
Supplemental Material for:392

Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving393

expressivity with transient dynamics394

A Task setup and training details395

All code freely available at https://github.com/nnRNN/nnRNN_release.396

A.1 Copy task397

For the copy task, networks are presented with an input sequence xt of length 10 + Tc. For398

t = 1, . . . , 10, xt can take one of 8 distinct values {ai}8i=1. For the following Tc � 1 time steps, xt399

takes the same value a9. At t = Tc, a cue symbol xt = a10 prompts the model to recall the first 10400

symbols and output them sequentially in the same order they were presented. Models are trained to401

minimize the average cross entropy loss of symbol recalls. A model that simply predicts a constant402

set of output tokens for every input sequence would achieve a baseline loss of 10 log(8)
T+20 . All models403

were trained using a mini batch size of 10. All non-gated models except "RNN" were initialized such404

that the recurrent network was orthogonal. The non-normal RNN had it’s orthogonal weight matrix405

initialized as in expRNN with the log weights initialized using Henaff intialization. Importantly, all406

non-gated models used the modReLU activation function for state-to-state transitions. This is critical407

for the copy task since a nonlinearity makes the task very difficult to solve [VTKP17a] and modReLU408

acts as identity at initialization. Fig. 4 (left) shows cross entropy loss for all models throughout409

training when the number of parameters is held constant. Model and training hyperparameters are410

summarized in Table 2.411

Model hid LR LR orth ↵ � T decay V init
nnRNN 128 0.0005 10�6 0.99 0.0001 10�6 Henaff
expRNN 128 0.001 0.0001 0.99 Henaff
expRNN 176 0.001 0.0001 0.99 Henaff
LSTM 128 0.0005 0.99 Glorot Normal
LSTM 63 0.001 0.99 Glorot Normal

RNN Orth 128 0.0002 0.99 Random orth
EURNN 128 0.001 0.5
EURNN 256 0.001 0.5

RNN 128 0.001 0.9 Glorot Normal

Table 2: Hyperparameters for the copy task. Here, "hid" is hidden state size, "LR" is learning rate,
"LR orth" is the learning rate of the orthogonal transition matrix (its skew symmetric matrix), ↵ is
the smoothing parameter of RMSprop, � is as in equation 5, T decay is the weight of the L2 penalty
applied on T in equation 5, and "V init" is the initialization scheme for the state transition matrix.

A.2 Sequential MNIST classification task412

The sequential MNIST task [LJH15] measures the ability of an RNN to model complex long term413

dependencies. In this task, each pixel is fed into the network one at a time, after which the network414

must classify the digit. Permutation increases the difficulty of the problem by applying a fixed415

permutation to the sequence of the pixels, which creates longer term dependencies between the pixels.416

We train this task for all networks using mini batch sizes of 100. All non-gated networks except "RNN"417

were initialized with orthogonal recurrent weight matrices using Cayley initialization[HWY18].418

The non-normal RNN has it’s orthogonal weight matrix initialized as in [LCMR19] with the log419

weights initialized using Cayley initialization. Fig. 4 (right) shows validation accuracy for all420

models throughout training when the number of parameters is held constant. Model and training421

hyperparameters are summarized in Table 3.422

A.3 Penn Tree Bank character prediction task423

The Penn Tree Bank character prediction task is that of predicting the next character in a text corpus424

at every character position, given all previous text. We trained all models sequentially on the entire425

11

https://github.com/nnRNN/nnRNN_release

-
0 200 400 600 800

iteration

0.00

0.25

0.50

0.75

1.00

lo
ss

Copy (7 200)

0 20 40 60
epoch

0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

Permuted sequential MNIST

RNN
RNN-orth
EURNN
expRNN
nnRNN
LSTM

Figure 4: Holding the number of parameters constant, model performance is plotted for the copy task
(T=200, left; cross-entropy loss; 18.9K parameters) and for the permuted sequential MNIST task
(right; accuracy; 269K parameters). Shading indicates one standard error of the mean.

Model hid LR LR orth ↵ � T decay V init
nnRNN 512 0.00015 1.5 ⇤ 10�5 0.99 0.15 0.0001 Cayley
expRNN 512 0.0005 5 ⇤ 10�5 0.99 Cayley
expRNN 722 0.0005 5 ⇤ 10�5 0.99 Cayley
LSTM 512 0.0005 0.9 Glorot Normal
LSTM 257 0.0005 0.9 Glorot Normal

RNN Orth 512 5 ⇤ 10�5 0.99 Random orth
EURNN 512 0.0001 0.9
EURNN 1024 0.0001 0.9

RNN 512 0.0001 0.9 Glorot Normal

Table 3: Hyperparameters for the permuted sequential mnist task. Here, "hid" is hidden state size,
"LR" is learning rate, "LR orth" is the learning rate of the orthogonal transition matrix (its skew
symmetric matrix), ↵ is the smoothing parameter of RMSprop, � is as in equation 5, T decay is the
weight of the L2 penalty applied on T in equation 5, and "V init" is the initialization scheme for the
state transition matrix.

corpus, splitting it into sequences of length 150 or 300 for truncated backpropagation through time.426

Consequently, the initial hidden state for a sequence is the last hidden state produced from its427

preceding sequence. All models were trained for 100 epochs with a mini batch size of 128. Following428

training, for each model, the state which yielded the best performance on the validation data was429

evaluated on the test data. Table 2 reports the same performance for the same model states as in Table430

1 in the main text but presents test accuracy instead of BPC. Model and training hyperparameters are431

summarized in Table 5.432

Test Accuracy
Fixed # params (⇠1.32M) Fixed # hidden units (N = 1024)

Model TPTB = 150 TPTB = 300 TPTB = 150 TPTB = 300
RNN 40.01 ± 0.026 39.97 ± 0.025 40.01 ± 0.026 39.97 ± 0.025

RNN-orth 66.29 ± 0.07 65.53 ± 0.09 66.29 ± 0.07 65.53 ± 0.09
EURNN 65.68 ± 0.002 65.55 ± 0.002 64.01 ± 0.002 64.20 ± 0.003
expRNN 68.07 ± 0.15 67.58 ± 0.04 67.51 ± 0.11 66.89 ± 0.024
nnRNN 68.78 ± 0.0006 68.52 ± 0.0004 68.78 ± 0.0006 68.52 ± 0.0004

Table 4: PTB test performance: Test Accuracy, for sequence lengths TPTB = 150, 300. Two
comparisons across models shown: fixed number of parameters (left), and fixed number of hidden
units (right). Error range indicates standard error of the mean.

12

Model hid LR LR orth ↵ � T decay V init
Length 150

nnRNN 1024 0.0008 8 ⇤ 10�5 0.9 1 0.0001 Cayley
expRNN 1024 0.005 0.0001 0.9 Cayley
expRNN 1386 0.005 0.0001 0.9 Cayley
LSTM 1024 0.008 0.9 Glorot Normal
LSTM 475 0.001 0.99 Glorot Normal

RNN Orth 1024 0.0001 0.9 Random orth
EURNN 1024 0.001 0.9
EURNN 2048 0.001 0.9

RNN 1024 10�5 0.9 Glorot Normal
Length 300

nnRNN 1024 0.0008 6 ⇤ 10�5 0.9 0.0001 0.0001 Cayley
expRNN 1024 0.005 0.0001 0.9 Cayley
expRNN 1386 0.005 0.0001 0.9 Cayley
LSTM 1024 0.008 0.9 Glorot Normal
LSTM 475 0.003 0.9 Glorot Normal

RNN Orth 1024 0.0001 0.9 Cayley
EURNN 1024 0.001 0.9
EURNN 2048 0.001 0.9

RNN 1024 1 ⇤ 10�5 0.9 Glorot Normal

Table 5: Hyperparameters for the Penn Tree Bank task (at 150 and 300 time step truncation for
gradient backpropagation). Here, "hid" is hidden state size, "LR" is learning rate, "LR orth" is the
learning rate of the orthogonal transition matrix (its skew symmetric matrix), ↵ is the smoothing
parameter of RMSprop, � is as in equation 5, T decay is the weight of the L2 penalty applied on T in
equation 5, and "V init" is the initialization scheme for the state transition matrix.

A.4 Hyperparameter search433

For all models with a state transition matrix that is initialized as orthogonal (nnRNN, expRNN,434

RNN-orth), three orthogonal initialization schemes were tested: (1) random, (2) Cayley, and (3)435

Henaff. Random initialization is achieved by sampling a random matrix whose QR decomposition436

yields an orthogonal matrix with positive determinant 1 and then mapping this orthogonal matrix via437

a matrix logarithm to the skew symmetric parameter matrix used in expRNN. Cayley and Henaff438

initializations initialize this skew symmetric matrix as described in [LCMR19]. The vanilla RNN is439

also tested with a Glorot Normal initialization, with the model then referred to as simply "RNN".440

For training, learning rates were searched between 0.01 and 0.0001 in increments of 0.0001, 0.0002441

or 10⇥; the learning rate for the orthogonal matrix was always kept near 10⇥ lower; and RMSprop442

was used as the optimizer with smoothing parameter ↵ as 0.5, 0.9, or 0.99. In equation 5, � was443

searched in 0, 0.0001, 0.001, 0.01, 0.1, 0.15, 1.0, 10; the L2 decay on the strictly upper triangular444

part of the transition matrix T was searched in 0, 10�6, 10�5, 10�4.445

B Fisher Memory Curves for strictly lower-triangular matrices446

Let, ⇥ be a strictly lower triangular matrix such that [⇥]i+1,i =
p
↵ for 1 i N � 1 and A be the447

associated lower triangular Gram-Schmidt orthogonalization matrix. We have that,448

⇥ = DA (6)

where D is the delay line, Di+1,i =
p
↵ and Ai,i = 1 for 1 i N . Let us recall the expression of449

J(k) for independent Gaussian noise derived by [GHS08b, Eq. 3],450

J(k) = U
T (⇥k)>C�1

n ⇥k
U , where Cn = ✏

1X

k=0

⇥k(⇥k)> , (7)

13

and U = [1, 0, . . . , 0] is the source. We have that for any vector u,451

u
>
Cnu = ✏

1X

k=0

((Dk)>u)>AA
T ((Dk)>u) (8)

= ✏

N�1X

k=0

((Dk)>u)>AA
T ((Dk)>u) (9)

 ✏�
2(N�1)
max (A)

N�1X

k=0

u
>
D

k(Dk)>u (10)

where for the first equality we used the fact that ⇥ is nilpotent and for the last inequality the fact that452

�max(A) � 1. Recall that for two symmetric matrices we define: A ⌫ B if and only if B � A is453

positive semidefinite. By definition we have,454

Cn � ✏�
2(N�1)
max (A)

1X

k=0

D
k(Dk)> = ✏�

2
max(A)

⇣
diag(1, 1�↵2

1�↵ , . . . ,
1�↵N

1�↵)
⌘

(11)

where the last equality is due to [Dk(Dk)>]i,j = ↵
k if i = j � k + 1 and 0 otherwise. Thus455

using [Lax07, Theorem 2 P. 146] we can take the inverse to get,456

C
�1
n ⌫ 1

✏�
2(N�1)
max (A)

⇣
diag(1, 1�↵2

1�↵ , . . . ,
1�↵N

1�↵)
⌘�1

=
1

✏�
2(N�1)
max (A)

diag(1, 1�↵
1�↵2 , . . . ,

1�↵
1�↵N)

Finally, using that ⇥k
U = [0, . . . , 0| {z }

k

,
p
↵
k
, ⇤, . . . , ⇤], we have that for 0 k N � 1,457

J(k) = U
T (⇥k)>C�1

n ⇥k
U (12)

� 1

✏�
2(N�1)
max (A)

↵
k ↵� 1

↵k+1 � 1
. (13)

↵ � d Jtot =
P1

t=0 J(t)
0.95 0.0 0.0 3.03
1.00 0.0 0.0 5.19
1.05 0.0 0.0 12.1
0.95 0.005 0.0 3.18
1.00 0.005 0.0 5.30
1.05 0.005 0.0 12.1
0.95 0.0 0.2 12.0
1.00 0.0 0.2 16.2
1.05 0.0 0.2 20.5
0.95 0.005 0.2 12.1
1.00 0.005 0.2 16.3
1.05 0.005 0.2 20.4

Table 6: Fisher memory curve performance: Shown is the sum of the FMC for the models considered
in section 3.

458

C Numerical instablities of the Schur decomposition459

The Schur decomposition is computed via multiple iterations of the QR algorithm. The QR algorithm460

is known to be backward stable, which gives accurate answers as long as the eigenvalues of the matrix461

at hand are well-conditioned, as is explained in [ABB+99].462

Eigenvalue-sensitivity is measured by the angle formed between the left and right eigenvectors of463

the same eigenvalues. Normal matrices have coinciding left and right eigenvectors but non-normal464

14

matrices do not, and thus certain non-normal matrices such as the Grcar matrix have very high465

eigenvalue-sensitivity, and thus gives rise to inaccuracies in the Schur decomposition.466

This motivates training the connectivity matrix in the Schur decomposition directly instead of applying467

the Schur decomposition in a separate step.468

D Learned connectivity structure on psMNIST469

-0.1

0

0.1

0 ⇡/2 ⇡

Figure 5: .Learned ⇥ on psMNIST task. Inset: angles ✓i distribution of block diagonal rotations. (c.f.
Eq.4).

For completeness, let us take a look at the Schur matrix after training on psMNIST in Fig. 5. We470

can see that the distribution of learned angles in the rotation blocks is rather flat, and thus is very471

different from the distribution learned in the PTB task, as can be seen in Fig. 3. The flatness in472

distribution comes somewhat close to the flatness of the learned angle distribution in the copy task.473

In other words, the angle distribution in the PTB task is highly structured, while in the Copy task and474

psMNIST task, it seems to be close to uniform.475

Furthermore, we can also observe that the connectivity structure learned in the lower triangle is476

significantly weaker in the psMNIST task than in the PTB task, while not being completely absent as477

in the copy task.478

Thus it seems that we can spot a spectrum of connectivity structure:479

• the Copy task, with no connectivity structure in the lower triangle, close to uniform angle480

distribution and the absence of a delay line, on the one end.481

• the PTB task, with a lot of connectivity structure in the lower triangle, a very narrow angle482

distribution and the presence of a delay line, on the other end.483

For the psMNIST task, it appears that we are located somewhere in the middle of that spectrum.484

15

	Introduction
	Background
	Unitary RNNs and constrained optimization
	Non-normal connectivity

	Non-normal matrices are more expressive and propagate information more robustly than orthogonal matrices
	Non-normality drives expressive transients
	Non-normality allows for efficient information propagation

	Implementing a non-normal RNN
	Numerical experiments
	Copy task & Permuted sequential MNIST
	Penn Tree Bank (PTB) character-level prediction
	Analysis of learned connectivity structure

	Discussion
	Task setup and training details
	Copy task
	Sequential MNIST classification task
	Penn Tree Bank character prediction task
	Hyperparameter search

	Fisher Memory Curves for strictly lower-triangular matrices
	Numerical instablities of the Schur decomposition
	Learned connectivity structure on psMNIST

