
δ
E
[
Z Proxλστf̃(·)

(
στ(θβ +

r√
δ
Z)
)]

=
1

r
√
δ
E
[
Z ×

στ(θβ + r√
δ
Z)

1 + λστ

]
=

στ

δ(1 + λστ)
,

(96)

and finally from the thrid equation in (93) we can compute,

κ2α2 + σ2 = E
[(

Proxλστf̃(·)
(
στ(θβ +

r√
δ
Z)
))2]

=
σ2τ2

(1 + λστ)2
(θ2κ2 +

r2

δ
)

= κ2α2 +
σ2τ2r2

δ(1 + λστ)2
.

(97)

We can rewrite the equations (95), (96), and (97) as follows,

θ =
α

γδ
,

τ =
δγ

σ
(
1− λδγ

) ,
r =

σ

γ
√
δ
.

(98)
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Replacing the derived expressions in (98) for θ, r, and τ in the last three equations of (93) would
gives the following system of three equations with three unknowns,

σ2

2δ
= E

[
ρ′(−κZ1)

(
καZ1 + σZ2 − Proxγρ(·)(καZ1 + σZ2)

)2]
,

− α

2δ
= E

[
ρ′′(−κZ1)Proxγρ(·)

(
καZ1 + σZ2

)]
,

1− 1

δ
+ λγ = E

[ 2ρ′(−κZ1)

1 + γρ′′
(
Proxγρ(·)(καZ1 + σZ2)

)] .
(99)

This concludes the proof of Theorem 2.
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