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This document contains the proof of Theorem 4.2, the proof of |“.~-| —— 0 in §5 and some

supplementary numerical simulations.

1 Proof of Theorem 4.2

Definition 1. Let M be a compact manifold endowed with a continuous measure pi. For any z € M,
its (n(7), T)-neighborhood N is the neighbourhood with radius () and measure 7, i.e., u(N') = T,
N = M N Ba(z,n(7)), and n(1) = min{r : u(M N Ba(z,7)) = 7}.

Since M is compact, its measure is finite, say p (M) = A, and the radii of all the 7-neighbourhoods
are bounded by some constant 7:

sup |n;|* < n?.
1

Theorem 2 (Full version of Theorem 4.2). Given the dataset X = [X1,Xo, -, X,], let each
X, be independently drawn from a compact manifold M C RP with intrinsic dimension d and
endowed with the uniform distribution ji. Fix some q > 0, let X;,, j = 1,...,k; be the k; points
falling in the (n;, q)-neighbourhood of X;. Together they form a matrix X0 = [Xips--- s Xy, X
Suppose the i.i.d. projections y; ; = Pry. (Xi, — Xi) where Tx, is the tangent space at X;
obey the same distribution as some a; for all j, i.e., y;; ~ a; (~ means the two vectors are
identically distributed), and the matrix E(a; — Ea;)(a; — Ea;)* has a finite condition number for

each i. In addition, suppose the support of the noise matrix S is uniformly distributed among
all sets of cardinality m;. For any ( € M, let T¢ be the tangent space of M at ¢ and define

p1 = supeeag (1¢). Then as long as qn > clogn, d < p; min{ng/2, p}ui* log™% max{2nq, p},
and ﬁ < 0.4ps (here ¢, p, and ps are positive numerical constants), then with probability over
1 — c1(nmax{ng/2,p} 1% + exp(—canq)) for some constants ¢, and co, the minimizer S to (2)

with \; = M, and 3; = max{k; + 1,p}~'/? has the error bound
D IPi(S) = SDlan < Cy/prk|ela-

Here k = max; k; satisfing nq/2 < k < 2ngq, ¢; = ||)~((i) — X 1T 70 — S(i)HF, €=[e1, .y €nls
|- ||2.1 stands for taking ¢o norm along columns and ¢, norm along the rows, and TV is the projection
of X — X, to the tangent space Tx,.

The proof the Theorem@]uses similar techniques as [3]]. The main difference is that in [3]], both the
left and the right singular vectors of the data matrix are required to satisfy the coherence conditions,
while here we show that only the left singular vectors that corresponding to the tangent spaces are
relevant. In other words, the recovery guarantee is built solely upon assumptions on the intrinsic
properties of the manifold, i.e., the tangent spaces.
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The proof architecture is as follows. In Section 1.1, we derive the error bound in Theorem 4.2 under
a small coherence condition for both the left and the right singular vectors of L(*). In Section 1.2, we
show that the requirement on the right singular vectors can be removed using the i.i.d. assumption on
the samples.

1.1 Deriving the error bound in Theorem 2]under coherence conditions on both the right
and the left singular vectors

In Section 3 of the main paper, we explained that L(¥) = X;17 + T corresponds to the linear
approximation of the ith patch. After the centering C(L()) = C(T*), one gets rid of the first term
and the resulting matrix has a column span coincide with 79, This indicates that the columns of
C(L™) lie in the column space of the tangent space span(T(?), this also indicates that the rows of
L are in span{1T, T("},

One can view the knowledge that 17 is in the row space of L() as a prior knowledge of the left
singular vectors of L"), Robust PCA with prior knowledge is studied in [3], and we will use some of
the result therein. Specifically, we adapt the dual certificate approach in [3]] to our problem to derive
the error bound for our new problem in the theorem, and choose proper A;, i = 1,2,--- ,n and §;
accordingly.

We first state the following assumptions as from [3]:

Assumption A

In each local patch, L() € RP-Fi+1 denote n(1) = max{p, k; + 1}, n() = min{p, k; + 1}, let
CLY) =U; sV,

be the singular value decomposition for each LW where U; € RP*?. %, € RE¥d Ve Rax (k+1),

let V; be the orthonormal basis of span{1,V;}, assume for each i € {1,2,--- ,n}, the following
hold with a constant p, that is small enough

prd

max ||U;e;||> < =, (1)
J P
- d
max || Ve, | < 2%, )
J ki
d
max [ UV [loo < 4 225 3)
J pk;

and p,, ps, p, k; satisfies the following assumptions:
Assumption B([3], Assumption IIL.2.)

() pr < min{107%,C1},

(b) ps < min{l — 1.561(p,), 0.0156},

(¢) ng1y > max{Cs(p,), 1024},

(d)ne@) > 10010g n(1),

()(;D-i-k) >

10.5
log(p+ki) (ps)1/6(1—5.6561)/p

1
(f) 500 log n(1) > P2
where by (p,.), C2(p,) are some constants related to p,..

Denote TI; as the linear space of matrices for each local patch (note that this is different from the
tangent space 1" of the manifold)

I = {U;:X* + YV, X e R Y e RPH}

As shown by [3], the following lemma holds, indicating that if incoherence condition is satisfied, then
with high probability, there exists desirable dual certificate (W, F').



Lemma 3 ([3], Lemma V.8, Lemma V.9). For fixed i = 1,2,--- ,n, if assumptions (1), @), (3),
Assumption B and other assumptions in Theoremhold, then with probability at least 1 — cn(_l) ,

Pa. P, || < 1/4, where ; is the support set of SO, and B < . In addition, there exists a pair
i M1 10
(Wi, F;) obeying

UV 4+ W; = B(sgn(SD) 4+ F; + Pa, D), (4)
with 9 9 )
Vi =Y, i §77 Fl: 5 onogiv 'Di Sf-

PuWs =0, Wil < 15, Pa.Fi =0, |Fille < 15, IPa.Dillr < 5 )

Therefore, by union bound, with probability over 1 — cnn(_lio, for each local patch, there exists a pair
(W;, F;) obeying @) and ().

In Section 9.1.2, we will show that with our assumption that data is independently drawn from a
manifold M C R? with intrinsic dimension d endowed with the uniform distribution, (2)) and (3) are

satisfied with high probability, so we only need Assumption B and (1), which is only related to the
property of tangent space of the manifold itself.

In Lemma(5] we prove that in our setting that each X; is drawn from a manifold M C R? indepen-
dently and uniformly, with high probability, for all s = 1,2, - - - n, k; is some integer within the range
[qn/2, 2qn]. Now we use that to prove Theorem the result is stated in the following lemma.

Lemma 4. [f for all local patch i = 1,2, - ,n, there exists a pair (W;, F;) obeying @) and (),
~ ; ) /
then the minimizer S to (2) with \; = M, and f; = max{k; + 1, p}~/? has the error

bound . . _
S IPi(S) = 8D||a1 < Cyklle]o.

Here ¢; = || X — X;1T — T — SO ||, € = ey, ..., €,] is defined same as Theorem@

Proof. To simplify notation, let’s start with the problem for only one local patch:

min \|X — L — S||% + ||LG||. + B]|S]|:. (6)

Here X € RP*(A+1) where k denotes the number of neighbors in each local patch, G = I — k%rl 117

is the centering matrix, recall that the noisy data X is X = X +S+F = L+R+S+E, |R+E|r =
|| X —L—S||r < e(to be more accurate, ¢; for patch 7), X is the clean data on the manifold, L is first
order Talor approximation of X, R is higher order terms, and E denotes random noise. Also denote

the solution to problem () as L = L + H;, S = S + H,. We choose 3 = \/ﬁT) = {1k+1 T
max N

Since ﬁ, S are the solution to @, the following holds:
A|IX = L= 8| + LG« + BIIS|h
> NIX = (L+ Hy) — (S + Ho)||% + (L + H)Gl« + BIIS + Ha |1
> M|Hy + Hy — (R+ E)||% + || LG||« + (HiG,UV* + W) + B||S||1 + B(Hz, sgn(S) + Fp)
= A|Hi + Ho||% + MR+ E|F — 2MR + E, Hy + Hy) + || LG« + (H1G,UV*) + 5|51
+ B(Hz2, sgn(9)) + [P+ (H1G)||« + B[ Par Hall1.
Here we choose Wy and Fj such that (HlG,WO) = ||Pras (H1G)||«, (H2, Fo) = ||Pq+ Hz||1 same
T

as [1]. Note that LG = UXV*, G = I — 777117 is orthogonal projector, LG1 = 0 implies
V*1 = 0, we have

1
(H\G,UV*) = (H,,UV*G) = (H,,UV*(I — mllT)) = (H.,UV™),

. 1 .
Pu(H1G)=(I-UU"YH,GUI-VV*)=(I-UU*)H,(I— mllT)(I—VV*) = P Hi.
For the second equality we use the fact that 1 lies on the~sgbspace spanned by V, so (I— f/f/*)l = 0.
And for any matrix M, Pp. M = (I —UU*)M(I — VV™).



Denote H = H; + Ho, plug in the equations above, we obtain
MR+ B, H) > M H|[% + (Hy + Hy, UV*) + (Hz, Bsgn(S) = UV*) + |[Pus Hu [« + BIPos Hall
> MH|E = |H|FIIUV|[p + (H2, W = BF — BPaD) + ||Pris Hilx + Bl Por Halx

9 9 B
> AN H|E - aglH|r - E”,PHLHQH* - EBHPQLH2”1 - ZHPQHQIIFJr
P Hill« + Bl Par Hal|1-

In the 3rd inequality we used

9
|(Ho, W)| = [(Ha, Pre W)| = [(Pre Ho, W)| < [P Ha | ||[W]| < T0||PHLH2||*7
9
|(Hy, F)| = |(H2, PoL F)| = [(Par Ha, F)| < [|Por Hal|1||Flee < E||7DQLH2||1=
1
|(Ha, PaD)| < |[(PaH2, PaD)| < Z||7)QH2||F~

Assume ||R + E||p < e foralli=1,2,---  n. Also note that
[PoHs | r < [[PoPuHz|lr + [PoPu Ha | F

IN

1
1N Hzllr + [Pos e

IN

1 1
ZIPatlle + 5 1Pas Halle + P Hallr,
then we have

1 4 1 4
IPatllr < < IPa: Hallr + 511Pas Hallr < < [IPax Hally + 5 [P .

Plug into the previous inequality, also note that for n(;y > 16,8 = \/% < 1, itgives

9 B g
2| Hllr 2 M HE — Ry Hllr ~ (15 T 3P Hell + o5 1Pas Hells + ([P Hil«

3 1 59
> MH|% - yaglH| e+ gollPas Helli + o5 I Puc Hull + o5 (1Prs Hall« = [ Pos Ho|l.)

B 1 59
=MNH|% - yaglH|r+ @HPQLHzlll + @H’PHLHln* + @(HPnLHlH* — [P (—Ha)|l+)

B 1 59

> MNH|: - ralH|r+ @”’PﬂiHé”l + @H’PHLHln* - %||PHL(H1 + Ha)l[«
B 1

> MNH|}: - ralH|r+ @”’PﬂiHé”l + @"PHLH1||* — [[H |

The last inequality is due to

|PucHl. = sup (PuoH,X)= sup (HPruX)<  sup (HPmX)< swp (HX)=|H]..
[IX[2<1 [IX12<1 Pl Xl2<1 [IX[2<1

Note that || H || < ,/fi3)||H|| ., then we obtain
g 1
23| Hllr = M H|F = 2/ | Hllr + 5 Pas Hall + o5 [P Hils.
Rewrite this inequality gives
B 1
gollPas Hall + o5 [P Hille < =M H |7 + 2(y/7) + Ae) | Hl|

Al = (L (84 Ry

< (\/3?-&-\5\6)2.




Recall that in our original optimization problem, we should consider above inequalities for the
summation of all the local patches, denote h; = || H® ||, then

n

Z 51Pos Hyy + o Z 1P HP .

i=1
<Y -NIHD | + 2¢/min{k; + 1L} HO||p + 2\ie | HO | 7
i=1
:Z —\ih? +2y/min{k; + 1,p}h; + 2\eh;
1=1
= i kz 17 )\Z 7 i k’i 13
:Z_)\i(hi ~ /min{k; +1,p} + Aie )2+(\/m1n{ +1,p} + i)
i=1 i VA
< 42 v/min{k; + 1,p}e;,
i=1

/min{k;+1,
min{k;+1,p} , and 61' _ 1 )
€i v/ max{k;+1,p}

Then we have the bound for 37, | P H||, and S, [ Por HS|ly

> Py HV |l < Oyfmin{k,p} Y~ < Oy/min{k. p}v/allel.
i=1 1=1

S PoHY | < C \/m?X max{k;,p} Y v/min{k;, p}e;
1=1 1=1

= C\/mz vmin{k;, p}e;
< C\/max{E,p} min{k, p} Z €

< Cy\/pkv/n|e]2.
(@)

Denote HQ(i) = P;(S) — S, to estimate the error bound of 7" ||H§i) |l2,1, we decompose Hy
into three parts, foreachi =1,2,---n

1HS |7 < |I(I = P )HS | + (P, — Pa, P HS | + | Pa, P, HS |

where we choose \; =

i i 1
< 1Pos B |l + P Hy e + 31 H |,
which leads to

7 4 7 7
185717 < 5(1Pos B e + [ Prs B3 )
= < (1Pos H [y + [Pz HP |1« + [Pre HO| )

1Py H5 1 + Py HL L+ [ H O ).

IN
w\»&w\»&

Next, we need to bound Zz L 1H@ ||, note that \; = Y22 mm{k )]

i=1



which gives
44/min{k + 1,p} Zhi > 42 vmin{k; + 1,p}h; > Z v/min{k; + 1,p} — > /min{k + 1, p} Z -
€ : €i
i=1 i=1 i=1 i=1

by Cauchy inequality

S (S k) (S b
LT e o V!

- min{k + 1,p}
Y e 1 2 < ,

the last inequality is due to % < k& < k < 2nq, which is guaranteed with high probability by Lemma
[l thus

then we obtain

S H e < SO IPay Bl 4 Y [ Prs Byl + > [1HO 1)
=1 =1 =1 =1
4 n . n . n
= 3O 1P HY |+ 3 Py B+ i)
=1 =1 =1

< Cy/pknlle|2.

Now let’s divide H. éi) into columns to get the £2 1 norm error bound, denote (H. g') ); as the jth column

in H 2@), then we can derive the /5 ; norm error bound in Lemma

n n ki+1
Cyfpknllels = S IHM e =D\ | D 1H),
i=1 i=1 \ j=1
n ki
1
2 % >l
=1 j=1
> LSS i), e
\/E¢:1 j=1
Then we obtain
n k;+1
STIPS) = S an =37 ST IHS ) N2 < Cy/prkllellz.
% i=1 j=1

O

Lemma 5. If gn > 9logn, with probability at least 1 — 2 exp(—csqn), 5+ < k; < 2qn, for all

1 =1,2,--- ,n, here c3 is some constants not related to q and n.

Proof. Since each X; is drawn from a manifold M C RP? independently and uniformly, for some
fixed (,, ¢)-neighborhood of X , for each j = {1,2,--- ,n}\{io}, the probability that X falls
into (), , ¢)-neighborhood is ¢. Since {X;};=1 2,...n, k; follows i.i.d binomial distribution B(n, ¢),
we can apply large deviations inequalities to derive an upper and lower bound for k;. By Theorem 1
in [2], we have that foreachi =1,2,--- ,n

P(k; > 2qn) < eXp(_Z(qn(l SJZ))—k qn/S)) < exp(—gqn),
P(k; < %) < eXp(—(q;q/nZ)) = exp(—éqn).



Therefore by Union Bound Theorem

1
P(D < ki < 20, ¥i= 1,2, 0) > 1~ nlexp(~ 2qn) + exp(~ < am))

1
>1-2n exp(—gqn)
1
=1- Qexp(—gqn + logn)

1
>1- 2exp(—ﬁqn).

1.2 Removing (2) and (@) in Assumption A

We will show that under our assumption that points are uniformly drawn from the manifold, (2)
and (B) in Assumption A automatically hold provided (I)) holds, thus they can be removed from the
requirements.

Let us again restrict our attention to an individual patch and for the simplicity of notation, ignore
the superscript ¢ (the treatment for all patches are the same). Recall that C(L) = C(T) = UXV™,

and V is the orthonormal basis of span([1, V]), since 0 = C(T)1 = ULV *1, we have V*1 = 0,

then1 L span(V'), thus we can write one basis for span([1, V]) as [ﬁl, V], which indicates

that in order to remove (2)), we only need to show that with high probability, V' has small coherence.
Also, recall that T() = Pp, (X@ — X;17), since each X; is independent, each column in 7°(*)
is also independent. In addition, each column is in the span of the tangent space with U being an
orthonormal basis. Therefore T' = UA = Ulaq, o, ..., oy, 0], where o, i = 1,2, -+, k is the ith
column of A, which corresponds to the coefficients of the ith column of 7" under U, the last column
is zero vector since it corresponds to X; itself. Since columns of 7" are i.i.d, then «;s are also i.i.d.,
so they all obey the same distribution as a random vector «. We establish the following lemma for
the right singular vectors of 7.

Lemma 6. Let C(T') = UEV™ be the reduced singular vector decomposition of C(T'), assume C =
E((a—Ea)(a—E«a)*) has a finite condition number. Then, with probability at least 1 —2d exp(—ck),
the right singular vector V obeys

* 2 C
2 < Z
max [[V7e " < o,
and with (1) in Assumption A
cd
uv <4 —.
[0Vl </ 5

Proof. As discussed above, C(T) has the following representation
C(T)=TG =Ula,as, - ,ax,0]G,

where U € RP? is an orthonormal basis of the tangent space, and A = [a1, g, ..., ag, 0] € REF+L
is the coefficients of randomly drawn points in a neighbourhood projected to the tangent space.

Since points are randomly drawn from an neighbourhood contained in a ball of radius at most 7, one
can easily verify that ||a;||2 < nforeach j = 1,..., k. Assume T'G and A have the reduced SVD of
the form

TG =UXV*, AG =UpZAVy,

Then T can be written as
TG =UXV* = UUpAEAVY.

It can be verified that null(T'G) is the span of columns in (V4 )€, then we have span(Vy) = span(V),
since both V4 and V' are orthonormal, they are equal up to a rotation, i.e. 3R € R%4, R*R = RR* =
I, such that V = V R. Then
o |12 — K %o |2 — * (|12
max [[V7e; | = max |[RVie;|” = max |[Vie;|



Next we bound the coherence of V. Since Vi = £, 'UXAG, we have

-1 -1
ggjaSXkIIEA UrAGe; || < [[X07 giaSXkIIUXAGejII
==t AGe;
123 gjaéxkll Gej|

< 23 max, [l - a

< 2n| =M.
Recall that
1
AG = [a1, 00, ,a,0](] — ——117
[a1, a2 o, O](1 — 5= 117)
=l —a,a0 — @, - o — @, —al
=Ja; —Ea,ay — Ea, -+ ,ar — Ea,0] — [@ — Ea,a — Eqv, - - - ;& — Ea, ],

where & = 25 S°F |, thus
loa(AG) — oq(lar — Ea,ay — Eay, -+ -, ag — Ev, 0])]

<||[@ —Ea,a —Ea,--- ,& — Ea, @2
<|[@ —Ea,a —Ea,--- ,& — Ea,a — Ea||2 + [|Eal|2
AT s ! @
< ; — E —EF
||k+1;(az o) — 1 allz +n
<l —Ea)l2 +2n

e

Fitst, we want to use Bernstein Matrix Inequality to bound the ¢5-norm in the last inequality. Denote
Bi = ﬁ(%’ —Ea), Z = Zle Bi, then B; is independent, we also have

1
EB; =0, [|Billz £ ——==([laifl2 + [|E
B 1Bill2 W(Ila 2 + [[Eall2) <

which means 3; has mean zero and is uniformly bounded, also
v(Z) = maX{IIE(ZZ*)Hza IIE(Z*Z)II }

—max{||ZIE BiB; Hz,HZE BiBi)ll2}

f

=31 max{||E(a; — Ea)(a; — Ea)T |2, E tr((c; — Ea) (o — Ea)T))}
< max{[|Cl], w(C)}
< dO’l(C)

By assumption, C' has finite condition number, and d < k, by Matrix Bernstein inequality, we are
able to bound the spectral norm of Z

—¢2
P(|Zl|2 > ) < (d+ 1) exp(—————
(121> 0 < @+ Dol o)
Lett = Udic)k,we have
Ok
P(|Z]2 = %)) < dexp(—ck). ®)

Next, equipped with Matrix Bernstein inequality again, we can prove that o4([c; — B, g —
Ea,- - ,ar — Ea,0]) concentrates around o4(C). Note that 02([aq — Ea, a2 — Ear, -+, o —

Ea,0]) = ad(Zz (i — Ea)(a; — Ea)T), we consider

k n
04D (i — Ea)(o; — Ea)") — kaa(C)| < | Z(ai —Ea)(a; — Ea)T — kC||,

i=1



Similar as what we discussed above, let Z; = (a; — Ea)(aj — Ea)? — C, j =1,2,--- k. It can
be verified that Z; is bounded

1Zjllz < lley = Eall3 + 01(C) < 20 + 01(C) = ca.

Since Z; follows i.i.d distribution, we also have v(Z) < kcs for some constant ¢; which represents
the variance of Z;. Applying matrix Bernstein inequality, we obtain

t2

T

)

further, take ¢t = ?’k%‘(c), then with probability over 1 — 2d exp(—cgk) for some constant cg, the
following holds

k n
3k0d(C)
T T
\Jd(;(ai —Ea)(a; —Ea)") — koa(C)| < || ;(ai —Ea)(a; — Ea)" — kCll» < ==,
which leads to

k

o2([a1 — Ea,ay — Ea, - - -, o — Eal) = ad(Z(ai —Ea)(e; — Ea)T) > koz(C),
i=1
thus
od([on — Ea,as — Eay, -+, o — Eal) > ]%%(C). 9)

Combine (7)), (8) and @), we have proved that with probability at least 1 — dexp(—ck), cq(AP) 7
Vk, therefore | S| 3 = —z» Which further gives  Juax [V*e;|? 2

Finally, with (T)) in Assumption A, (3) is also satisfied with the same probability, since

cd
lUV*||loo < max|U~ej|lomax ||[Vierlls < 4] —.
J l pk

Hence (3) in Assumption A can also be removed. O

The above discussion is valid for each patch individually, i.e., with probability at least 1 —
dexp(—ck;) > 1 — dexp(—ck), ) and (3) hold for any fixed ¢ = 1,2,---n. By union bound
inequality, with probability at least 1 — ndexp(—ck), @) and (@) hold for all the local patches.

Note that 1 — ndexp(—ck) = 1 — exp(—ck + logn), here we omit d since it is very small. By
Lemma with probability at least 1 — 2 exp(—ciqn), & < k; < 2ng, foralli = 1,2, ---n. Using
the assumption in Theorem 4.2, gn > c5 logn for some constant ¢, larger enough, we can see that
with probability over 1 — exp(—csk), the requirement (Z) and (3) automatically hold due to i.i.d
assumption on the samples, which enable us to remove these assumptions in Theorem 4.2.

1.3 Proof of the convergence of 2A ask — 00

When £ is large enough, min{k + 1,p} = p, = VP \F = @ then

€

Ai— A
A5

K2




Ni—M\F ok 7*? 2 k
In order to show )”MA’ 2722, 0, it is sufficient to prove that S5 = 2—2 —1 22250, thus

¥ k—oo

—— 0. Notice that

- k— Xi—
& 2% 1, hence ~
k3

IR® + NO|2 — ((k+ 1)po? + z XX b )

i—Xi. 5
(k + 1)po? + Zl Mrz(xi)
j=

k 4
i i 1% =X I3 i i
(IN I~k + 1)po?) + (1RO — 3 T Falpe ) 4 (vO, 709)

< =1 ‘
- ’ kp02
; X=X, 115 =0
: [R5 — Z — T (X) k B pl
Ll (V= 4 | St R,
- kpo? kpo? (k+1)po2 "

Since each entry in N follows ii.d. obeying N(0,02?), <N;”,R§-i)> are also ii.d. with
E((N ]@7 Rg“)) = 0, by law of large numbers, the first and third term approximates 0 when k — oo.

Also, by (12) and (13) in §5, the second term also approximates 0, thus étzf? m 0.

i

2 More numerical simulations

2.1 High dimensional Swiss roll

In the main paper, we demonstrated the superior performance of NRPCA on the 3D Swiss roll under
the mixed noise model. We carried out the same simulation on a high dimension Swiss roll, and
obtained better distinguishability among 1)-3). We also observed an overall improvement of the
performance of NRPCA, which matches our intuition that the assumptions of Theorem 4.2 are more
likely to be satisfied in high dimensions. The denoised results are displayed in Figure[T} where we
clearly see that the neighbour update step effectively reduced more sparse noise, and the use of X
instead of X — S allows a significant amount of Gaussian noise to be removed from the data.

In the high dimensional simulation, we generated a Swiss roll in R2? as following:
1. Choose the number of samples n = 2000;

2. let ¢ be the vector of length n containing the n uniform grid points in the interval [0, 47] with grid
space 47 /(n — 1);

3. Set the first three dimensions of the data the same way as the 3D Swiss roll, fori = 1, ..., n,
Xi(1) = (¢(i) + 1) cos(t(4));

Xi(2) = (t(9) + 1) sin(t(i));
X (3) ~ unif([0, 87]),

where unif([0, 877]) means the uniform distribution on the interval [0, 87].
4. Set the 4-20 dimensions of the data to contain pure sinusoids with various frequencies
Xi(k) =t(@)sin(fxt(i)), k=4,...,20,.

where f;, = k/21 is the frequency for the kth dimension. The noisy data is obtained by adding i.i.d.
Gaussian noise N (0,0.25) to each entry of X and adding sparse noise to 600 randomly chosen
entries where the noise added to each chosen entry obeys A/(5,0.09).

2.2 MNIST

We observe some interesting dimension reduction results of the MNIST dataset with the help of
NRPCA. It is well-known that the handwritten digits 4 and 9 have so high a similarity that some
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Noisy data: X X-9 X — § with one neighbor update
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Figure 1: NRPCA applied to the noisy 20D Swiss roll data set. X — S is the result after subtracting
the estimated sparse noise via NRPCA with T' = 1 “X — S with one neighbor update” is that with
T = 2, i.e., patches are reassigned once; X is the denoised data obtained via fitting the tangent spaces
in NRPCA with T' = 2; “Patch-wise Robust PCA” refers to the ad-hoc application of the vanilla

RPCA to each local patch independently, whose performance is clearly worse than the proposed
joint-recovery formulation.

popular dimension reduction methods, such as Isomap and Laplacian Eigenmaps (LE) are not able
to separate them into two clusters (first column of Figure 2). Despite the similarity, a few other
methods (such as t-SNE) are able to distinguish them to a much higher degree, which suggests the
possibility of improving the results of Isomap and LE with proper data pre-processing. We conjecture
that the overlapping parts in Figure 2] (the left column) are caused by personalized writing styles with
different beginning or finishing strokes. This type of differences can be better modelled by sparse
noise than Gaussian or Poisson noises.
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Figure 2: Laplacian eigenmaps and Isomap results for the original and the NRPCA denoised digits 4
and 9 from the MNIST dataset.

The right column of Figure 2] confirms this conjecture: after the NRPCA denoising (with k = 6),
we see a much better separability of the two digits using the first two coordinates of Isomap and
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Laplacian Eigenmaps. Here we used 2000 randomly drawn images of 4 and 9 from the MNIST
training dataset. Figure 2 in the main paper used another random set of the same cardinally, but they
both demonstrated that the denoising step greatly facilitates the dimensionality reduction.

In addition, we observe some emerging trajectory (or skeleton) patterns in the plot of the denoised
embedding (right column of Figure [2). Mathematically speaking, this is due to the nuclear norm
penalty on the tangent spaces in the optimization formulation that forces the denoised data to have a
small intrinsic dimension. However, since the small intrinsic dimensionality is not manually inputted
but implicitly imposed via an automatic calculation of the data curvature and the weight parameter
i, we do not think the trajectory pattern is a human artifact. To further examine the meaning the
trajectories, we replaced the dots in the bottom two scattered plots in Figure 2] by their original
images of the digits, and obtained Figure [3]and Figure[d] We can see that 1). the digits are better
grouped in the denoised embedding than the orignal one and 2). the trajectories in the denoised
embedding correspond to graduate transitions between the two images on the two ends. If two images
are connected by two trajectories, then it indicates two ways for one image to gradually deform into
the other. Furthermore, Figure [3]listed a few images of 4 and 9 before and after denoising, which
shows which part of the image is detected as sparse noise and changed by NRPCA.

Original Isomap

Figure 3: Isomap embedding using the original data from the MNIST dataset.

Denoised Isomap

Figure 4: Isomap embedding using the Denoised data via NRPCA.
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Figure 5: A comparison of the original and the NRPCA denoised images of digit 4 and 9.

Figure [6] shows the results for NRPCA denoising with more iterations of patch-reassignment, we can
see that the results almost have no visible difference after 7' > 2. Since the patch-reassignment is in
the outer iteration, increasing its frequency greatly increases the computation time. Fortunately, we
find that often times two iterations are enough to deliver a good denoising result.

ised images with T:

Figure 6: NRPCA Denoising results with more iterations of patch-reassignment.
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