
Supplementary Material: Spatially Aggregated Gaussian Processes with
Multivariate Areal Outputs

A Derivation of the multivariate GP f(x)

In this appendix, we show that the process f(x) defined via (2) is itself a multivariate GP with mean
function m(x) = W⌫(x) and covariance function K(x,x0) = W�(x,x0)W> + ⇤(x,x0). To
prove that f(x) is indeed a multivariate GP, one has only to show that, for an arbitrary k 2 {1, 2, . . .}
and an arbitrary set of k points x1, . . . ,xk 2 X , f̄ = (f(x1), . . . ,f(xk))> is a multivariate
Gaussian random variable. By the definition (2) of f(x), one has

f̄ = (I⌦W)ḡ + n̄, (19)

where we let ḡ = (g(x1), . . . , g(xk))> and n̄ = (n(x1), . . . ,n(xk))>, and where ⌦ denotes the
Kronecker product. By the definition of Gaussian processes, since g(x) and n(x) are Gaussian
processes, ḡ and n̄ are multivariate Gaussian random variables. Since (19) shows that f̄ is a linear
combination of the multivariate Gaussian random variables ḡ and n̄, it is itself multivariate Gaussian,
irrespective of the choice of x1, . . . ,xk. This in turn shows that f(x) is again a multivariate Gaussian
process.

Mean of f(xi) is given by

E(f(xi)) = WE(g(xi)) = W⌫(xi). (20)

Covariance of f(xi) and f(xj) is given by

Cov(f(xi),f(xj)) = E((f(xi)�W⌫(xi))(f(xj)�W⌫(xj))
>)

= E((W(g(xi)� ⌫(xi)) + n(xi))(W(g(xj)� ⌫(xj)) + n(xj))
>)

= W�(xi,xj)W
> +⇤(xi,xj). (21)

These show that the mean function m(x) and the covariance function K(x,x0) of the multivariate
Gaussian process f(x) are given by m(x) = W⌫(x) and K(x,x0) = W�(x,x0)W>+⇤(x,x0),
respectively.

B Derivation of the posterior GP f ⇤(x)

In this appendix, we derive the posterior Gaussian process f⇤(x) shown in Section 4. We here assume
that the integral appearing in the definition of the observation model (5) is well-defined, and defer
discussion on conditions for its well-definedness to Appendix C. Let f(x) ⇠ GP(m(x),K(x,x0))
be a multivariate GP defined on X ⇢ R2 taking values in RS . For an arbitrary k, k
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By the definition of GP, f̂ is a (k + k
0)S-dimensional Gaussian vector. Let
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be the mean vector and the covariance matrix of f̂ . In the following, we specifically assume that
x0
1, . . . ,x

0
k0 are taken to be grid points of a regular grid covering X and with the grid cell volume
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�, and consider Riemann sums to approximate those integrals on X appearing in the formulation
of SAGP. We then take the limit � ! 0 to derive the posterior GP given areal observations on
f(x) ⇠ GP(m(x),K(x,x0)).

Consider the observation process yielding observations y, defined by

y = Āf̄ 0 +w, (25)

where
Ā = ( A(x0

1) · · · A(x0
k0) )�, (26)

and where w is an S-dimensional Gaussian noise vector with mean zero and covariance ⌃. One has

µ̄ = E(y) = Ām̄0 (27)

and
C̄ = Cov(y) = ĀK̄

00
Ā

> +⌃, (28)
respectively. The posterior of f̄ given y is known to be a multivariate Gaussian with mean

m̄⇤ = m̄+ H̄
>
C

�1(y � µ) (29)

and covariance
K̄

⇤ = K̄� H̄
>
C

�1
H̄, (30)

respectively, where H̄ = ĀK̄
0.

By regarding sums over the k
0 terms as Riemann sums approximating the corresponding integrals

over X , in the limit � ! 0, one can replace those sums over k0 terms with the corresponding integrals
over X . Specifically, one has
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showing that the mean vector µ̄ and the covariance matrix C̄ of y are reduced in this limit to the
vector µ and the matrix C defined in (9) and (10), respectively. One also has
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⇣ Pk0
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= ( H(x1) · · · H(xk) ) , (34)

where H(x) is defined in (14). The above calculation shows that in the limit � ! 0 the posterior
process f⇤(x) is a multivariate GP with mean function m⇤(x) and covariance function K

⇤(x,x0)
given by (15) and (16), respectively.

C On integrability

In this appendix, we discuss conditions for the observation model (5) to be well defined. Assume
that X ⇢ R2 is a bounded Jordan-measurable set, and that elements as,n(x) of A(x) are Rie-
mann integrable on X . (The latter assumption is satisfied when as,n(x) is defined as in (7) with

13



Jordan-measurable regions Rs,n.) Since it is known that a continuous function on X is Riemann
integrable on X , and that a product of Riemann integrable functions is again Riemann integrable,
a sufficient condition for the observation model (5) to be well defined is that the prior process
f(x) ⇠ GP(m(x),K(x,x0)) is sample-path continuous.

The assumption made in Section 3 of the integrability of ⌫l(x), l = 1, . . . , L, assures integra-
bility of the mean function m(x) = W⌫(x), which allows us to reduce integrability of the
prior process f(x) ⇠ GP(m(x),K(x,x0)) to sample-path continuity of the zero-mean process
f(x) ⇠ GP(0,K(x,x0)) on X . A sufficient condition [1, Theorem 1.4.1] for the sample-path
continuity of the zero-mean Gaussian process is that for some 0 < C < 1 and ↵, ⌘ > 0

ks,s(x,x) + ks,s(x
0
,x0)� 2ks,s(x,x

0)  C

| log kx� x0k|1+↵
(35)

holds for all s 2 {1, . . . , S} and for all x,x0 with kx�x0k < ⌘. If one uses the squared-exponential
kernels for {�l}, then one can confirm that the above condition is satisfied, and consequently the
observation model (5) is well defined.

It should be noted that the sample-path continuity discussed above is different from the mean-square
(MS) continuity. A process f(x) is said to be MS continuous at x = x⇤ if for any sequence xk

converging to x⇤ as k ! 1 it holds that E[kf(xk)� f(x⇤)k2] ! 0 as k ! 1. A necessary and
sufficient condition for a random field to be MS continuous at x⇤ is that its covariance function
K(x,x0) is continuous at the point x = x0 = x⇤ [2, Appendix 10A], which in the case of Gaussian
processes is weaker than the above sufficient condition for the sample-path continuity.

D Description of real-world areal data sets

We used the real-world areal data sets from NYC Open Data 4 and Chicago Data Portal 5 to evaluate
the proposed model. These data sets are collected and released for improving city environments,
and consist of a variety of categories including social indicators, land use, and air quality. Details
of the areal data sets we used in the experiments are listed in Table 3. The number of data sets in
New York City and Chicago are 10 and 3, respectively. Each data set is associated with one of the
predefined geographical partitions. The number of partition types in New York City and Chicago are
4 and 2, respectively. Table 3 shows the respective partition names and the number of regions in the
corresponding partition. These data sets are gathered once a year at the time ranges shown in Table 3;
the values of data were divided by the number of observation times. Then, the data were normalized
so that each variable in each city has zero mean and unit variance.

E Results

Table 4 shows MAPE and standard errors for GPR, 2-stage GP, SLFM, and SAGP, where the
experiments for Crime data set in Chicago have not been conducted because the coarser version for
training is not available online. For all data sets, SAGP achieved the comparable or better performance
than the other methods.

References
[1] Adler, R. J., and Taylor, J. E. 2007. Random Fields and Geometry. Springer.

[2] Papoulis, A. 1991. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 3rd
edition.

4https://opendata.cityofnewyork.us
5https://data.cityofchicago.org/

14



Table 3: Real-world areal data sets.

(a) New York City

Data Partition #regions Time range

PM2.5 UHF42 42 2009 – 2010
Poverty rate Community district 59 2009 – 2013
Unemployment rate Community district 59 2009 – 2013
Mean commute Community district 59 2009 – 2013
Population Community district 59 2009 – 2013
Recycle diversion rate Community district 59 2009 – 2013
Crime Police precinct 77 2010 – 2016
Fire incident Zip code 186 2010 – 2016
311 call Zip code 186 2010 – 2016
Public telephone Zip code 186 2016

(b) Chicago

Data Partition #regions Time range

Crime Police Precinct 25 2012
Poverty rate Community district 77 2008 – 2012
Unemployment rate Community district 77 2008 – 2012

Table 4: MAPE and standard errors for the prediction of fine-grained areal data in New York City
and Chicago. The numbers in parentheses denote the number L of the latent GPs estimated by the
validation procedure. The single star (?) and the double star (??) indicate significant difference
between SAGP and other models at the levels of P values of < 0.05 and < 0.01, respectively.

(a) New York City

GPR 2-stage GP SLFM SAGP

PM2.5 0.072 ± 0.010 (–) 0.042 ± 0.005 (–) 0.036 ± 0.005 (6) 0.030 ± 0.005? (5)
Poverty rate 0.344 ± 0.046 (–) 0.210 ± 0.022 (–) 0.207 ± 0.025 (4) 0.177 ± 0.019?? (3)
Unemployment rate 0.319 ± 0.036 (–) 0.193 ± 0.021 (–) 0.195 ± 0.024 (3) 0.165 ± 0.020? (3)
Mean commute 0.131 ± 0.020 (–) 0.068 ± 0.009 (–) 0.057 ± 0.007 (4) 0.050 ± 0.007 (6)
Population 0.577 ± 0.104 (–) 0.389 ± 0.033 (–) 0.337 ± 0.039 (3) 0.295 ± 0.033? (3)
Recycle diversion rate 0.353 ± 0.049 (–) 0.236 ± 0.034 (–) 0.222 ± 0.032 (4) 0.211 ± 0.029 (4)
Crime 0.860 ± 0.102 (–) 0.454 ± 0.075 (–) 0.401 ± 0.053 (2) 0.379 ± 0.055?? (3)
Fire incident 1.097 ± 0.097 (–) 0.746 ± 0.084 (–) 0.500 ± 0.052 (4) 0.396 ± 0.038?? (3)
311 call 0.083 ± 0.004 (–) 0.070 ± 0.004 (–) 0.061 ± 0.004 (6) 0.052 ± 0.003?? (3)
Public telephone 0.131 ± 0.008 (–) 0.083 ± 0.008 (–) 0.086 ± 0.008 (4) 0.080 ± 0.007 (6)

(b) Chicago

GPR 2-stage GP SLFM SAGP

Poverty rate 0.599 ± 0.099 (–) 0.380 ± 0.060 (–) 0.335 ± 0.052 (2) 0.278 ± 0.032?? (2)
Unemployment rate 0.478 ± 0.047 (–) 0.318 ± 0.032 (–) 0.278 ± 0.025 (2 ) 0.231 ± 0.021? (2)
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