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1 FantasticReality Dataset

We present examples of splices and object classes annotations in our FantasticReality in Figures 1
and 2. Class annotations are labeled with colors and spliced object is labeled with grey color.
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Figure 1: Examples of annotated images in our FantasticReality dataset.
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Figure 2: Examples of annotated images in our FantasticReality dataset.

The dataset is divided into two splits: ‘Rough’ and ‘Realistic’. ‘Rough’ split contains 8k splices with
obvious artifacts such aliasing at splice edges, light and color inconsistencies. We use the ‘Rough’
split to allow gradual learning of our retouching generator GR. The ‘Realistic’ split provides 8k
splices that were retouched manually to be visually indistinguishable from the authentic background
image. We use the ‘Realistic’ split to test our model and baselines.

2 Modern-to-Retro Dataset

We present examples of splices and object classes annotations in the modern→retro in Figure 3. We
manually generated ground truth annotations of instance and class labels for ten object categories:
person, car, truck, van, bus, building, cat, dog, tram, boat.

3 Evaluation Protocol

Datasets. CASIA v2.0 [1] consists of 5123 tampered images with various kinds of objects and
tampering artifacts. The dataset does not provide the ground truth maps of tampered regions. We
generate ground truth segmentation for CASIA v2.0 dataset similar to [2] by subtraction of tampered
and authentic images. Carvalho [3] dataset includes 100 spliced human portraits and ground truth
tampering masks. Columbia [4] dataset consists of 180 splices with objects of different categories.
Realistic Tampering [5] dataset includes 165 images with challenging splices. All splices are carefully
processed to be indistinguishable from the background image. For the fair evaluation, we downscale
all images to match the input size 512× 512 of our annotator generator GR. We use the downscaled
images to evaluate all baselines and our framework.
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Figure 3: Examples of annotated images in our modern→retro dataset.

Baselines. We compare our model with five modern splice detection methods: ManTra [6],LSC [7],
MFCN [8], NOI [9], CFA [10], DCT [11]. ManTra-Net (ManTra) [6] is a self-supervised model
that learns to classify 385 image manipulation types. Learned Self-Consistency (LSC) [7] is a
self-supervised model. Multi-Task Fully Convolutional Network (MFCN) [8] leverages a deep two-
stream architecture to predict splice mask and splice edge mask. Noise Variance (NOI) [9] leverages
wavelet analysis to detect inconsistency in noise patterns. Color Filter Array (CFA) [10] searches for
inconsistencies in artifacts of demosaicking algorithm to detect tampered regions. JPEG DCT [11]
leverages inconsistencies of JPEG blocking artifact to detect tampered image regions. For the LSC
algorithm, we use a pertained model provided by authors. We implemented the MFCN model and train
it on the training split of our FantasticReality dataset. We train our MAG model on the ‘Rough’ split of
our FantasticReality dataset. We use a batch size of one an an Adam solver with initial learning rate
of 2 · 10−4. We trained our MAG model for 400 epochs.

If two images are used for splice generation, the choice of ‘authentic’ and ‘tampered’ regions is
ambiguous. To avoid ambiguity, we follow the method proposed in [7]. Namely, we compare the areas
of the ‘background’ image and the ‘pasted’ images. We define the smaller region as the tampered. If
the regions are equal, we calculate the mAP score for the original tampering mask and an inverted
mask. We use the higher score and term it permuted mAP (p-mAP) similar to [7].

4 Network Architecture

The architecture of our generator U-Net-UC is presented in Table 1. Our main contribution to the
U-Net generator [12] architecture is in the decoder part. we replaced deconvolutional layers with an
upsample layer followed by a convolutional layer, inspired by the architecture proposed in [13].

4.1 Semantic-guided Retoucher Generator GR Evaluation

We evaluate our retoucher generator GR ability to a perform semantic-guided image-to-image
translation on a modern→retro task. We compare our MAG model against three image-to-image
translation models: CycleGAN [14], UNIT [15], and AGGAN [16].

Baselines. CycleGAN [14] model performs unpaired image-to-image translation using cycle consis-
tency. Unsupervised Image-to-Image Translation Networks (UNIT) [15] uses a shared-latent space
assumption to learn a latent representation that connects images in source and target domains. Unsu-
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Name Kernel Str. Ch I/O In Res Out Res Input

conv0 4× 4 2 4/64 512× 512 256× 256 Input image
conv1 4× 4 2 4/64 256× 256 128× 128 conv0
conv2 4× 4 2 64/128 128× 128 64× 64 conv1
conv3 4× 4 2 128/256 64× 64 32× 32 conv2
conv4 4× 4 2 256/512 32× 32 16× 16 conv3
conv5 4× 4 2 512/512 16× 16 8× 8 conv4
conv6 4× 4 2 512/512 8× 8 4× 4 conv5
conv7 4× 4 2 512/512 4× 4 2× 2 conv6
conv8 4× 4 2 512/512 2× 2 1× 1 conv7

upscale8 – – 512/512 1× 1 2× 2 conv8
pad8 – – 512/512 2× 2 4× 4 upscale8
conv_up8 3× 3 1 512/512 4× 4 2× 2 pad8
upscale7 – – 1024/512 2× 2 4× 4 conv_up8 + conv7
pad7 – – 1024/512 4× 4 6× 6 upscale7
conv_up7 3× 3 1 1024/512 6× 6 4× 4 pad7
upscale6 – – 1024/512 4× 4 8× 8 conv_up7 + conv6
pad6 – – 1024/512 8× 8 10× 10 upscale6
conv_up6 3× 3 1 1024/512 10× 10 8× 8 pad6
upscale5 – – 1024/512 8× 8 16× 16 conv_up6 + conv5
pad5 – – 1024/512 16× 16 18× 18 upscale5
conv_up5 3× 3 1 1024/512 18× 18 16× 16 pad5
upscale4 – – 1024/256 16× 16 32× 32 conv_up5 + conv4
pad4 – – 1024/256 32× 32 34× 34 upscale4
conv_up4 3× 3 1 1024/256 34× 34 32× 32 pad4
upscale3 – – 512/128 32× 32 64× 64 conv_up4 + conv3
pad3 – – 512/128 64× 64 66× 66 upscale3
conv_up3 3× 3 1 512/128 66× 66 64× 64 pad3
upscale2 – – 256/64 64× 64 128× 128 conv_up3 + conv2
pad2 – – 256/64 128× 128 130× 130 upscale2
conv_up2 3× 3 1 256/64 130× 130 128× 128 pad2
upscale1 – – 128/64 128× 128 256× 256 conv_up2 + conv1
pad1 – – 128/64 256× 256 258× 258 upscale1
conv_up1 3× 3 1 128/64 258× 258 256× 256 pad1
upscale0 – – 128/2+K 256× 256 512× 512 conv_up1 + conv0
pad0 – – 128/2+K 512× 512 514× 514 upscale0
conv_up0 3× 3 1 128/2+K 514× 514 512× 512 pad0

Table 1: The U-Net-UC generator architecture.

pervised Attention-guided Image-to-Image Translation (AGGAN) [16] leverages unsupervised attention
learning to perform translation focused only on the target object class.

We introduce a new ‘modern→retro’ dataset with 2k images and class annotations for training models
to translate modern cityscapes to retro photos of 1920-1930s (see supplementary material). This task
is challenging as the model should translate the appearance of multiple object classes, while keeping
the resulting image realistic.

Qualitative results. Results of translation are presented in Figure 4. While our model does not
receive semantic labeling as an input, the semantic loss forces it to keep objects in the output image
semantically consistent. All baselines fail to match old and new cars to perform modern→retro
translation. Only UNIT model synthesizes an old car but in the wrong place. Our MAG model is
focused on matching the semantic labels of input and target domains. Our structured loss combining
adversarial and semantic losses makes the output of our model both realistic and semantically
consistent.
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Input CycleGAN [14] UNIT [15] AGGAN [16] Ours

Figure 4: Comparison against three state-of-the-art methods on various image-to-image translation
tasks. Our results are shown in the last column. See supplementary material for video example.

Quantitative results. We use Kernel Inception Distance [17] (KID) and user perceptual realism
judgment to evaluate our retoucher generator GR quantitatively. The KID represents the squared
maximum mean discrepancy between deep feature representation of evaluated images. We compute
the KID between the generated images and images from the target domain. To evaluate perceptual
similarity, we run the test on the Amazon Mechanical Turk (AMT), similar to [18]. Quantitative
results are presented in Figure 5 and Table 2. Our retouching generator GR achieves the lowest KID
distance. The UNIT framework is the next best performing method.
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Figure 5: Realism vs. KID for syn-
thesized images. Lower KID and high
realism is better

Realism Distance
AMT Fooling KID

Method Rate [%]
Random real images 50.0%
AGGAN [16] 3.44 18.45 ± 0.73
CycleGAN [14] 1.14 17.92 ± 0.43
UNIT [15] 12.32 12.16 ± 0.51
Ours 20.26 7.23 ± 0.67

Table 2: Perceptual realism and Kernel Inception
Distance × 100 ± std. × 100 for different image
translation algorithms.
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