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Appendix A contains the proofs of our different theorems, and Appendix B has details on the
experiments along with further numerical results.

A The hierarchical model and proofs of the theoretical results

In this section, we illustrate the planted hierarchical model and we provide detailed proofs of
Theorems 1–4.

A.1 Notations

We first recall some of the key quantities associated with the planted model, which include:

• N , the number of objects;
• L, the number of levels in the hierarchy;
• N0 = N

2L
, the size of the pure clusters;

• µ, expected similarity between pairs belonging to a pure cluster;
• δ, the separation between the expected similarities across consecutive levels; and
• σ, the standard deviation of the similarities.

Throughout the appendix, we use Z to denote a generic standard normal random variable, that is,
Z ∼ N (0, 1). We also define `lcaij = `lca(xi, xj) as the level of the ground truth tree in which the
least common ancestor (lca) of xi and xj resides. We extend this definition to the level of lca of two
clusters G,G′, denoted by `lca(G,G′). If G,G′ are both subsets of the same pure cluster, we write
`lca(G,G′) = L. Hence, the range of `lca is {0, 1, . . . , L}.

A.2 Analysis of Single Linkage (SL) and Complete Linkage (CL)

Proposition 1 (Active query complexity of SL and CL). The SL and CL algorithms require at
least Ω

(
N2
)

and at most O
(
N2 lnN

)
number of active quadruplet comparisons.

Proof. In the first step of SL or CL, the algorithm merges the pair xi, xj if wij ≥ wkl for all
k, l ∈ {1, . . . , N}. This requires

(
N
2

)
number of ordinal comparisons to find the minimum, and

hence, the active query complexity of SL and CL is at least Ω
(
N2
)
.
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To prove an upper bound on the active query complexity, it suffices to observe that single/complete
linkage only requires a total ordering of the

(
N
2

)
scalar similarities {wij : i < j}. Using a sorting

algorithm such as merge-sort, this ordering can be easily obtained from O
(
N2 lnN

)
actively chosen

comparisons.

Theorem 1 (Exact recovery of planted hierarchy by SL and CL). Assume that η ∈ (0, 1). If
δ
σ ≥ 4

√
ln
(
N
η

)
, then SL and CL exactly recover the planted hierarchy with probability 1− η.

Conversely, for δ
σ ≤

1
4

√
ln
(
N
2L

)
and large N

2L
, SL fails to recover the hierarchy with probability 1

2 .

Proof. We first prove the sufficient condition for exact recovery. Let Z ∼ N (0, 1). It can be

easily verified that P(|Z| ≥ t) ≤
√

2
π

1
t exp(−0.5t2). For t ≥ 1, we may simply bound this by

exp(−0.5t2). Now, observe that for every i 6= j, wij−µijσ ∼ N (0, 1). Using this, we can write

P

(⋃
i 6=j

{
|wij − µij | ≥

δ

2

})
≤
∑
i 6=j

P

(
|Z| ≥ δ

2σ

)
≤ N2 exp

(
− δ2

8σ2

)

since δ > 2σ under stated condition. The above probability is smaller than η for δ ≥ 4σ
√

ln(Nη ).

Thus, under the stated condition, |wij − µij | < δ
2 for all i 6= j. We now show that the above scenario

leads to exact recovery of the hierarchy by single or complete linkage clustering. Note that

E[wij ] = µij = µ− (L− `lcaij )δ

Due to the concentration of the similarity score w, we know that wij lies in the range(
µ− (L− `lcaij )δ − δ

2 , µ− (L− `lcaij )δ + δ
2

)
for all i 6= j with probability 1− η. Thus, the similar-

ity scores corresponding to the different levels of the ground truth do not overlap, and this ensures
that the agglomerative algorithms merge objects or clusters in the same order as prescribed by the
ground truth. For instance, at the first stage, where the goal is to extract the pure clusters, we have
wij > µ− δ

2 if xi, xj belong to the same pure cluster, and wij < µ− δ
2 otherwise. Hence, both single

and complete linkage merge objects in the same cluster first before merging objects from different
clusters. The same argument also holds for the subsequent levels and hence, the claim.

We now prove the converse statement for SL. We first prove the result for L = 1. The argument
easily extends to L > 1 from the observation that exact recovery of the entire hierarchy involves
exact recovery for pairs of clusters at L− 1 levels. For L = 1, there are two pure clusters, G1 and G2,
that are split at the top level of the true hierarchy.

Recall that single linkage corresponds to a cluster tree on the set of items (Chaudhuri et al., 2014).
For any t ∈ R, we consider the subgraph Gt of the cluster tree with edge set Et = {(i, j) : wij > t}.
Observe that Gt is equivalent to a stochastic block model, where

P
(
(i, j) ∈ Et

)
=


1− Φ

(
t− µ
σ

)
for i, j in the same cluster, and

1− Φ

(
t− µ+ δ

σ

)
when i, j belong to different clusters.

(1)

Let p, q denote the aforementioned within and inter-cluster edge probabilities in (1), and recall the
bounds on the Gaussian tail

1√
2π

1

2x
e−x

2/2 < 1− Φ(x) <
1√
2π

1

x
e−x

2/2 , (2)

which is valid for all x ≥ 1. Setting t = µ+ σ
√

2 lnN0, it is easy to verify that

p <
1√
2π

1

N0

√
2 lnN0

and q >
1√
2π

1

2
(√

2 lnN0 + δ
σ

)e−(
√

2 lnN0+ δ
σ )

2
/2.

Assuming δ
σ < 1

4

√
lnN0, the lower bound on q can be simplified as q > 1

10N0

√
N0 lnN0

. Hence,

for large enough N0, we have p < 1
N0

and q � lnN0

N2
0

. Now observe that the two subgraphs of

2



Gt restricted to G1 and G2, Gt|G1 and Gt|G2 , are Erdős-Rényi graphs, each with N0 vertices and
edge-probability p. Using a standard result for random graphs (Chapter 8 of Blum et al., 2018), we
can conclude that both Gt|G1 and Gt|G2 are disconnected with high probability for p < 1

N0
. Similarly,

since q � lnN0

N2
0

, one can conclude that, with high probability, there exist edges between Gt|G1 and
Gt|G2 . Based on the cluster tree perspective of single linkage (Chaudhuri et al., 2014), the above
conclusions about connectivity of Gt|G1 and Gt|G2 implies that SL merges items from G1 and G2

before extracting the pure clusters. For large enough N0, the probability of this event is greater than
1
2 .

A.3 Analysis of Active Quadruplets Kernel based Average Linkage (4K–AL)

Recall that the active quadruplet kernel is defined in the following way. A pair of distinct items (i0, j0)
is chosen uniformly, and a set of landmark points S is constructed such that every k ∈ {1, . . . , N} is
independently added to S with probability q. The kernel K is defined as

Kij =
∑

k∈S\{i,j}

(
I(wik>wi0j0) − I(wik<wi0j0)

)(
I(wjk>wi0j0) − I(wjk<wi0j0)

)
(3)

for i 6= j. For ease of notation, we introduce the terms w∗ = wi0j0 and ξk = I(k∈S). It follows that
ξ1, . . . , ξN ∼iid Bernoulli(q) and, with these notations, we write the kernel function (3) as

Kij =
∑
k 6=i,j

ξk
(
2I(wik>w∗) − 1

) (
2I(wjk>w∗) − 1

)
,

where the re-arrangement of indicators are under the planted model assumption since any two
similarity scores are distinct with probability 1 due to the Gaussian assumption.

We now restate and prove the exact recovery guarantee for 4K–AL with actively obtained comparisons.
Theorem 2 (Exact recovery of planted hierarchy by 4K–AL with active comparisons). Let
η ∈ (0, 1) and ∆ = η2

100
δ
σ e
−2L2δ2/σ2

. There exists an absolute constant C > 0 such that if
N0 >

4
∆

√
N and we set

q > max

{
C

22L

N∆4
ln

(
N

η

)
,

3

N
ln

(
2

η

)}
,

then with probability at least 1 − η, 4K–AL exactly recovers the planted hierarchy using at most
2qN2 number of actively chosen quadruplet comparisons.

In particular, if L = O (1), the above statement implies that even with δ
σ constant, 4K–AL exactly

recovers the planted hierarchy with probability 1− η using only O (N lnN) active comparisons.

Proof. We prove the result by proving the following statements:

• the probability that 4K–AL queries more than 2qN2 comparisons is at most η2 , and

• the probability of not achieving exact recovery is at most η2 .

To derive the bound on the number of comparisons, we observe that evaluation of the entire
kernel matrix requires quadruplet comparisons of the form I(wik>w∗) for all i = 1, . . . , N and k ∈ S .
Hence, the total number of comparisons is N |S|, which can be bounded by showing that the size of
S is at most 2qN . This follows from Bernstein’s inequality since

P(|S| > 2qN) = P

(
N∑
k=1

ξk − qN > qN

)

≤ exp

(
− q2N2

2Nq(1− q) + 2
3qN

)
≤ exp

(
−qN

3

)
,

which is bounded by η
2 since q > 3

N ln
(

2
η

)
.
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To derive the exact recovery guarantee, we analyze the kernel matrix K, and also 4K–AL, condi-
tioned on w∗. For this, we need to characterize the behaviour of w∗ under the planted model. Since

w∗ is the similarity of a randomly chosen pair, one can observe that w∗ ∼
L∑̀
=0

a`N
(
µ− `δ, σ2

)
has a mixture of Gaussian distribution, where the weights a0 =

2L(N0
2 )

(N2 )
and a` =

2L+`−2N2
0

(N2 )
for

` = 1, . . . , L are the proportion of similarities corresponding to item pairs merged at level (L− `) of
the panted hierarchy. We claim that, with probability 1− η

4 ,

µ− Lδ − σ

√
2 ln

(
8

η

)
< w∗ < µ+ σ

√
2 ln

(
8

η

)
. (4)

The bounds follow from the mixture of Gaussian nature of w∗ since

P (w∗ > t) =

L∑
`=0

a`P (µ− `δ + σZ > t)

≤ P(µ+ σZ > t) ,

where we use Z to denote a standard normal random variable. Setting t = µ + σ

√
2 ln

(
8
η

)
and

using the upper bound on Gaussian tail probability (2), we can bound the above probability by η
8 . A

similar argument holds for the lower bound on w∗, where the probability of violating the bound is
also at most η8 . Hence, the bounds in (4) hold with probability 1− η

4 .

We next compute the expected kernel matrix (3) conditioned on the knowledge of w∗. For this, we
first define the quantities

β`,w∗ = 2PZ∼N (0,1)

(
µ− (L− `)δ + σZ > w∗

∣∣w∗)− 1, and

β` = 2PZ,Z′∼N (0,1) (µ+ σZ > µ− `δ + σZ ′)− 1 = 2Φ

(
`δ√
2σ

)
− 1

(5)

for any ` ∈ R and w∗ ∈ R. Observe that β`,w∗ = E
[
2I(wij>w∗) − 1

∣∣w∗] when `lcaij = `, whereas
β` = E

[
2I(wij>wkl) − 1

]
when `lcaij − `lcakl = `. In particular, β0 = 0. Based on (5) and the

observation that the product terms in (3) are independent conditioned on w∗, we write for any i 6= j,

E
[
Kij

∣∣w∗] =
∑
k 6=i,j

qβ`lcaik ,w∗β`lcajk ,w∗ .

Recall that, under the planted hierarchy, X is partitioned in pure clusters G1, . . . ,G2L . We abuse
notation to write Gr as the set {i : xi ∈ Gr}. In (3), observe that each term in the sum depends only
on the groups containing i, j, k, and hence, we may only compute it for each group and multiply
by the number of terms in the group. If i, j ∈ G1, then k can take only (N0 − 2) values in G1,
and N0 values in other groups. We may perform the entire computation only at group level, and
then use a multiplicative factor of (1± ε) with ε = 4

N0
to account for fluctuations in the number of

terms from each group. Here, E[Kij |w∗] = (1 ± ε)a denotes (1 − ε)a ≤ E[Kij |w∗] ≤ (1 + ε)a.
Allowing a fluctuation of (1± ε) also helps to ignore the small effect of the case where (i, k) or (j, k)
corresponds to (i0, j0), that is, the reference pair for which w∗ = wi0j0 . Thus, for i, j such that i 6= j
and `lcaij = `, we have

E[Kij |w∗] = (1± ε)qN0

2L∑
r=1

β`lca(i,Gr),w∗β`lca(j,Gr),w∗

= (1± ε)qN0

L∑
t,t′=0

βt,w∗βt′,w∗#{r : `lca(i,Gr) = t, `lca(j,Gr) = t′}, (6)

where the second equality explicitly mentions that we need to count the number of different pure
clusters that are merged with i or j at different levels of the true hierarchy. We now consider different

4



cases. First, if i, j belong to same group, then ` = L and `lca(i,Gr) = `lca(j,Gr) for every r. So,

κL := E[Kij |w∗] = (1± ε)qN0

L∑
t=0

(2L−1−t ∨ 1)β2
t,w∗ ,

which we denote by a quantity κL noting that it only depends on the level L and not on i, j. Here, ∨
denotes the maximum of two values. The numbers of clusters are computed based on the fact that
there is only one cluster at levels L or L − 1, and otherwise 2L−1−t groups are merged with i at
level-t. If i, j are not in the same group, that is, ` = `lcaij < L, then we observe:

• if t < `, then for any Gr such that `lca(i,Gr) = t, we also have `lca(j,Gr) = t. So we may
only consider cases t = t′ when t < `.

• there is no Gr such that `lca(i,Gr) = `lca(j,Gr) = ` which happens because the hierarchy
is a binary tree and Gr must either merge first with i or with j. So, we do not need to
consider t = t′ = `, which is the main difference from the case ` = L.

• if t > `, then for any Gr with `lca(i,Gr) = t, we have `lca(j,Gr) = `. So we may set t′ = `
whenever we have t > `. Similarly, we should also count the cases t′ > `, t = `.

Thus, we can decompose the summation into three parts based on the conditions on t, t′ (t = t′ < `;
t > `, t′ = `; t = `, t′ > `). For each case, we should count #{r : `lca(i,Gr) = t, `lca(j,Gr) = t′}.
To compute these, we note that #{r : `lca(i,Gr) = `lca(j,Gr) = t} = 2L−1−t when t = t′ < ` as
used above. But when t > `, t′ = `, we have #{r : `lca(i,Gr) = t, `lca(j,Gr) = `} = 2L−1−t ∨ 1
since this counts only those groups which merge with i at level-t, and t′ plays no role in the count. A
similar argument holds for the case t = `, t′ > `. Based on this, we compute E[Kij |w∗] for the case
`lcaij = ` < L and denote the expected value by κ`, noting that it does not depend on i, j. We have

κ` := E[Kij |w∗] = (1± ε)qN0

[
`−1∑
t=0

2L−1−tβ2
t,w∗ + 2

L∑
t=`+1

(2L−1−t ∨ 1)βt,w∗β`,w∗

]
,

where the second term, counted twice, corresponds to both the cases of t > ` or t′ > `, which behave
similarly. Since βt,w∗ ∈ [−1, 1], one can easily verify that |κ`| ≤ qN for all `.

The above discussion leads to the conclusion that E[K|w∗] has a block diagonal structure with exactly
L+ 1 distinct off-diagonal entries, κ0, . . . , κL, and the block structure corresponds to the planted
hierarchy shown in Figure 1 in the main paper (right). We now show that these distinct terms are
sufficiently separated, that is, κ`+1 − κ` is large for every ` = 0, 1, . . . , L − 1. To derive this, we
require a lower bound on

βt+1,w∗ − βt,w∗ = 2P
(
µ− (L− t− 1)δ + σZ > w∗

∣∣w∗)− 2P
(
µ− (L− t)δ + σZ > w∗

∣∣w∗)
=

√
2

π

(w∗−µ+(L−t)δ)/σ∫
(w∗−µ+(L−t−1)δ)/σ

e−z
2/2dz

≥
√

2

π

δ

σ
e−(a2∨(a−δ)2)/2σ2

,

where a = w∗ − µ+ (L− t)δ. Conditioned on the bounds w∗ stated in (4), one can see that

a2 ∨ (a− δ)2 < 2(L+ 1)2δ2 + 4σ2 ln

(
8

η

)
,

where we use the fact that t ∈ [0, L] and the inequality (x+ y)2 ≤ 2(x2 + y2). Plugging this into
the above derivation shows that βt+1,w∗ − βt,w∗ > ∆ for any t ∈ [0, L], where ∆ is defined in the
statement of theorem. We use the above bound to show that

κL − κL−1 > qN0

(
β2
L,w∗ − β2

L−1,w∗
)2 − 2εqN

> qN0∆2 − q2L+3,

5



where the second term, involving ε, takes care of the fluctuation due to our approximate computations
of κ` and is simply bounded by the upper bound on κ`. Similarly, for any ` < L− 1,

κ`+1 − κ` > qN0

[
2L−1−`β2

`,w∗ − 2L−1−`β`,w∗β`+1,w∗

+ 2

L∑
t=`+2

(2L−1−t ∨ 1)βt,w∗(β`+1,w∗ − β`,w∗)
]
− 2εqN

= qN02

L∑
t=`+2

(2L−1−t ∨ 1)(βt,w∗ − β`,w∗)(β`+1,w∗ − β`,w∗)− 2εqN

> 2L−`−1qN0∆2 − q2L+3,

where the equality follows since 2L−1−` = 2
L∑

t=`+2

(2L−1−t ∨ 1), and subsequently, we note that

βt,w∗−β`,w∗ > β`+1,w∗−β`,w∗ > ∆ for all t ≥ `+2. Hence, we can conclude that forN0 >
4
∆

√
N ,

or equivalently, N0 >
2L+4

∆2 ,

κ`+1 − κ` >
qN0∆2

2
(7)

for all ` = 0, 1, . . . , L − 1. We subsequently show that under the condition on q assumed in the
theorem, with probability 1− η

4 ,

Kij −E[Kij |w∗] <
qN0∆2

4
(8)

for all i 6= j. This implies that all random entries of K corresponding to different levels of hierarchy
in the ground truth tree are non-overlapping. Hence, one can simply use the arguments in the proof
of Theorem 1 to show that average linkage (or even single/complete linkage) recovers the planted
hierarchy. We complete the proof by deriving the concentration result of (8). From (3), we observe
that, conditioned on w∗, the entry Kij is a sum of N − 2 independent random variables each lying in
the range [−1, 1]. Hence, a direct application of Bernstein’s inequality implies that

P

(∣∣Kij −E[Kij |w∗]
∣∣ >√3qN ln

(
4N2

η

)∨
3 ln

(
4N2

η

) ∣∣∣∣w∗
)
≤ η

2N2
.

Using the symmetry of K and the union bound, it follows that the above entry-wise concentration
holds for all i 6= j with probability at least 1 − η

4 . Finally, for q > C 22L

N∆4 ln
(
N
η

)
with C > 0

large enough, it is easy to verify that 1
4qN0∆2 is larger than the deviation obtained using Bernstein’s

inequality. The above argument leads to the claim of Theorem 2.

To verify the claim for fixed L and δ
σ , we note that, in this case, ∆ is constant and N0 = Ω (N).

Hence, using q = c lnN
N for a large enough constant c immediately leads to the exact recovery

guarantee and number of comparisons.

A.4 Analysis of Passive Quadruplets Kernel based Average Linkage (4K–AL)

In the passive setting, we do not have the freedom of querying specific comparisons but have access
to only a pre-computed set of quadruplet comparisons Q ⊂ {(i, j, k, l) : wij > wkl}. Hence, we use
a variant of the kernel in (3), which relies only on passively obtained comparisons.

Kij =

N∑
k,l=1
k<l

N∑
r=1

(
I(i,r,k,l)∈Q − I(k,l,i,r)∈Q

) (
I(j,r,k,l)∈Q − I(k,l,j,r)∈Q

)
. (9)

In principle, the above kernel extends the actively computed kernel (3) by using all
(
N
2

)
pairs of (k, l)

as references in comparison to only one used in (3). However, each term in the sum only contributes

6



when we simultaneously observe the comparisons between (i, r) and (k, l) and between (j, r) and
(k, l).

In the following, we assume that the model for obtaining passive comparisons is the one described in
Section 2.3 of the main paper. For every tuple (i, r, k, l), we assume that with probability p ∈ (0, 1],
there is a comparisonwir ≷ wkl and based on the comparison either (i, r, k, l) ∈ Q or (k, l, i, r) ∈ Q.
We also assume that the observation of the quadruplet comparisons are independent. Based on this
model, we define a set of i.i.d. Bernoullis {ξirkl ∼ Bernoulli(p) : i, r, k, l such that i < r, k <
l, (i, r) < (k, l)}, where we order the indices/ index pairs to avoid repeated counting of the same tuple.
It follows that |Q| =

∑
i,r,k,l

ξirkl, and from Bernstein’s inequality, it follows that |Q| = O
(
pN4

)
with high probability. Using this notation, we may re-write the kernel function in (9) as

Kij =
∑
k<l

∑
r 6=i,j

ξirklξjrkl
(
I(wir>wkl) − I(wir<wkl)

) (
I(wjr>wkl) − I(wjr<wkl)

)
.

We now restate and prove the exact recovery guarantee for average linkage with the aforementioned
kernel.
Theorem 3 (Exact recovery of planted hierarchy by 4K–AL with passive comparisons). Let
η ∈ (0, 1) and ∆ = δ

2σ e
−L2δ2/4σ2

. There exists an absolute constantC > 0 such that ifN0 >
8
∆

√
N

and we set

p > max

{
C

2L

∆2

√
1

N
ln

(
N

η

)
,

2

N4
ln

(
2

η

)}
,

then with probability at least 1−η, the 4K–AL algorithm exactly recovers the planted hierarchy using
at most pN4 quadruplet comparisons, which are passively obtained based on the model described in
Section 2.3 (of the main paper).

In particular, if L = O (1), the above statement implies that even with δ
σ constant, 4K–AL exactly

recovers the planted hierarchy with probability 1− η using O
(
N7/2 lnN

)
passive comparisons.

Proof. The upper bound on the number of comparisons follow by noting that |Q| is a sum of((N2 )
2

)
i.i.d. Bernoullis, and hence, the bound of pN4 holds with probability 1− η

2 for p > 2
N4 ln( 2

η ).

The proof for exact recovery has a similar structure as that of Theorem 2, the only difference being
that the analysis does not depend on a fixed reference pair. In particular, we can write the expected
entries of the kernel matrix in (9) as

E[Kij ] =
∑
k<l

∑
r 6=i,j

p2
(
2P(wir > wkl)− 1

)(
2P(wjr > wkl)− 1

)
=

1

2

∑
k 6=l

∑
r 6=i,j

p2β`lcair −`lcakl β`lcajr −`lcakl ,

where β is defined in (5). As in the proof of Theorem 2, we show that E[Kij ] can take at most
L+ 1 distinct values depending on the level `lcaij . As before, we decompose the above summation
depending on `lcair , `

lca
jr and `lcakl , and also allow a fluctuation of (1± ε) with ε = 8

N0
to take care of

minor effects of ignoring cases such as k = l or r = i, j. We write the expectation in terms of the
clusters as

E[Kij ] =
(1± ε)

2
p2N3

0

2L∑
r,k,l=1

β`lca(i,Gr)−`lca(Gk,Gl)β`lca(j,Gr)−`lca(Gk,Gl)

=
(1± ε)

2
p2N3

0

L∑
s,t,t′=0

βt−sβt′−s×

#{r : `lca(i,Gr) = t, `lca(j,Gr) = t′}#{k, l : `lca(Gk,Gl) = s}

= (1± ε)p2N3
0 2L−1

L∑
s,t,t′=0

(2L−1−s ∨ 1)βt−sβt′−s#{r : `lca(i,Gr) = t, `lca(j,Gr) = t′}

7



The last step holds since every cluster Gl is merged with (2L−1−s ∨ 1) clusters at level-s, and hence,
#{k, l : `lca(Gk,Gl) = s} = 2L(2L−1−s ∨ 1).

We now compute κ` = E[Kij ] where ` = `lcaij . For, ` = L, that is, when i, j belong to the same
cluster, `lca(i,Gr) = `lca(j,Gr) for every cluster. Hence,

κL = (1± ε)p2N3
0 2L−1

L∑
s,t=0

(2L−1−s ∨ 1)(2L−1−t ∨ 1)β2
t−s .

For `lcaij = ` < L, we have three possible cases as mentioned in the proof of Theorem 2: (t = t′ < `);
(t > `, t′ = `); and (t = `, t′ > `). Decomposing the summation based on these cases and noting
that (t > `, t′ = `) and (t = `, t′ > `) lead to similar terms, we have

κ` = (1± ε)p2N3
0 2L−1

L∑
s=0

(2L−1−s ∨ 1)

[
`−1∑
t=0

2L−1−tβ2
t−s + 2

L∑
t=`+1

(2L−1−t ∨ 1)βt−sβ`−s

]
for every ` = 0, 1, . . . , L − 1. We now derive a lower bound on the separation κ`+1 − κ`, which
depends on the observation that |κ`| ≤ 1

2p
2N3 for every `, and a lower bound on

βt+1−s − βt−s ≥ min
r∈[−L,L−1]

βr+1 − βr

= min
r∈[−L,L−1]

√
2

π

(r+1)δ/
√

2σ∫
rδ/
√

2σ

e−z
2/2dz

>
1√
π

δ

σ
e−L

2δ2/4σ2

.

The lower bound is larger than ∆ stated in the theorem. Based on this bound and noting that

2L =
L∑
s=0

(2L−1−s ∨ 1), we obtain

κL − κL−1 > p2N3
0 2L−1

L∑
s=0

(2L−s−1 ∨ 1)(βL−s − βL−1−s)
2 − εp2N3

>
1

2L+1
p2N3∆2 − p2N22L+3,

which is at least 1
2L+2 p

2N3∆2 if N > 22L+5

∆2 , or equivalently, N0 > 4
√

2
∆

√
N . Similarly, for

` < L− 1, we have

κ`+1 − κ` > p2N3
0 2L−1

L∑
s=0

(2L−1−s ∨ 1)

[
2L−1−`β2

`−s − 2L−1−`β`+1−sβ`−s

+ 2

L∑
t=`+2

(2L−1−t ∨ 1)βt−s(β`+1−s − β`−s)
]
− εp2N3

> p2N3
0 2L

L∑
s=0

L∑
t=`+2

(2L−1−s ∨ 1)(2L−1−t ∨ 1)∆2 − p2N22L+3

= p2N3
0 23L−`−2∆2 − p2N22L+3

>
p2N3∆2

2`+2
.

The second step follows by using 2
L∑

t=`+2

(2L−1−t ∨ 1) = 2L−1−` and β`+1−s − β`−s > ∆. The

third step computes the summation, and the fourth holds when N0 >
8
∆

√
N . Thus for every `, we

obtain a minimum separation

κ`+1 − κ` >
1

2L+2
p2N3∆2.
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Following the proof idea of Theorem 2, it only remains to show that the fluctuation of |Kij −E[Kij ]|
is less than half of this minimum separation for all i < j since, under this scenario, one can argue
that entries of K corresponding to different levels of the planted hierarchy are well-separated, and
hence, the planted hierarchy is exactly recovered by average linkage. Thus, to complete the proof, we
derive the following concentration inequality

P

(∣∣Kij −E[Kij ]
∣∣ >√2p2N5 ln

(
2N4

η

)∨
2N2 ln

(
2N4

η

))
≤ η

N2
. (10)

By union bound, it follows that with probability 1− η
2 , the above bound holds for all i < j, whereas

setting p > C 2L

∆2

√
1
N ln

(
N
η

)
for C > 0 large enough ensures that the deviation is smaller than

1
2L+3 p

2N3∆2. To derive (10), we note that Kij −E[Kij ] =
∑
k<l

∑
r 6=i,j

Brkl is a sum of
(
N
2

)
(N − 2)

random variables, where we use Brkl ∈ [−1, 1] to denote each term in the summation. One
can verify that Brkl has zero mean and its variance is smaller that p2. Moreover, each Brkl is
dependant on all (N − 3) random variables, {Br′kl : r′ 6= r}, and all

(
N
2

)
− 1 random variables,

{Brk′l′ : (k′, l′) 6= (k, l)}. Hence, if we draw a dependency graph among these random variable, we
obtain a regular graph with the vertex degree of each node being (N +

(
N
2

)
− 4) < N2. We use

the concentration technique described in Section 2.3.2 of Janson and Ruciński (2002), where the
key observation is that for any graph with maximum degree d, one can find an equitable colouring
with d+ 1 colours, that is a colouring where all colour classes (independent sets) differ in size by at
most one. In the present context, it implies that one can split the set of random variables into at most

N2 subsets, C1, . . . , CN2 such that each subset contains at most (N2 )(N−3)

N2 < N
2 variables that are

mutually independent. Hence, we can apply union bound followed by Bernstein’s inequality to write

P
(∣∣Kij −E[Kij ]

∣∣ > τ
)
≤ P

N2⋃
s=1

∣∣∣∣∣∣
∑

(r,k,l)∈Cs

Brkl

∣∣∣∣∣∣ > τ

N2


≤

N2∑
s=1

P

∣∣∣∣∣∣
∑

(r,k,l)∈Cs

Brkl

∣∣∣∣∣∣ > τ

N2


≤ 2N2 exp

(
−

τ2

N4

p2N + 2
3
τ
N2

)
≤ 2N2 exp

(
− τ2

2p2N5

∨ τ

2N2

)
.

For τ =

√
2p2N5 ln

(
2N4

η

)∨
2N2 ln

(
2N4

η

)
, the probability is smaller than η

N2 , which results in

the conclusion of (10).

To verify the claim for fixed L and δ
σ , we note that in this case, ∆ is constant and N0 = Ω (N).

Hence, using p = c
√

lnN
N for a large enough constant c immediately leads to the exact recovery

guarantee and the number of passive comparisons.

A.5 Analysis of Quadruplets based Average Linkage (4–AL)

The proposed 4–AL algorithms estimates the relative similarity between two pairs of clusters. For
instance, let G1, G2, G3, G4 be four clusters such that G1, G2 are disjoint and so are G3, G4, we
define

WQ (G1, G2‖G3, G4) =
∑
xi∈G1

∑
xj∈G2

∑
xk∈G3

∑
xl∈G4

I(i,j,k,l)∈Q − I(k,l,i,j)∈Q
|G1| |G2| |G3| |G4|

. (11)

Based on our model for passive comparisons, where ξijkl ∼ Bernoulli(p) is the indicator for
observing tuple (i, j, k, l), we may re-write the preference relation in (11) as

WQ (G1, G2‖G3, G4) =
∑
xi∈G1

∑
xj∈G2

∑
xk∈G3

∑
xl∈G4

ξijkl(I(wij>wkl) − I(wij<wkl))
|G1| |G2| |G3| |G4|

.
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Subsequently, we use the above preference relation WQ to define a similarity function W in the
following way. Suppose that we have a disjoint partition G1, . . . , GK of X and that we want to know
which clusters should be merged next. We define the similarity of clusters Gp, Gq , p 6= q, as

W (Gp, Gq) =

K∑
r,s=1,r 6=s

WQ (Gp, Gq‖Gr, Gs)
K(K − 1)

. (12)

The underlying idea is that two clusters Gp and Gq are similar to each other if, on average, the pair is
often preferred over the other possible cluster pairs. The above similarity measure W , in conjunction
with the hierarchical clustering principle (Algorithm 1 in the main paper), results in the proposed
4–AL algorithm. Below, we restate and prove the exact recovery guarantee for 4–AL using passively
obtained quadruplet comparisons.
Theorem 4 (Exact recovery of planted hierarchy by 4–AL with passive comparisons). Let η ∈
(0, 1) and ∆ = δ

2σ e
−L2δ2/4σ2

. Assume the following:
(i) An initial step partitions X into pure clusters of sizes in the range [m, 2m] for some m ≤ 1

2N0.
(ii) Q is a passively obtained set of quadruplet comparisons, where each tuple (i, j, k, l) is observed

independently with probability p >
C

m∆2
max

{
lnN,

1

m
ln

(
1

η

)}
for some constant C > 0.

Then, with probability 1− η, starting from the given initial partition and using |Q| ≤ pN4 number
of passive comparisons, 4–AL exactly recovers the planted hierarchy.

In particular, if L = O (1), the above statement implies that, when δ
σ is a constant, 4–AL exactly

recovers the planted hierarchy with probability 1− η using O
(
N4 lnN
m

)
passive comparisons.

Proof. The bound |Q| < pN4 with probability 1 − η
2 is derived similarly to the bound on |Q| in

Theorem 3. Hence, we only prove the exact recovery guarantee.

We first analyze the algorithm under expectation. Assume that at some stage of the agglomerative
iterations, we have a partitionG1, . . . , GK ofX . Assume that the partition adheres to the ground truth,
that is, either each Gp is a subset of a pure cluster or an union of several pure clusters that corresponds
to one of the nodes in the top L levels of the true hierarchy. Consider p, q, r, s ∈ {1, . . . ,K} such
that p 6= q, r 6= s, `lca(Gp, Gq) = ` and `lca(Gr, Gs) = `′. From the definition of WQ, we have

E[WQ (Gp, Gq‖Gr, Gs)] =
∑
xi∈Gp

∑
xj∈Gq

∑
xk∈Gr

∑
xl∈Gs

p
(
2P(wij > wkl)− 1

)
|Gp| |Gq| |Gr| |Gs|

=
∑
xi∈Gp

∑
xj∈Gq

∑
xk∈Gr

∑
xl∈Gs

pβ`−`′

|Gp| |Gq| |Gr| |Gs|

= pβ`−`′ .

Now, consider p, q, p′, q′ ∈ {1, . . . ,K} such that p 6= q, p′ 6= q′, `lca(Gp, Gq) = ` + 1 and
`lca(Gp′ , Gq′) = ` for some ` ∈ {0, 1, . . . , L−1}. Thus, according to the planted model, one should
merge Gp, Gq before Gp′ , Gq′ . We verify that this is indeed the case under expectation since

E[W (Gp, Gq)]−E[W (Gp′ , Gq′)]

=
1

K(K − 1)

K∑
r,s=1
r 6=s

E[WQ (Gp, Gq‖Gr, Gs)]−E[WQ (Gp′ , Gq′‖Gr, Gs)] .

=
1

K(K − 1)

K∑
r,s=1
r 6=s

pβ`+1−`lca(Gr,Gs) − pβ`−`lca(Gr,Gs)

> p∆,

where the last step follows from arguments used in the proof of Theorem 3, which show that
min

`∈[−L,L−1]
β`+1 − β` > ∆, where β` is defined in (5) and ∆ is in the statement of the theorem.
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Chaining of the above argument shows that E[W (Gp, Gq)] − E[W (Gp′ , Gq′)] > p∆ whenever
`lca(Gp, Gq) > `lca(Gp′ , Gq′). Under the assumptions stated in Theorem 4, we later prove that with
probability 1− η

2 , ∣∣W (G,G′)−E[W (G,G′)]
∣∣ ≤ p∆

2
(13)

for every pair of clusters G,G′ formed during the agglomerative steps of the algorithm starting from
the given pure clusters of size in the range [m, 2m]. Based on (13) and the above argument, it is
evident that W (Gp, Gq) > W (Gp′ , Gq′) whenever `lca(Gp, Gq) > `lca(Gp′ , Gq′) and, in particular,
the cluster pair that achieves the maximum at any stage of iteration must be merged at the earliest
according to the planted hierarchy. This guarantees exact recovery of the planted hierarchy by the
algorithm.

We now prove (13). For this, we first state a concentration inequality that we prove later. Let
G1, G2, G3, G4 be four clusters, each of size in the range [m, 2m], such that G1, G2 are disjoint and
so are G3, G4. Then

P

(
|WQ(G1, G2‖G3, G4)−E[WQ(G1, G2‖G3, G4)]| > p∆

2

)
≤ 2 exp

(
2 lnN − p∆2m2

C ′

)
(14)

for some absolute constant C ′ > 0. We wish to use (14) to argue that with probabil-
ity 1 − η

2 , all clusters in the initial partition (assumed in the theorem) satisfy the condition
|WQ(G1, G2‖G3, G4)−E[WQ(G1, G2‖G3, G4)]| ≤ p∆

2 . Note that we do not know how the
initial partition is achieved, but we can ensure that

P

(
∃G1, G2, G3, G4 : m ≤ |G1|, |G2|, |G3|, |G4| ≤ 2m,

|WQ(G1, G2‖G3, G4)−E[WQ(G1, G2‖G3, G4)]| > p∆

2

)
≤

2m∑
i1,i2,i3,i4=m

(
N

i1

)(
N

i2

)(
N

i3

)(
N

i4

)
2 exp

(
2 lnN − p∆2m2

C ′

)

≤ 2m4

(
eN

m

)8m

exp

(
2 lnN − p∆2m2

C ′

)
.

≤ C ′′ exp

(
9m lnN − p∆2m2

C ′

)
,

where C ′′ > 0 is an absolute constant such that sup
m≥1

2m4( em )2m < C ′′. The above probability is

bounded by η
2 for p >

C

m∆2

(
lnN ∨ 1

m
ln

(
1

η

))
for some constant C > 0. Thus, with probability

1− η
2 , we know that for every tuple of four clusters, obtained at initialization, WQ deviates from its

mean by at most p∆2 . In fact, the same deviation also holds when we merge some of these clusters.
For instance, let G1, G

′
1, G2, G3, G4 be part of a partition at some stage and suppose G1, G

′
1 are

merged. Then

WQ(G1 ∪G′1, G2‖G3, G4) =
|G1|

|G1|+ |G′1|
WQ(G1, G2‖G3, G4)

+
|G′1|

|G1|+ |G′1|
WQ(G′1, G2‖G3, G4),

which is a convex combination of WQ computed at the previous stage. Hence, if each of them
deviates from its mean by at most p∆2 , then the convex combination after merging also deviates
from its mean by at most p∆

2 . The same also holds for other instances of merging throughout
the hierarchy, which shows that with probability 1 − η

2 , at any stage of agglomeration, we have
|WQ(Gp, Gq‖Gr, Gs)−E[WQ(Gp, Gq‖Gr, Gs)]| < p∆

2 for any tuple of four clusters in the parti-
tion. Now, observe that W (Gp, Gq) is an average of several WQ, and so, (13) holds.
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We complete the proof of Theorem 4 by proving the concentration inequality in (14). Sincewij = wkl
occurs with zero probability for any i, j, k, l(i 6= j, k 6= l), we may write

|WQ(G1, G2‖G3, G4)−E[WQ(G1, G2‖G3, G4)]|

=
2

|G1| |G2| |G3| |G4|

∣∣∣∣∣∣
∑
xi∈G1

∑
xj∈G2

∑
xk∈G3

∑
xl∈G4

(
ξijklI(wij>wkl) − pP(wij > wkl)

)∣∣∣∣∣∣ ,
where ξijkl is the indicator of observing the comparison between (i, j) and (k, l). Note that each
term in the summation is a centred random variable in the range [−1, 1], and has variance bounded by
p. Let us denote each of them by Bijkl, and observe that they have dependencies among themselves.
We use the concentration technique of Janson and Ruciński (2002). Consider the dependency graph
for these variables, which is a graph on s = |G1||G2||G3||G4| vertices and two vertices are adjacent
if they are dependent. Some of the vertices have degree |G1||G2| − 1 (dependent with other variables
with same k, l), while other vertices have degree |G3||G4| − 1. Let us denote the maximum degree
by d. One can find an equitable colouring for such a graph using (d+ 1) colours, where equitable
denotes that all colour classes are of nearly equal sizes b s

d+1c or d s
d+1e. Denoting the colour classes

by C1, . . . , Cd+1, we can bound the probability using the union bound and Bernstein’s inequality as

P

(
|WQ(G1, G2‖G3, G4)−E[WQ(G1, G2‖G3, G4)]| > p∆

2

)

= P

∣∣∣∣∣∣
∑
i,j,k,l

Bijkl

∣∣∣∣∣∣ > sp∆

4


≤

d+1∑
`=1

P

∣∣∣∣∣∣
∑

(i,j,k,l)∈C`

Bijkl

∣∣∣∣∣∣ > sp∆

4(d+ 1)


≤

d+1∑
`=1

2 exp

− s2p2∆4

16(d+1)2

2p|C`|+ 2
3

sp∆
4(d+1)

 .

The bound in (14) follows by first noting that |C`| ≤ 2s
d+1 , and then using the fact s

d+1 ≥
min{|G1||G2|, |G3||G4|} ≥ m2. For the outer summation, we simply use (d + 1) ≤ N2 to
obtain the bound in (14).

To verify the claim for fixed L and δ
σ , we note that, in this case, ∆ is constant and N0 = Ω (N).

Hence, using p = c lnN
m for a large enough constant c immediately leads to the exact recovery

guarantee and the number of passive comparisons.

B Details on the experiments

In this section we present some details on the experiments that are not included in the main paper
along with some additional plots and discussions.

B.1 Planted Hierarchical Model

Evaluation function. As a measure of performance we report the Averaged Adjusted Rand Index
(AARI) between the ground truth hierarchy C and the hierarchies C′ learned by the different methods.
Let C` and C′` be the partitions of X at level ` of the hierarchies, then:

AARI (C, C′) =
1

L

∑
`∈{1,...,L}

ARI
(
C`, C′`

)
where ARI is the Adjusted Rand Index (Hubert and Arabie, 1985), a widely used measure to
compare partitions. We use the average across the different levels C` and C′` to take into account the
hierarchical structure. The AARI takes values in the interval [0, 1] and the higher the value the more
similar the hierarchies are. AARI (C, C′) = 1 implies that the two hierarchies are identical. For all
the experiments we report the mean and the standard deviation of 10 repetitions.
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(a) p = 0.01 (b) p = 0.02 (c) p = 0.03

(d) p = 0.04 (e) p = 0.05 (f) p = 0.06

(g) p = 0.07 (h) p = 0.08 (i) p = 0.09

(j) p = 0.1 (k) p = 1

Figure S.1: AARI of the proposed methods (higher is better) on data obtained from the planted
hierarchical model with µ = 0.8, σ = 0.1, L = 3, N0 = 30 and different sampling proportions p.
Best viewed in color.

Results. In Figure S.1 we present supplementary results for the planted hierarchical model, that is
with p ∈ {0.01, 0.02, . . . , 0.1, 1}. Firstly, similar to the theory, SL can hardly recover the planted
hierarchy, even for large values of δσ . CL performs better than SL, which is not evident from the theory.
This suggests that a better sufficient condition might be possible for CL. We observe that 4K–AL,
4K–AL–act, and, 4–AL are able to exactly recover the true hierarchy for smaller signal-to-noise ratio
and their performances do not degrade much when the number of sampled comparisons is reduced.
Finally, as expected, the best methods are 4–AL–I3 and 4–AL–I5. They use large initial clusters but
recover the true hierarchy even for very small values of δ

σ .
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B.2 Standard Clustering Datasets

Data. We provide some details on the datasets used in the paper. We evaluate the different approaches
on 3 different datasets commonly used in hierarchical clustering: Zoo, Glass and 20news (Heller
and Ghahramani, 2005; Vikram and Dasgupta, 2016). The Zoo dataset is composed of 100 animals
with 16 features (it originally contains 101 animals but we chose to remove the ‘girl’ entry since
we feel that it does not fit in a Zoo dataset). The Glass dataset has 9 features for 214 examples.
The 20news dataset is composed of 11314 news articles. Following Vikram and Dasgupta (2016)
we pre-processed the 20news dataset using a bag of words approach followed by PCA to retain
100 relevant features. We randomly sampled 200 examples for hierarchical clustering. To fit the
comparison-based setting we generate the quadruplet comparisons using the cosine similarity:

wij =
〈xi,xj〉
‖xi‖ ‖xi‖

where xi and xj are the representations of objects xi and xj and 〈·, ·〉 is the dot product. Since
it is not realistic to assume that all the comparisons are available, we use the procedure described
in Section 2.3 in the main paper to passively obtain a proportion p ∈ {0.01, 0.02, . . . , 0.1} of all
the quadruplets. Note that tSTE-AL and FORTE-AL are based on ordinal embedding methods that
use triplet comparisons of the form “object i is more similar to object j than to object k”, that is
wij > wik, rather than quadruplet comparisons. Nevertheless, we can use the same procedure than
for the quadruplets to generate the same proportion of triplets that we can use in tSTE and FORTE. To
the best of our knowledge, there does not exist ordinal embedding methods based only on quadruplet
comparisons.

Evaluation function. Contrary to the planted hierarchical model we do not have access to a ground-
truth hierarchy and thus we cannot use the AARI measure to evaluate the performance of the methods.
Instead we use the recently proposed Dasgupta’s cost (Dasgupta, 2016) that has been specifically
designed to evaluate hierarchical clustering methods. Given a base similarity measure w, the cost of
a hierarchy C is

cost(C, w) =
∑

x,xj∈X
wij

∣∣Clca(xi, xj)
∣∣

where wij is the similarity between xi and xj and Clca(xi, xj) is the smallest cluster containing both
xi and xj in the hierarchy. The idea of this cost is that similar objects that are merged higher in
the hierarchy should be penalized. Hence, a lower cost indicates a better hierarchy. A low cost is
achieved if similar objects (high wij) are merged towards the bottom of the tree (small Clca(xi, xj)),
and vice-versa. Hence, a lower value of the cost indicates a better hierarchy. For all the experiments
we report the mean and the standard deviation of 10 repetitions.

Results. In Figures S.2, S.3, and S.4 we present supplementary results for the standard clustering
datasets. We note that the proportion of comparisons does not have a large impact as the results
are, on average, stable across all regimes. Our methods are either comparable or better than the
embedding-based ones. Our methods do not need to first embed the examples and thus do not impose
a strong Euclidean structure on the data. The impact of this structure is more or less pronounced
depending on the dataset. Furthermore, the performance of tSTE-AL and FORTE-AL depends on
the embedding dimension that should be carefully chosen. For example, on Zoo, the performance of
tSTE drops with increasing dimension. Similarly, on Glass, FORTE seems to perform slightly better
for larger dimensions. Unfortunately, in clustering, tuning parameters can be difficult as there is no
ground-truth.

B.3 Comparison-based datasets

The Car dataset (Kleindessner and von Luxburg, 2017) is composed of 60 different type of cars
and 6056 ordinal comparisons, collected via crowd-sourcing, of the form Which car is most central
among the three xi, xj and xk?. These statements translate easily to the triplet setting: if xi is most
central in the set of three then we recover two triplets (j, i, k) and (k, i, j). Then triplet comparisons
further translate into quadruplet comparisons by noticing that the triplet (i, j, k) corresponds to the
quadruplet (i, j, i, k). Overall we obtained 12112 comparisons that we used to learn a hierarchy
among the cars.
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(a) Dimension = 2 (b) Dimension = 3

(c) Dimension = 4 (d) Dimension = 5

Figure S.2: Dasgupta’s score of the different methods on the Zoo dataset with increasing embedding
dimensions for FORTE–AL and tSTE–AL. Best viewed in color.

(a) Dimension = 2 (b) Dimension = 3

(c) Dimension = 4 (d) Dimension = 5

Figure S.3: Dasgupta’s score of the different methods on the Glass dataset with increasing embedding
dimensions for FORTE–AL and tSTE–AL. Best viewed in color.
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(a) Dimension = 2 (b) Dimension = 3

(c) Dimension = 4 (d) Dimension = 5

Figure S.4: Dasgupta’s score of the different methods on the 20news dataset with increasing embed-
ding dimensions for FORTE–AL and tSTE–AL. Best viewed in color.

The hierarchies obtained by 4K–AL, 4–AL, FORTE–AL and tSTE–AL are attached to this sup-
plementary as png files. The names of the files are respectively cars.4K–AL.png, cars.4–AL.png,
cars.FORTE–AL.embedding_dimension.png and cars.tSTE–AL.embedding_dimension.png.
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Janson, S. and Ruciński, A. (2002). The infamous upper tail. Random Structures & Algorithms,
20(3):317–342.

Kleindessner, M. and von Luxburg, U. (2017). Lens depth function and k-relative neighborhood
graph: versatile tools for ordinal data analysis. The Journal of Machine Learning Research,
18(1):1889–1940.

Vikram, S. and Dasgupta, S. (2016). Interactive bayesian hierarchical clustering. In International
Conference on Machine Learning, pages 2081–2090.

16


	The hierarchical model and proofs of the theoretical results
	Notations
	Analysis of Single Linkage (SL) and Complete Linkage (CL)
	Analysis of Active Quadruplets Kernel based Average Linkage (4K–AL)
	Analysis of Passive Quadruplets Kernel based Average Linkage (4K–AL)
	Analysis of Quadruplets based Average Linkage (4–AL)

	Details on the experiments
	Planted Hierarchical Model
	Standard Clustering Datasets
	Comparison-based datasets


