Appendices

A Proof of Theorem 1

Consider the similar strongly convex conditions used in Pegasos [27], where F'(w) satisfies the
following conditions:

Property 1. F(w) := &+ SN | fi(w) satisfies:

o ['is u-strongly convex,

e argmin,, F'(w) € Bp = {w | |w| < D}, and
o |[Vfi(w)| <G, Yw € Bp

With the step size as 1, = ﬁ shrinking threshold T}, = % and initialization w! € Bp, we can
prove Theorem 1 with above assumption.

[Proof of Theorem 1] From strong convexity, we have:

F(w") - F(w*) > (VF(w"),w* — w*) + E|jw* — w|?

2
F(wk) = F(w") > (VF(w), 0" —w*) + £ o — w|”.
Adding the above inequalities gives:
(VF(w") = VF(w"), w" —w*) > p|w* —w|?
= (VF(w"),w” —w*) > pllw” — w*|? (since VF(w™) = 0)
= (E(Vfi(w")),w" —w") > pllw® - w|? ()
Where ¢ is the data index sampled at step k, the update step is defined as:
wt =w" —gf ®)
where
gi =Vfi(w") — € ©)
G
&t V(v s < T (10)

Next, we have:
E(|w* —w*|?) = E(|w" —mgf —w"[?)
= E([[w* —w*|*) - 20:E(gf, w" — w*) + niE(|lgf|*)
< E(|[w® —w*|?) — 2nkE<Vfi(w'“)7w’“ —w")
+ EG? 4 2np Bl wh — w*) (11)
The last term from (11) can be upper bounded as follows:
2 E(el, wh — w*)

—2ni (V4 wh) 0t = w1195 < &

)

G
<2 B([[w* - w|)) (12)

<2nkE<Vfi<wk>|||w’€ - w*I(IIVfi(w’“)II <

Substituting (7) and (12) into (11), we have:

i} . 2 G2 2G .
E(w™*! = w||?) <E([w* - w |2)(1 - k) T T et —wtl) a3
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Letting D = max (D, %) and letting L = 4D?2, we have:
~y G2 4DG
L=4D*> — + — (14)
H H

The convergence can be established by induction. We want to proof the following condition holds for
k>1:

L
E([|w® - w*|?) < (15)
When k = 1, the inequality hold:
. L
B(lw! —w|?) < < (16)
Suppose the same holds for k. Then for k + 1, using (13) we have:
2 G*  2G
k+1 * (12 k * (12 k *
Bt - wl?) < (1 7 E(wt — w'l?) + o + 2Bt - w'l)  a7)
Since E(||w* — w*||) < \/E(JJwF — w*|?) < VL < 2D, we have:
2\ L 1
E(lw ™ —w*|?) < (1 -2 )~ + L— 18
(o =) < (12 )+ Lo (18)
kE—1 L
k2 T T k+1 (19)

Thus according to the principle of mathematical induction, (15) hold forallk > 1 m

In many machine learning models, the calculation of the objective function value takes many fewer
operations than the computation of norm of the gradient. Also, for u-strongly convex F'(w) which is
M -Lipschitz smooth we have:

2
p(F(w) = Fw) < 5IVF(@)IF < S =(F(w) - Plw)),

where the left inequality follows from the Polyak-Lojasiewicz inequality, showing that the gradient
norm can be bounded by the loss function value. Due to these reasons, in practice we can also use the
loss function value as the utility of shrinking.

B Algorithms for CPU/GPU parallelization

Algorithm 2 Assistant (CPU)

e Input: Training dataset D = {x;,y;} ;, BossQueue min size ¢
o Initialize: BossQueue, AssistantQueue, Assistant
e While True:
— If BossQueue.size()< c:
* B = Assistant.sample_batch()
* BossQueue.enqueue(B)
— Else if not AssistantQueue.empty():
* M= AssistantQueue.pop()
x grad = Assistant.gradient(M)
* Assistant.update(grad)

C Discussion on Computational Overhead of Importance Sampling

The case of importance sampling in Figure 1 gives an example that too much overhead could ruin
the acceleration effect. The importance sampling algorithm uses a precise estimation of instance
utility (normalized gradient norm) which contains both local and global information. However, as
the model changes after every parameter update, importance weights need to be updated, which
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Algorithm 3 Boss (GPU)

o Input:
o Initialize: Boss
e While True:

— If not BossQueue.empty():

* B = BossQueue.pop()

* M = Boss.Forward(B)

* AssistantQueue.enqueu(M)

* grad = Boss.Backward(M)

* Boss.update(grad)

Table 1: Image Classification datasets statistics

Dataset # instances image size  # classes
MNIST 60,000 28 x 28 10
Rotated MNIIST 60000 28 x 28 10
CIFAR10 60,000 32 x32x%x3 10
ImageNet 1,281,167 224 x 224 x 3 1,000

introduces large computational overhead. A pre-sampling technique is sometimes used to tackle this
issue. First a subset of data C' C [N] (with |C| < N) is uniformly sampled and importance scores
are evaluated only on C. After training enough number of batches on C, another chunk is sampled
and evaluated. This can reduce the computational overhead but may introduce new issues. Firstly,
the importance weights are fixed once evaluated and may be outdated after parameter updates. In
real applications with large data, the model can evolve substantially even within one epoch through
the data. Secondly, substantial computational overhead is introduced even with the sub-sampling
technique. This indicates that any acceleration method will fail on SGD if it requires acces to global
information.

D Experimental parameter setting and further results

Experimental settings for image classification. For the image classification experiments reported
in Figure 3, we set the learning rate for MNIST, rotated MNIST and raw ImageNet to be 0.0005,
0.005 for CIFAR10. The batch size is chosen to be 16 for MNIST/rotated MNIST and CIFAR10
datasets and 64 for raw ImageNet. As raw ImageNet dataset cannot be load into memory at once, to
reduce the image preprocessing cost, we preprocessed all the images and pre-stored them into 12
data chunks. During training, the model loads and trains on one chunk at a time. For SPL algorithm,
we implemented the same self-paced scheme in [22] with ¢(¢) = 4 and maxgen = 20.

Experimental setting for NMT task. We train WMT14 dataset on § Tesla V100 GPUs with around
40k tokens per training batch (5k tokens per batch per GPU). Each model is trained until 6 billion
tokens are seen. The BLEU scores are evaluated with the averaged model of last 10 checkpoints
(epochs). For the Transformer big model, to allocate memory for 3000 tokens per GPU, we use half
precision (16 bit) floating point type.

Table 2: Statistics of the Transformers on WMT 14 dataset. The model used for computing BLEU
score is the averaged model of last 10 epochs.

model # tokens per epoch  time per epoch(s) final BLEU score
SGD(base) 112.1M 1115 27.25
SPL(base) 112.1M 1142 27.32
AutoAssist (base) 72.6M 973 27.42
SGD(big) 112.1M 1190 27.41
SPL(big) 112.1M 1221 27.40
AutoAssist (big) 70.8M 1016 27.63

13



v
w

MNIST with ResNet18 MNIST with ResNet34 MNIST with ResNet101
T L T 5 D

u

A —— AutoAssist Y —— AutoAssist . AN — AutoAs’swst
4 4 Y -~ "\,
v + SGD \ ++es SGD 4y, "V . SGD
5.K -~ —— SPL 55 o~ —= SPL 5 Y JRpery
I We4.4, = ScreenerNet | ‘\‘«..**4—- ScreenerNet | 5 3 e = ScreenerNet
7 7 %
32 32 ‘-M‘ 92
= it B s ™
1 1 & 1
Pom 0 Po 0 0 2 3 4 6 10
Time(x1000s) Time(x1000s) Time(x1000s)
15.0 Rotated MNIST with ReIsNetls = Rotated MNIST with ResNet3:1 150 Rotated MNIST with ResNet101
\ —— AutoAssist —— AutoAssist =L Rutoaseist
12.5 . 125
) «. cees SGD N ++ SGD 125 . SGD
510.01,, AN —= SPL 510.0 — = SPL 510,01, —— SPL
i] 75N ~, = ScreenerNet E 75 — ScreenerNet | § o — . ScreenerNet
g 5o had K g so ! i —a
[ . S~ [ A . . N A, .
\,_\\\~' -~ ,.“\’”.‘ = 5.0 Mo
2.5 S 25 I 25
05T 10° OfpT 10° 00 2 3 2 6 10
Time(x1000s) Time(x1000s) Time(x1000s)
40 CIFAR10 with Resl}letls 40 ‘EIFARIO with ResNet34 w0 CIFAR1O with RsiNetlol
35 = AutoAssist 35 =, v, = AutoAssist [ — AutoAssist ﬁ
. sGD = A\ et SGD 35 . . s6p
§30 == SPL ‘e‘30 - == SPL §30 —— SPL \
425 — ScreﬁnerNet u s =~ ScreenerNet ¥ 5 25 wE ScreenerNet
7 7 g gt o
220 £ 20 220 S
15 15 15
e 10° ot 10° o1 10° 10?
Time(x1000s) Time(x1000s) Time(x1000s)
T — !mag' (_e_N_eEvgtl\Egs‘l\litlg _ 10 Imag.eﬁ_e'zt_vgth 5esNet34 100 _ Ifna eNet with ResNeg.gl
% C~~o Il_- ~-. —— AutoAsSist ""*..\_’.— AutoAssist —— AutoAssist
~h SSevaees SGD %0 ‘eass SGD 90 veer SGD
5 80 33 — = SPL \ 5 —="SPL s “q== SPL
£ £ £ 80 :
479 N =+ ScreenerNet [ ==+ ScreenerNet [m) .. = ScreenerNet
o el ~.| 3 ” % 70 e
o o @
= 60 TR = =
70
50 A 60
Yoo °10° Qo0 107

10! 10! 10*
Time(x1000s) Time(x1000s) Time(x1000s)
Figure 5: Comparison of various SGD acceleration approaches on image classification. z-axis is the
training time in seconds, while y axis is the test accuracy. ResNets with varied depth ranging from
{18,34, 101} are considered. Each block column of figures show the results of the ResNet with a

specific number of layers. Each block row of images show the results on a specific dataset.

MNIST with ResNet18

0.8

0.6 —— Assistant accuracy
— (1-y)

0.4

0.2

0 200 400 600 800 1000 1200 1400
iterations

Figure 6: The Assistant predictive accuracy and safeguarding rate (1 — ). Even with the simplest

logistic regression model, the Assistant is able to reach up to 90% accuracy while predicting the
shrinking label, resulting in a confident Assistant with low safe-guarding rate (1 — ).
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