
Supplemental Materials for: Re-randomized
Densification for One Permutation Hashing and

Bin-wise Consistent Weighted Sampling

Ping Li
Cognitive Computing Lab

Baidu Research
Bellevue, WA 98004, USA
liping11@baidu.com

Xiaoyun Li∗
Department of Statistics

Rutgers University
Piscataway, NJ 08854, USA
xiaoyun.li@rutgers.edu

Cun-Hui Zhang†
Department of Statistics

Rutgers University
Piscataway, NJ 08854, USA
cunhui@stat.rutgers.edu

A The “Words” Dataset

In this paper, we use the “Words” dataset [4], which consist of 2702 vectors. Each vector is a 216-dim
sparse vector whose entries are the numbers of occurrences of one word in a repository of D = 216

English documents. For example, the word-vector “HONG” represents the vector of occurrences of
word “HONG” in this repository. Note that in Figure 2 of the main paper, we use only the binarized
versions of “HONG” and “KONG”.

Table 1 lists four pairs of word-vectors in our experiments. They are all fairly sparse (especially the
first two pairs). Nevertheless, each vector still has a significant number of nonzero entries. This is
quite typical with data in industrial applications, relatively sparse but with a large number of nonzeros
in the absolute scale.

Table 1: Statistics of the four pairs of word-vectors used in the experiments.

Word 1 (S1) # Word 2 (S2) # Nonzeros in S1 # Nonzeros in S2 Jaccard
HONG KONG 940 948 0.8985
PAIN PATIENT 886 603 0.0629

REVIEW PAPER 3197 1944 0.0502
VISIT DECIDE 4619 954 0.0291

This motivates us to develop efficient algorithms for consistent weighted sampling (CWS). The
processing cost for each vector is O(f̄K), with f̄ being the average number of nonzeros and K being
the number of samples. Even though in general the data are sparse, the value of f̄ can still be large.
Ideally, it would be desirable to reduce the cost from O(fK) to just O(f̄). Also, note that since we
only have to touch each nonzero at least once, this cost O(f̄) is minimal and cannot be avoided.

In this paper, we develop Bin-wise consistent weighted sampling (BCWS) with four variants; and we
recommend BCWS-DenRe. The processing cost for each vector is essentially O(f̄) and we have
developed the theory to show that the estimates are within a small neighborhood of the true Jaccard
similarity. Nevertheless, we would like to present the empirical mean square error (MSE) results to
verify that the estimates by BCWS do not deviate much from the truth.

We have conducted a large number of simulations for estimating the Jaccard similarity between
two vectors. The patterns are essentially similar and hence we only present the results for four
word-vector-pairs, in Figure 1 (which are the enlarged versions of Figure 3 in the main paper). We
∗The work of Xiaoyun Li was conducted during the internship at Baidu Research.
†The work of Cun-Hui Zhang was conducted as a consulting researcher at Baidu Research.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

can see that for reasonably large K values, BCWS (especially DenRe) methods provide accurate
estimates compared to the original CWS method. When the number of samples M is larger than the
number of bins K, the errors start to be larger than the error of the original CWS. Nevertheless, there
is no disastrous effect, especially for DenRe (whose errors continue to decrease even with M > K).

10
0

10
1

10
2

10
3

Sample Size (M)

10
-4

10
-3

10
-2

10
-1

M
S

E

HONG - KONG

Real: K = 512

CWS

Rs

RsRe

Den

DenRe

256 512 1024

Sample Size (M)

10
-4

10
-3

M
S

E

HONG-KONG

Real: K=512

CWS

Rs

RsRe

Den

DenRe

10
0

10
1

10
2

10
3

Sample Size (M)

10
-4

10
-3

10
-2

10
-1

M
S

E

PAIN - PATIENT

Real: K = 512

CWS

RsRe

RsRe

Den

DenRe

256 512 1024

Sample Size (M)

10
-4

M
S

E

10
-4

PAIN-PATIENT

Real: K=512

CWS

Rs

RsRe

Den

DenRe

10
0

10
1

10
2

10
3

Sample Size (M)

10
-5

10
-4

10
-3

10
-2

10
-1

M
S

E

REVIEW - PAPER

Real: K = 2048

CWS

Rs

RsRe

Den

DenRe

1024 2048 4096

Sample Size (M)

10
-5

10
-4

M
S

E

REVIEW-PAPER

Real: K=2048

CWS

Rs

RsRe

Den

DenRe

10
0

10
1

10
2

10
3

Sample Size (M)

10
-5

10
-4

10
-3

10
-2

10
-1

M
S

E

VISIT - DECIDE

Real: K = 2048

CWS

Rs

RsRe

Den

DenRe

1024 2048 4096

Sample Size (M)

10
-5

M
S

E

10
-5

VISIT-DECIDE

Real: K=2048

CWS

Rs

RsRe

Den

DenRe

Figure 1: Empirical MSEs of four schemes for estimating Jaccard similarity on weighted datasets.
The right panels are zoomed-in versions of the left panels.

2

B Double-CWS: An Alternative to BCWS

In retrospect, BCWS-DenRe appears to be a natural idea. Nevertheless, it has taken us quite a journey
to eventually obtain this method in the current form.

We would like to comment on a variant of BCWS, which is the initial attempt of this project. As
mentioned in the main text, for weighted data, different bins contain different amount of information
in nature. Therefore, we tried to select bins according to their importance, in some sense “proportional”
to the each bin weight which is the summation of all elements in the bin. Following this direction,
an extra CWS sampling has to be implemented on the bin weights for bin selection. This procedure
called “double-CWS” creates a densification scheme in nature, and can better handle extreme cases
where bin information is highly unbalanced, e.g., data contains large outliers. However, although
double-CWS addresses more on bins with large weight, theoretical analysis shows that this procedure
tends to scale down the estimates and introduce more bias. Therefore, in general cases, double-CWS
is not as good as BCWS. We provide some experimental results in Figure 2 for double-CWS approach.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sample Size (M)

M
S

E

HONG − KONG

Real: K = 256

Double−CWS
BCWS−DeRe
CWS

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sample Size (M)

M
S

E

HONG − KONG

Real: K = 512

Double−CWS
BCWS−DeRe
CWS

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sample Size (M)

M
S

E

PAIN − PATIENT

Real: K = 256

Double−CWS
BCWS−DeRe
CWS

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

Sample Size (M)

M
S

E

PAIN − PATIENT

Real: K = 512

Double−CWS
BCWS−DeRe
CWS

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

Sample Size (M)

M
S

E

REVIEW − PAPER

Real: K = 1024

Double−CWS
BCWS−DeRe
CWS

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

Sample Size (M)

M
S

E

REVIEW − PAPER

Real: K = 2048

Double−CWS
BCWS−DeRe
CWS

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

Sample Size (M)

M
S

E

VISIT − DECIDE

Real: K = 1024

Double−CWS
BCWS−DeRe
CWS

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

Sample Size (M)

M
S

E

VISIT − DECIDE

Real: K = 2048

Double−CWS
BCWS−DeRe
CWS

Figure 2: Empirical MSEs of four schemes for estimating Jaccard similarity on weighted datasets.

3

C Detailed Implementation of the R-G Algorithm

Figure 3: Illustration of the R-G algorithm in [7]. The green region represents the data entries, and
green+red region is the cumulative upper bounds.

In this section we provide more detailed description and analysis of the R-G algorithm, which can be
traced to [3, 2] and is developed into the current form due to the effort of [7]. R-G is based on a simple
and elegant idea. For a (non-negative) dataset X ∈ Rn×D, R-G method requires predetermined
column-wise upper bound mi, i = 1, ..., D, for example, mi = maxX(:,i), but it can also be set to a
larger number to accommodate (e.g.,) future data points. We denote m̃j =

∑j
i=1mi. For a sample

to generate one hash value, in each iteration, the algorithm has two steps:

1. randomly sample a point uniformly on [0, m̃D].
2. check if this point falls in green region.

For the first step, one will need to generate and store a large number of random values a priori so the
time is ideally negligible. In order to reduce the running time of the second step to O(1), [7] proposes
to build a hash map (Algorithm 1) that allows fast search by producing lookup tables. This procedure
typically requires mi’s to be integers. Therefore, the column-wise maximal value is set to dmie. Note
that if the data are far away from the integer ceilings, e.g., all at the order of 0.01 (green region),
then the algorithm would be very slow, since the red region in this case is large (approximately
1-0.01=0.99). This disadvantage can be ameliorated by re-scaling (e.g., by a factor of 10 or 100).

Algorithm 1: Compute Hash Map
Input: m̃i, i = 1, ..., D.
Initialize : index=0,

CompToM[0]=0
1 for i = 0 to D − 1 do
2 if i < D − 1 then
3 CompToM[i+1]=m̃i+CompToM[i]
4 for j = 0 to m̃i-1 do
5 IntToComp[index]=i;
6 index++

Output: CompToM[],IntToComp[]

The R-G method is an elegant idea. Nevertheless,
it exhibits drawbacks which motivate us to develop
more efficient algorithms for practical applications.

Firstly, one needs to know the upper bound on each
coordinate of the data matrix, which may not be rea-
sonable in some applications. As more and more
data points are collected, some values may exceed
the maximum set a priori. Therefore, for safety one
may have to set a largemi, which would substantially
slow down the algorithm.

Secondly, to make R-G work efficiently, one will
often have to scale the data with a proper scaling
factor. This can also be problematic. For example,
the coordinates may not be on same scale. One can
choose to scale up largely, e.g. 1,000∼10,000, but
this may at the same time lead to a huge hash table.

Lastly, as discussed in the paper [7], the algorithm performs poorly on sparse datasets. However,
sparse data are very common in large scale applications, such as text data, web pages, social network
and etc.. As a comparison, our proposed BCWS approach is flexible, and can do well in almost all
cases provided a suitably chosen number of bins K. For example, even with dense data, BCWS
improves the speed of the original CWS by a factor K.

We re-iterate that the cost of BCWS is essentially O(f̄) for processing one vector, where f̄ is the
average number of nonzeros. Since one will anyway have to touch each data entry once, this cost
O(f̄) is actually minimal and cannot be avoided even for R-G algorithm. In the main paper, we
comment that the ratio of computing times is O

(
1
sf̄

)
(the time of R-G over the time of BCWS). This

ratio can be more preciously written as 1 +O
(

1
sf̄

)
in the case of dense data.

4

D Proofs of Theorems

D.1 Proof of Lemma 1

Proof. Without conditioning on m. Recall the notation d = D
K , and f̃ =

∑
i∈IB max(Si, Ti) the

number of nonzeros in a bin B. To compute the explicit expression of E0, we notice that the number
of simultaneously nonzero elements in a bin is given by a hyper-geometric distribution. We have

P (f̃ = j) =

(
f
j

)(
D−f
d−j

)(
D
d

) , max(0, d+ f −D) ≤ j ≤ min(d, f).

We want to compute the expectation conditional on f̃ ≥ 1. Note that when d+ f −D ≥ 1, we have
P (f̃ = 0) = 0. Hence the conditional expectation is simply the unconditional one,

E0 = E[
1

f̃
|f̃ ≥ 1] =

∑min(d,f)
j=max(0,d+f−D)

1
j

(
f
j

)(
D−f
d−j

)(
D
d

) . (1)

When d+ f −D ≤ 0, we have

E0 = E[
1

f̃
|f̃ ≥ 1] =

∑min(d,f)
j=1

1
j

(
f
j

)(
D−f
d−j

)(
D
d

)
(1− P (f̃ = 0))

=

∑min(d,f)
j=1

1
j

(
f
j

)(
D−f
d−j

)
(
D
d

)
(1− (D−f

d)
(D
d)

)

=

∑min(d,f)
j=1

1
j

(
f
j

)(
D−f
d−j

)(
D
d

)
−
(
D−f
d

) . (2)

Putting (1) and (2) together gives the result.

Conditional probability. To compute Ẽ0(m), it suffices to derive the probability mass function
P[f̃ = j|Iemp,k = 0,m], given m non-empty bins. The problem can be formulated as a classical
probability model. Consider placing f balls into K bins each with d available positions, without
replacement. In our application, since the randomness is brought by permutation and the capacity of
each bin is limited, the probability of each ball being placed at each position, instead of in each bin,
is uniform. We want to compute the probability distribution of the number of balls in a bin, given that
it is one of the m non-empty bins, which is known in priori. Given this condition, we may restrict the
analysis in the m non-empty bins which contain all f balls.

First, we calculate the total number of ways to place the balls, such that all m bins are non-empty.
Denote S(k, n|d) as the number of ways for placing n balls into k non-empty bins. It is easy to infer
the recursion

S(k, n|d) =

min{d,n−k+1}∑
j=max{1,n−(k−1)d}

(
d

j

)
S(k − 1, n− j|d),

with boundary condition

S(1, n|d) =

(
d

n

)
.

For our problem, the number of assignments is thus given by S(m, f |s).

Given a bin B, the number of ways to put j balls in B and the rest in the other (m− 1) bins such that
all bins are non-empty is simply (

d

j

)
S(m− 1, f − j|d).

Therefore, we obtain for max{1, f − (m− 1)d} ≤ j ≤ min{d, f −m+ 1},

P [f̃ = j|Iemp,k = 0,m] =

(
d
j

)
S(m− 1, f − j|d)

S(m, f |s)
,

5

and P [f̃ = j|Iemp,k = 0,m] = 0 otherwise. Therefore, we finally derive

Ẽ0(m) , E[
1

f̃
|Iemp,k = 0,m] =

d∑
j=1

1

j
P[f̃ = j|Iemp,k = 0,m]

=

min{d,f−m+1}∑
j=max{1,f−(m−1)d}

1

j

(
d
j

)
S(m− 1, f − j|d)

S(m, f |s)
.

This completes the proof.

D.2 Proof of Theorem 1

Proof. To proceed with the analysis, first we separate the event of matching hashes into two distinct
events. Denote CEk the indicator of hash collision at bin k when k is empty, and CNk the indicator of
collision when k is simultaneously non-empty. Consequently we can write

Ck = CNk + CEk .

Recall that Iemp,i is the indicator function of the k-th bin being empty. According to [5], we have

E(CNk |Iemp,i = 0) = E(CEk |Iemp,i = 0) = J,

and also
E[(CNk)2|Iemp,i = 0] = E[(CEk)2|Iemp,i = 0] = J.

Based on above notations, for all schemes we can write

Ĵ =
1

M

M∑
i=1

(CEi + CNi).

Note that here M not necessarily equals to K. As all schemes provide unbiased estimator, we can
compute

V ar(Ĵ) = E[
1

M2
(

M∑
i=1

(CEi + CNi))2]− J2 ,
1

M2
A− J2. (3)

It suffices to analyze A. Conditional on the event that the number of non-empty bins K−NK
emp = m,

we have

A = E[E[(

M∑
i=1

(CEi + CNi))2|K −NK
emp = m]]

For simplicity we will use m to denote the event K −NK
emp = m.

Rs method. Recalling the procedure of this method, first we split the set into K bins, and then
apply min-hashing for each non-empty bin. We can think these hash values as a fixed table, and we
randomly select M hash values from the table. As the permutation and selection are all perfectly
random, every selected item should share same property. Hence,

A = E[E[(

M∑
i=1

(CEi + CNi))2|m]]

= E[E[

M∑
i=1

[(CEi)2 + (CNi)2] +
∑
i 6=j

CEi C
E
j + 2

∑
i 6=j

CEi C
N
j +

∑
i 6=j

CNi C
N
j |m]]

= E[E[

M∑
i=1

(CEi)2 +
∑
i 6=j

CEi C
E
j |m]] (4)

= E[MJ +M(M − 1)E1],

where E1 = E[1
mJ + (1 − 1

m)JJ̃]. (4) is because we are treating all bins as empty, so the terms
involving CN should all be zero. E1 comes from the fact that if two empty bins i and j choose the

6

same non-empty bin (with probability 1
m), then E[CEi C

E
j |m] = J . If two distinct bins are chosen,

then E[CEi C
E
j |m] = JJ̃ . Replacing m = K −NK

emp yields

V arRs(M) =
J

M
+
M − 1

M
E1 − J2.

RsRe method. Let B be a non-empty bin, and h1 = (hS1 (B), hT1 (B)) is a pair of hash values
generated for sets S and T . Let h2 = (hS2 (B) and hT2 (B)) be another pair of hashes generated
independently from the same B. By the property of one permutation hashing and independence
among different hash samples, the collision probability within a non-empty bin is unbiased in the
sense that

P (hS1 (B) = hT1 (B)|Iemp,B 6= 0) = P (hS2 (B) = hT2 (B)|Iemp,B 6= 0) = J. (5)

Denote the left-hand side of (5) as Pr(Ω). Consider two permutations on π1 and π2 on D =
{1, ..., D}. Denote m1 = min(π1) and m2 = min(π2). We have

P (Ω|Iemp,B 6= 0) = P (Ω|Iemp,B 6= 0,m1 = m2)P (m1 = m2|Iemp,B 6= 0)

+P (Ω|Iemp,B 6= 0,m1 6= m2)P (m1 6= m2|Iemp,B 6= 0).
(6)

This expression helps us to gain some insight on the randomness brought by re-randomization. If
two permutations π1 and π2 happen to give same minimum index, i.e min(π1) = min(π2) = i for
some index i, then actually two pairs of hashes h1 and h2 only contains the information of one pair
of samples (Si, Ti). We can understand this argument as forcing h1 and h2 to be equal. Hence,

P (Ω|Iemp,B 6= 0,m1 = m2) = J. (7)

Similarly, if min(π1) 6= min(π2), h1 and h2 will contain two pieces of information. Precisely, we
have

P (Ω|Iemp,B 6= 0,m1 6= m2) = JJ̃. (8)
Moreover, since the permutations are perfectly random, the probability of min(π1) = min(π2) = i
will depend on the number of simultaneously nonzero elements in bin B. We have, given the number
of non-empty bins m,

P (m1 = m2|Iemp,B 6= 0,m) = E[
1

f̃
|Iemp,B 6= 0,m], (9)

where f̃ =
∑
i∈Bmax(Si, Ti). From above analysis, we have for ∀i 6= j,

E[CEi C
E
j |m] = P[CEi = CEj = 1|m]

=
1

m
P[CEi = CEj = 1|σ(i) = σ(j),m] +

m− 1

m
P[CEi = CEj = 1|σ(i) 6= σ(j),m]

=
1

m
P[hv1(Bk) = hw1 (Bk), hv2(Bk) = hw2 (Bk)|Iemp,k = 0,m] +

m− 1

m
JJ̃

=
1

m

[
JE[

1

f̃
|Iemp,k = 0,m] + JJ̃(1−E[

1

f̃
|Iemp,k = 0,m])

]
+
m− 1

m
JJ̃

=
1

m

[
JẼ0(m) + JJ̃(1− Ẽ0(m))

]
+
m− 1

m
JJ̃,

where E0(m) is defined in Lemma 1. Taking expectation w.r.t. m, we get

E[E[
∑
i6=j

CEi C
E
j |m]] = M(M − 1)E2,

with

E2 = E[
Ẽ0(m)J + (1− Ẽ0(m))JJ̃

m
+
m− 1

m
JJ̃] = E[

Ẽ0(m)

m
J + (1− Ẽ0(m)

m
)JJ̃].

Replacing m by (K −NK
emp) in (3) gives

V arRsRe(M) =
J

M
+
M − 1

M
E2 − J2.

7

Den method. When M ≤ K, we have

A = E[E[(

M∑
i=1

(CEi + CNi))2|m]]

= E[E[

M∑
i=1

[(CEi)2 + (CNi)2] +
∑
i 6=j

CEi C
E
j + 2

∑
i 6=j

CEi C
N
j +

∑
i 6=j

CNi C
N
j |m]]

= E[MJ +NM
emp(N

M
emp − 1)E1 + 2NM

emp(M −NM
emp)E1

+(M −NM
emp)(M −NM

emp − 1)JJ̃]

= E[MJ +NM
emp(2M −NM

emp − 1)]E1 (10)

+ (M −NM
emp)(M −NM

emp − 1)JJ̃].

Combining with (3) yields

V arDen(M) =
J

M
+

1

M2
E[(M −NM

emp)(M −NM
emp − 1)JJ̃]

+
1

M2
E[NM

emp(2M −NM
emp − 1)]E1 − J2.

(11)

When M > K, the first K bins are the K bins from original split, and last (M −K) bins can be
regarded as extra empty bins. Denote HE

i the indicator of event that matching hash values occur at
bin i, with i > K. We modify (3) to

V arDen(Ĵ) = E[
1

M2
((

K∑
i=1

CEi + CNi) +

M∑
i=K+1

HE
i)2]− J2 ,

1

M2
A+ − J2, (12)

and

A+ = (

K∑
i=1

(CEi + CNi))2 + 2(

K∑
i=1

(CEi + CNi)) ·
M∑

i=K+1

HE
i + (

M∑
i=K+1

HE
i)2. (13)

For the first part of A+, we have

E[(

K∑
i=1

(CEi + CNi))2] = E[[(

K∑
i=1

(CEi + CNi))2|m]] = K2(VDen(K) + J2). (14)

In addition,

E[[

K∑
i=1

CEk ·
M∑

i=K+1

HE
i |m]] = NK

emp(M −K)[
1

m
J + (1− 1

m
)JJ̃]

= NK
emp(M −K)E1, (15)

E[[

K∑
i=1

CNi ·
M∑

j=K+1

HE
j |m]] = (K −NK

emp)(M −K)[
1

m
J + (1− 1

m
)JJ̃]

= (K −NK
emp)(M −K)E1, (16)

E[[(

M∑
i=K+1

HE
i)2] = (M −K)(M −K − 1)[

1

m
J + (1− 1

m
)JJ̃] + (M −K)J

= (M −K − 1)(M −K)E1 + (M −K)J. (17)

Combining (11)-(17) together we obtain for M > K,

VDen(M) =
1

M2
[K2(VDen(K) + J2) + (M −K)(M +K − 1)E1 + (M −K)J]− J2.

DenRe method. The proof procedures for Den scheme also hold in this case. We just need to replace
E1 to E2 and everything else will follow.

8

D.3 Proof of Theorem 2

Proof. Suppose D is a multiplier of K and D cells are divided into K bins of equal size. Suppose f
out of the D cells are assigned value 1 and rest value 0. Let Iemp,i be the indicator that all cells in the
i-th bin are assigned 0. Due to the exchangeability of Iemp,i,

P

{ M∑
i=1

Iemp,i = j

}
=

(
M

j

)[(j∏
i=1

Iemp,i

){ M∏
i=j+1

(
1− Iemp,i

)}]

=

(
M

j

)[(j∏
i=1

Iemp,i

){
1 +

M−j∑
`=1

(−1)`
(
M − j
`

) j+∏̀
i=j+1

Iemp,i

}]

=

M−j∑
`=0

(−1)`
(
M

j

)(
−j
`

)(j+∏̀
i=1

Iemp,i

)
.

This is due to the generalized inclusion-exclusion formula. Thus, for M ≤ K,

P

{ M∑
i=1

Iemp,i = j

}
=

M−j∑
`=0

(−1)`
(
M

j

)(
M − j
`

)(
D(1− (j + `)/K)

f

)/(
D

f

)
.

D.4 Proof of Theorem 4

The following lemma [1, 6] is useful for the analysis.

Lemma 2. Let {a1, ..., an} be a finite population with ā =
∑n

i=1 ai
n and σ2 =

∑n
i=1(ai−ā)2

n . Let A

be a random subset of {1, ..., n} of deterministic size |A| = nA. Define āA =
∑

i∈A ai
n and pA = nA

n .
Then we have for all t > 0,

P{nA(āA − ā) > (1 + ε0)σnt} ≤ e−nt
2

, (18)

where ε0 ≤ min{ 1
70 ,

9p2A
70 ,

9(1−pA)2

70 }. When n
nA

is an integer, we have ε0 = 0.

Proof of Theorem 4.

Proof. Let Ik be the collection of elements in bin k. First we notice that

E[ĴBCWS(π)] =
1

K

K∑
k=1

Jk(π),

where Jk(π) =
∑

i∈Ik
Si∧Ti∑

i∈Ik
Si∨Ti

is the Jaccard similarity in the k-th bin. Note that all the bins are

non-empty under DenRe scheme. By Lemma 2, we have

P{|
∑
i∈Ik

Si
|Ik|
− µ1| ≥

Dσ1

|Ik|

√
t

D
} ≤ 2e−t,

P{|
∑
i∈Ik

Ti
|Ik|
− µ2| ≥

Dσ2

|Ik|

√
t

D
} ≤ 2e−t,

P{|
∑
i∈Ik

Si ∨ Ti
|Ik|

− µ3| ≥
Dσ3

|Ik|

√
t

D
} ≤ 2e−t.

9

The ε0 term is gone because D
|Ik| = K is an integer. Denote the event Θ = {|

∑
i∈Ik

Si

|Ik| − µ1| ≥
Dσ1

|Ik|

√
t
D}. Now we have

P{Θ|Iemp,k} =
P{Θ, Iemp,k = 0}
P [Iemp,k = 0]

=
1

P [Iemp,k = 0]
{P (Θ)− P (Θ|Iemp,k = 1)P [Iemp,k = 1]}

≤ 2e−t

P [Iemp,k = 0]
− P [Iemp,k = 1]

P [Iemp,k = 0]

=
2e−t

p1
− p0

p1
,

where p0 = P [Iemp,k = 1] =
(
D−f
D/K

)
/
(
D

D/K

)
and p1 = 1 − p0. The second line is because

conditional on Iemp,k = 1 (bin k is empty), by assumption we have

P [Θ] = P [µ1 ≥ Kσ1

√
t

D
] = P [K ≤ µ1

σ1

√
D

t
] = 1.

Similar arguments hold for T and S ∨ T . Using union bound, with probability at least 1− 6K
p1
e−t +

3p0K
p1

, we have for ∀k,
|
∑
i∈Ik

Si

|Ik|µ1
− 1| ≤ K σ1

µ1

√
t
D , Kδ1(t),

|
∑
i∈Ik

Ti

|Ik|µ2
− 1| ≤ K σ2

µ2

√
t
D , Kδ2(t),

|
∑
i∈Ik

Si∨Ti

|Ik|µ3
− 1| ≤ K σ3

µ3

√
t
D , Kδ3(t).

(19)

Note that
∑
i∈A Si∧Ti =

∑
i∈A Si+

∑
i∈A Ti−

∑
i∈A Si∨Ti always holds for anyA ⊆ {1, ..., D}.

Hence we have
J =

µ1 + µ2

µ3
− 1 (20)

Therefore, with probability at least 1− 6K
p1
e−t + 3p0K

p1
, we have

E[ĴBCWS(π)] =
1

K

K∑
i=1

Jk(π) =
1

K

K∑
i=1

∑
i∈Ik Si +

∑
i∈Ik Ti∑

i∈Ik Si ∧ Ti
− 1 (21)

≥ |Ik|µ1(1−Kδ1(t)) + |Ik|µ2(1−Kδ2(t))

|Ik|µ3(1 +Kδ3(t))
− 1,

≥ (µ1 + µ2) mini=1,2(1−Kδi(t))
µ3(1 +Kδ3(t))

− 1,

= (J + 1)
1−K(δ1 ∨ δ2)

1 +Kδ3
− 1,

=
1−K(δ1(t) ∨ δ2(t))

1 +Kδ3(t)
J − K(δ3(t) + (δ1(t) ∨ δ2(t)))

1 +Kδ3(t)
. (22)

Using similar argument, we also have

E[ĴBCWS(π)] ≤ |Ik|µ1(1 +Kδ1(t)) + |Ik|µ2(1 +Kδ2(t))

|Ik|µ3(1−Kδ3(t))
− 1,

≤ (µ1 + µ2) maxi=1,2(1 +Kδi(t))

µ3(1−Kδ3(t))
− 1,

= (J + 1)
1 +K(δ1 ∨ δ2)

1−Kδ3
− 1,

=
1 +K(δ1(t) ∨ δ2(t))

1−Kδ3(t)
J +

K(δ3(t) + (δ1(t) ∨ δ2(t)))

1−Kδ3(t)
. (23)

Combining (22) and (23) completes the proof.

10

References
[1] Adam Bloniarz, Hanzhong Liu, Cun-Hui Zhang, Jasjeet S Sekhon, and Bin Yu. Lasso adjustments

of treatment effect estimates in randomized experiments. Proceedings of the National Academy
of Sciences, 113(27):7383–7390, 2016.

[2] Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
on 34th Annual ACM Symposium on Theory of Computing (STOC), pages 380–388, Montreal,
Canada, 2002.

[3] Jon Kleinberg and Eva Tardos. Approximation algorithms for classification problems with
pairwise relationships: Metric labeling and Markov random fields. In 40th Annual Symposium
on Foundations of Computer Science (FOCS), pages 14–23, New York, NY, 1999.

[4] Ping Li and Kenneth W. Church. Using sketches to estimate associations. In Proceedings of
the 2005 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
708–715, Vancouver, Canada, 2005.

[5] Ping Li, Art B Owen, and Cun-Hui Zhang. One permutation hashing. In Advances in Neural
Information Processing Systems (NIPS), pages 3122–3130, Lake Tahoe, NV, 2012.

[6] Pascal Massart. Geometrical and Statistical Aspects of Probability in Banach Spaces. Springer,
1986.

[7] Anshumali Shrivastava. Simple and efficient weighted minwise hashing. In Neural Information
Processing Systems (NIPS), pages 1498–1506, Barcelona, Spain, 2016.

11

	The ``Words'' Dataset
	Double-CWS: An Alternative to BCWS
	Detailed Implementation of the R-G Algorithm
	Proofs of Theorems
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 4

