
A Algorithms

In this section, we present the details of the actor-critic algorithm.

Algorithm 1 Natural Actor-Critic Algorithm for Linear Quadratic Regulator
Input: Initial policy ⇡K0 such that ⇢(A�BK0) < 1, stepsizes � for policy update, and a policy
evaluation algorithm.
Initialization: Set the current policy ⇡K by letting K  K0.
while updating current policy do

Critic step. Estimate ⇥K in (3.7) via a policy evaluation algorithm, e.g., the on-policy GTD
algorithm (Algorithm 2), which returns an estimator b⇥ of ⇥K .
Actor step. Update the policy parameter by K  K � � · (b⇥22

K � b⇥21).
end while
Output: The final policy ⇡K , matrix b⇥ that estimates ⇥K , and bJ that approximates J(K).

Algorithm 2 On-Policy Gradient-Based Temporal-Difference Algorithm for Policy Evaluation
Input: Policy ⇡K , number of iterations T , and stepsizes {↵t}t2[T ].
Output: Estimator b⇥ of ⇥K in (3.7).
Initialize the primal and dual variables by #0 2 X⇥ and !0 2 X⌦, respectively.
Sample the initial state x0 2 Rd from the stationary distribution ⇢K . Take action u0 ⇠ ⇡K(· |x0)
and obtain the reward c0 and the next state x1.
for t = 1, 2, . . . , T do

Take action ut according to policy ⇡K , observe the reward ct and the next state xt+1.
Compute the TD-error �t = #

1
t�1 � ct�1 + [�(xt�1, ut�1)� �(xt, ut)]>#2

t�1.
Update #

1 by #
1
t = #

1
t�1 � ↵t · [!1

t�1 + �(xt�1, ut�1)>!2
t�1].

Update #
2 by #

2
t = #

2
t�1 � ↵t · [�(xt�1, ut�1)� �(xt, ut)] · �(xt�1, ut�1)>!2

t�1.

Update !
1 by !

1
t = (1� ↵t) · !1

t + ↵t · (#1
t�1 � ct�1).

Update !
2 by !

2
t = (1� ↵t) · !2

t + ↵t · �t · �(xt�1).
Project #t and !t to X⇥ and X⌦, respectively.

end for
Define b# = (b#1

, b#2) = (
PT

t=1 ↵t · #t)/(
PT

t=1 ↵t) and b! = (
PT

t=1 ↵t · !t)/(
PT

t=1 ↵t).
Return b#1 and b⇥ = smat(b#2) as the estimators of J(K) and ⇥K , respectively.

B Extension to the Off-Policy Setting

Recall that in our natural actor-critic algorithm, the critic can apply any policy evaluation algorithm to
estimate b⇥K . When using an off-policy method, we obtain an off-policy actor-critic algorithm. In this
section, we extend Algorithm 2 to the off-policy setting using importance sampling. Specifically, let
⇡b be the behavior policy and suppose it induces a stationary distribution ⌫b over the state space Rd.
Moreover, let ⇡K be the policy of interest and let ⌧K(x, u) = ⇡K(u |x)/⇡b(u |x) be the importance
sampling ratio. Then, the Bellman equation in (3.14) can be written as

h�(x, u), ✓⇤Ki = c(x, u)� J(K) +
⌦
E[�(x0

, u
0) · ⌧K(x0

, u
0) |x, u], ✓⇤K

↵
, (B.1)

where (x, u) 2 Rd+k, x0 is the next state given (x, u), and u
0
⇠ ⇡b(· |x). In the following, we denote

by E(x,u) the expectation with respect to x ⇠ ⌫b and u ⇠ ⇡b(· |x). Similar to ⌅K and bK defined in
(3.15), for the off-policy setting, we define

⌅K = E(x,u)

�
�(x, u)

⇥
�(x, u)� ⌧K(x0

, u
0) · �(x0

, u
0)
⇤> 

, bK = E(x,u)

⇥
c(x, u)�(x, u)

⇤
,

hK = E(x,u)[�(x, u)� ⌧K(x0
, u

0) · �(x0
, u

0)], gK = E(x,u)[�(x, u)], aK = E(x,u)[c(x, u)].

Based on (B.1) and direct computation, it can be shown that #⇤
K = (J(K), svec(⇥K)>)> is the

solution to linear equation

⇤K# = �K , ⇤K =

 
1 h

>
K

gK ⌅K

!
, # =

✓
#
1

#
2

◆
, �K =

✓
aK

bK

◆
. (B.2)
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Similar to the derivations in §3.2, we propose to estimate #
⇤
K by solving a minimax optimization

problem:

min
#2X⇥

max
!2X⌦

F (#,!) = !
>[⇤K#� �K ]� 1/2 · k!k22. (B.3)

Here, similar to Assumption (4.1), we let X⇥ and X⌦ be Euclidean balls given by X⇥ and X⌦ in
(3.18) be defined as X⇥ =

�
# : k#1

k2 
eR⇥
 

and X⌦ =
�
! : k!k2  eR⌦

 
, where eR⇥ and eR⌦

are chosen appropriately. Notice that both F (#,!) and its gradient can be estimated unbiasedly
using transitions sampled from the behavior policy. Solving (B.3) using stochastic gradient method,
we obtain the off-policy GTD algorithm for the ergodic setting. See Algorithm 3 for the details.
Combining this policy evaluation method with Algorithm 1, we establish the off-policy on-line natural
actor-critic algorithm.

Algorithm 3 Off-Policy Gradient-Based Temporal-Difference Algorithm for Policy Evaluation
Input: Policy ⇡K , number of iterations T , and stepsizes {↵t}t2[T ], the behavior policy ⇡b and its
stationary distribution ⌫b.
Output: Estimators bJ and b⇥ of J(K) in (3.8) and ⇥K in (3.7), respectively.
Initialize the primal and dual variables by #0 2 X⇥ and !0 2 X⌦, respectively.
Sample the initial state x0 2 Rd from the stationary distribution ⌫b. Take action u0 ⇠ ⇡b(· |x0)
and obtain the reward c0 and the next state x1.
for t = 1, 2, . . . , T do

Take action ut according to policy ⇡K , observe the reward ct and the next state xt+1.
Compute the TD-error �t = #

1
t�1 � ct�1 + [�(xt�1, ut�1)� ⌧K(xt, ut) · �(xt, ut)]>#2

t�1.
Update the primal variable # by

#
1
t = #

1
t�1 � ↵t · [!

1
t�1 + �(xt�1, ut�1)

>
!
2
t�1],

#
2
t = #

2
t�1 � ↵t · [�(xt�1, ut�1)� ⌧K(xt, ut) · �(xt, ut)] · [�(xt�1, ut�1)

>
!
2
t�1 + !

1
t�1].

Update the dual variable ! by

!
1
t = (1� ↵t) · !

1
t + ↵t ·

�
#
1
t�1 + [�(xt�1, ut�1)� ⌧K(xt, ut) · �(xt, ut)]

>
#
2
t�1 � ct�1

 
,

!
2
t = (1� ↵t) · !

2
t + ↵t · �t · �(xt�1).

Project #t and !t to X⇥ and X⌦, respectively.
end for
Define b# = (b#1

, b#2) = (
PT

t=1 ↵t · #t)/(
PT

t=1 ↵t) and b! = (
PT

t=1 ↵t · !t)/(
PT

t=1 ↵t).
Return b#1 and b⇥ = smat(b#2) as the estimators of J(K) and ⇥K , respectively.

Similar to Theorem 4.2, we have the following theorem that shows that Algorithm 3 converges at a
sublinear rate to the desired solution #

⇤
K .

Theorem B.1 (off-policy GTD). Let b#1 and b⇥ be the output of Algorithm 3 based on T iterations.
We set the stepsize to be ↵t = ↵/

p
t with ↵ > 0 being a constant. We assume that ⇤K in (B.2) is

invertible and that its minimum singular value is lower bounded by a constant ⇤
k > 0. Moreover, we

assume that the Markov chain induced by the behavioral policy ⇡b is geometrically �-mixing with
parameter ⇢ 2 (0, 1). Let ⌫b be the stationary distribution of this induced Markov chain. We assume
that, for (x, u) ⇠ ⌫b, both �(x, u) and ⌧K(x, u) are sub-exponential random variables. Then, when
the number of iterations T is sufficiently large, with probability at least 1� T

�4, we have

kb⇥�⇥Kk
2
fro 

⌥
⇥ eR⇥, eR⌦, J(K0), kKkfro,�

�1
min(Q)

⇤


⇤
K

2
· (1� ⇢)

·
log6 T
p
T

,

where ⌥
⇥ eR⇥, eR⌦, J(K0), kKkfro,�

�1
min(Q)

⇤
is a polynomial of eR⌦, eR⌦, J(K0), kKkfro, and

1/�min(Q).

Proof. The proof of this theorem is parallel to that of Theorem 4.2, thus here we only sketch the
proof for brevity.
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The proof can be completed in three steps. In the first step, we show that (#,!) = (#⇤
K , 0) is the

saddle point of the optimization problem in (B.3). To simplify the notation, we define a vector-valued
function G(x, u, x0

, u
0;#) by

G
1(x, u, x0

, u
0;#) = #

1
� c(x, u) + h�(x, u)� ⌧K(x0

, u
0) · �(x0

, u
0),#2

i,

G
2(x, u, x0

, u
0;#) = #

1
· �(x, u) +

�⇥
�(x, u)� �(x0

, u
0) · ⌧K(x0

, u
0)
⇤>

#
2
� c(x, u)

 
· �(x, u).

(B.4)

By definition, for all (#,!), F (#,!) in (B.3) can be equivalently written as

F (#,!) =
⌦
E(x,u,x0,u0)[G(x, u, x0

, u
0;#)],!

↵
� 1/2 · k!k22. (B.5)

Thus, for any #, the solution to the unconstrained maximization problem max! F (✓,!) is
w(#) = E(x,u,x0,u0)[G(x, u, x0

, u
0;#)].

Recall that c(x, u) = h�(x, u), svec[diag(Q,R)]i. Since both �(x, u) and ⌧K(x, u) · �(x, u) are
sub-exponential random vectors, when eR⇥ and eR⌦ are chosen properly, we can show that #⇤

K 2 X⇥

and that w(#) 2 X⌦ for all # 2 X⇥. Notice that w(#⇤
K) = 0. Thus, (#⇤

K , 0) is the solution to the
minimax optimization problem in (B.3).

Then, in the second step, we relate the estimation error kb⇥�⇥Kk
2
fro to the primal-dual gap

Gap(b#, b!) = max
!2X⌦

F (b#,!)� min
#2X⇥

F (#, b!). (B.6)

Similar to the derivations in (C.14)–(C.17), since the minimum singular value of ⇤K is lower bounded
by 

⇤
K , it holds that

|b#1
� J(K)|2 + kb⇥�⇥Kk

2
fro  

⇤
K

�2
· Gap(b#, b!). (B.7)

Thus, it suffices to bound the primal-dual gap in (B.6), which is achieved in the last step.

Specifically, we would like to utilize Theorem C.4 obtained from [72]. Since this theorem requires
bounded iterates and Lipschitz gradient, similar to the third step in §C.1, we truncate the feature
vector �(x, u). In particular, we define

E =
\

0tT

n
k�(xt, ut)k

2
2  CK · log T, k⌧K(xt, ut) · �(xt, ut)k

2
2  CK · log T

o
, (B.8)

where Cb is a constant specified by the stationary distribution ⌫b. Since both is �(x, u) and �(x, u) ·
⌧K(x, u) are sub-exponential random vector when (x, u) ⇠ ⌫b, it can be shown that E holds with
probability at least 1� 2T�5. Then we define truncated random vectors

e�(x, u) = �(x, u) · 1E , e'K(x, u) = �(x, u) · ⌧K(x, u) · 1E

and the truncated minimax optimization problem,

min
#2X⇥

max
!2X⌦

eF (#,!) =
⌦
E(x,u,x0,u0)

⇥ eG(x, u, x0
, u

0;#)
⇤
,!
↵
� 1/2 · k!k22, (B.9)

where we define eG(x, u, x0
, u

0;#) by
eG1(x, u, x0

, u
0;#) = #

1
� ec(x, u) + he�(x, u)� e'K(x0

, u
0),#2

i,

G
2(x, u, x0

, u
0;#) = #

1
· e�(x, u) +

�⇥e�(x, u)� e'K(x0
, u

0)
⇤>

#
2
� ec(x, u)

 
· e�(x, u).

(B.10)

Here we let ec(x, u) = he�(x, u), svec[diag(Q,R)]i in (B.10). Similar to the derivations from (C.25)
to (C.31), we can show that sup#,! |F (#,!)� eF (#,!)|  1/T , which implies that

���Gap(b#, b!)�
h
max
!2X⌦

eF (b#,!)� min
#2X⇥

eF (#, b!)
i���  2/T. (B.11)

Since eF defined in (B.9) have Lipschitz gradients, by Theorem C.4, we have

max
!2X⌦

eF (b#,!)� min
#2X⇥

eF (#, b!)  CK · log6 T

(1� ⇢) ·
p
T

(B.12)

with probability at least 1 � T
�5, where CK is a constant that depends polynomially on eR⇥, eR⌦,

J(K0), kKkfro, and 1/�min(Q). Finally, combining (B.7), (B.11), and (B.12), we conclude the
proof of this theorem.
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C Proofs of the Main Results

In this section, we provide the proofs of the main results, namely, Theorems 4.2 and 4.3, which
are proved in §C.1 and §C.2, respectively. The proofs of the supporting results are deferred to the
appendix.

C.1 Proof of Theorem 4.2

Proof. Our proof can be decomposed into three steps. In the first step, we show that, with X⇥ and
X⌦ given in (4.1) and (4.2), (#,!) = (#⇤

K , 0) is the solution to the minimax optimization problem
in (3.18). Then, in the second step, we show that the primal-dual gap of this optimization problem
yields an upper bound for the estimation error kb⇥�⇥Kk

2
fro, where b⇥ = smat(b#2) is the estimator

of ⇥K returned by the GTD algorithm. Finally, in the last step, we study the performance of such a
minimax optimization problem, which enables us to establish the error of policy evaluation.

Step 1. In the first step, we show that (#,!) = (#⇤
K , 0) is the saddle point of the optimization

problem in (3.18). To simplify the notation, we define a vector-valued function G(x, u, x0
, u

0;#) by

G
1(x, u, x0

, u
0;#) = #

1
� c(x, u),

G
2(x, u, x0

, u
0;#) = #

1
· �(x, u) +

�⇥
�(x, u)� �(x0

, u
0)
⇤>

#
2
� c(x, u)

 
· �(x, u).

(C.1)

By definition, G(x, u, x0
, u

0;#) is of the same shape as # and !. Moreover, for all (#,!), F (#,!) in
(3.18) can be equivalently written as

F (#,!) =
⌦
E(x,u,x0,u0)[G(x, u, x0

, u
0;#)],!

↵
� 1/2 · k!k22. (C.2)

Thus, for any #, the solution to the unconstrained maximization problem max! F (✓,!) is

w(#) = E(x,u,x0,u0)[G(x, u, x0
, u

0;#)]. (C.3)

In the following, we show that #⇤
K 2 X⇥. Moreover, we also prove that, for any # 2 X⇥, w(#) in

(C.3) belongs to X⌦, where X⇥ and X⌦ are defined in (4.1) and (4.2), respectively. Since w(#⇤
K) = 0,

it holds that (#⇤
K , 0) is the solution to the minimax optimization problem in (3.18).

Recall that we assume J(K)  J(K0), where K0 is the initial policy that is stable. Thus, J(K0) is
finite. By the definition of #⇤

K , to show #
⇤
K 2 X⇥, it suffices to bound k⇥Kkfro. By the definition of

⇥K in (3.7), we have

⇥K =

✓
Q+A

>
PKA A

>
PKB

B
>
PKA R+B

>
PKB

◆
=

✓
Q

R

◆
+

✓
A

>

B
>

◆
PK (A B) ,

which implies that

k⇥Kkfro  (kQkfro + kRkfro) + (kAk2fro + kBk
2
fro) · kPKkfro. (C.4)

Now we apply the following lemma to obtain an upper bound on kPKkfro.
Lemma C.1. When ⇡K is a stable policy, we have

k⌃Kk  J(K)/�min(Q), kPKk  J(K)/�min( ),

where �min(·) denotes the minimal eigenvalue of a matrix.

Proof. By (3.8) in Proposition 3.1, we have

J(K) � tr[(Q+K
>
RK)⌃K ] � �min(Q) · tr(⌃K) � �min(Q) · k⌃Kk,

J(K) � tr(PK �) � �min( �) · tr(PK) � kPKk � J(K)/�min( ),

where we use the fact that  � ⌫  . Therefore, we conclude the proof.

Applying Lemma C.1 to (C.4), we have

k⇥Kkfro  (kQkfro + kRkfro) + (kAk2fro + kBk
2
fro) ·

p

d · J(K)/�min( ). (C.5)

Combining (C.5) and the definition of eR⇥ in (4.3) we conclude that #⇤
K 2 X⇥.
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Furthermore, it remains to show that the vector in (C.3) belongs to X⌦ for all # 2 X⇥. We consider
the two components of G(x, u, x0

, u
0;#) separately. By (C.1), we have

��E(x,u,x0,u0)[G
1(x, u, x0

, u
0;#)]

�� = |#
1
� J(K)|  J(K0), (C.6)

where the second inequality follows from the fact that 0  #
1
 J(K0). Moreover, by (C.1), for the

second component of G(x, u, x0
, u

0;#), we have

E(x,u,x0,u0)[G
2(x, u, x0

, u
0;#)] = #

1
· E(x,u)[�(x, u)] + ⌅K#

2
� bK , (C.7)

where ⌅K and bK are defined in (3.15). By Lemma D.2, we have

k⌅K#
2
k2  k⌅Kk · k#

2
k2  4(1 + kKk2fro)

2
· k⌃Kk

2
· eR⇥. (C.8)

Moreover, for any positive definite matrix �, we have

b
>
K svec(�) = E(x,u)

�⌦
�(x, u), svec[diag(Q,R)]

↵
·
⌦
�(x, u), smat(�)

↵ 
, (C.9)

where diag(Q,R) is the block diagonal matrix constructed by Q and R. Note that the joint distribution
of (x, u) is the Gaussian distribution N(0, e⌃K), where e⌃K is defined in (D.16). Thus, b>K svec(�)
can be written as the product of two quadratic forms of Gaussian random variables. Applying Lemma
D.3 to (C.9), we obtain that

b
>
K svec(�) = 2

⌦e⌃Kdiag(Q,R)e⌃K ,�
↵
·+
⌦e⌃K , diag(Q,R)

↵
·
⌦e⌃K ,�

↵
,

which implies that

kbKk2  3(kQkfro + kRkfro) · ke⌃Kk
2
. (C.10)

In addition, the first term on the right-hand side of (C.7) is bounded by
��#1

· E(x,u)[�(x, u)]
��
2
 J(K0) ·

��e⌃K

��
fro

. (C.11)

Finally, combining (C.8), (C.10), (C.11), and the upper bounds in (D.17), we have
��E(x,u,x0,u0)[G

2(x, u, x0
, u

0;#)]
��
2

 2(d+ kKk2fro) · k⌃Kk+ 4(1 + kKk2fro)
2
· k⌃Kk

2
· eR⇥

+ 12(kQkfro + kRkfro) · (d+ kKk
2
fro)

2
· k⌃Kk

2

 C · (1 + kKk2fro)
2
· eR⇥ · �

�2
min(Q) · [J(K0)]

2
, (C.12)

where C > 0 is an absolute constant.

Hence, combining (4.4), (C.6) and (C.12), we conclude that w(#) 2 X⌦ for all # 2 X⇥. Therefore,
we have shown that (#⇤

K , 0) is the saddle point of the optimization problem in (3.18), which concludes
the first step of the proof.

Step 2. In the following, we relate the estimation error kb⇥ � ⇥Kk
2
fro to the performance of the

optimization in (3.18). Specifically, we consider the primal-dual gap

Gap(b#, b!) = max
!2X⌦

F (b#,!)� min
#2X⇥

F (#, b!), (C.13)

which characterizes the closeness between (b#, b�) and the optimal solution (#⇤
K , 0), quantified by the

objective value.

Recall that w(#) defined in (C.3) is the optimal dual variable for each ✓ 2 X⇥. Hence, for any
! 2 X⌦, it holds that

min
#2X⇥

F (#,!)  min
✓2X⇥

max
!2X⌦

F (✓,!)

 min
#2X⌦

�
[#1
� J(K)]2 + k#1

· E(x,u)[�(x, u)] + ⌅K#
2
� bKk

2
2

 
= 0. (C.14)

Thus, for b# returned by the GTD algorithm, we have
�
[b#1
� J(K)]2 + kb#1

· E(x,u)[�(x, u)] + ⌅K
b#2
� bKk

2
2

 
= max

!2X⌦

F (b#,!)

= max
!2X⌦

F (b#,!)� min
#2X⇥

F (#, b!) + min
#2X⇥

F (#, b!)  Gap(b#, b!), (C.15)
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where the last inequality follows from (C.14).

Furthermore, by direct computation, we can bound the left-hand side of (C.15) via
����

✓
1 0

E(x,u)[�(x, u)] ⌅K

◆
(b#� #

⇤
K)

����
2

2

� 
⇤
K

2
· kb#� #

⇤
Kk

2
2 = 

⇤
K

·⇥
kb⇥�⇥Kk

2
fro + |b#1

� J(K)|2
⇤
, (C.16)

where we utilize the fact that #⇤
K is the solution to the linear equation in (3.16) and 

⇤
K is specified in

Lemma 3.2. Therefore, combining (C.15) and (C.16), we have

|b#1
� J(K)|2 + kb⇥�⇥Kk

2
fro  

⇤
K

�2
· Gap(b#, b!), (C.17)

which establishes the connection between kb⇥�⇥Kk
2
fro and the primal-dual gap in (C.13).

Step 3. In the last step, we construct an upper bound for the primal-dual gap. By (C.17), this yields
an upper bound for the error of parameter estimation.

Note that the distribution of the state-action pair (x, u) have unbounded support. We first construct
an event such that {�(xt, ut)}Tt=0 are bounded conditioning on this event. To this end, we establish
an upper bound for tail probability of the k�(x, u)k2 using the Hansen-Wright inequality stated as
follows.
Lemma C.2 (Hansen-Wright inequality). For any integer m > 0, let A be a matrix in Rm⇥m and
let ⌘ ⇠ N(0, Im) be the standard Gaussian random variable in Rm. Then, there exists an absolute
constant C > 0 such that, for any t � 0, we have

P
⇥��⌘>A⌘ � E(⌘>A⌘)

�� > t
⇤
 2 · exp

⇥
�C ·min(t2 · kAk�2

fro , t · kAk
�1)
⇤

Proof. See [55] for a detailed proof.

Applying Lemma C.2 to (x, u) ⇠ N(0, e⌃K) with e⌃K defined in (D.16), we obtain

P
⇥��kxk22 + kuk22 � tr

�e⌃K

��� > t
⇤
 2 · exp

⇥
�C ·min

�
t
2
·
��e⌃K

���2

fro
, t ·

��e⌃K

���1�⇤
. (C.18)

Setting t = C1 · log T ·
��e⌃Kk in (C.18) with constant C1 sufficiently large, it holds that

t
2
·
��e⌃K

���2

fro
=
��e⌃K

���2

fro
· C

2
1 · log2 T · ke⌃K

��2 � C
2
1 · (d+ k)�1

· log2 T � t ·
��e⌃K

���1
,

(C.19)

where the first inequality follows from the relation between the operator and Frobenius norms,
and the second inequality holds when log T � C

�1
1 · (d + k). For ease of presentation, for any

t 2 {0, 1, . . . , T}, we define

Et =
n��kxtk

2
2 + kutk

2
2 � tr

�e⌃K

���  C1 · log T ·
��e⌃K

��
o
, (C.20)

and write E =
T

0tT Et. Combining (C.18) and (C.19), we obtain that Et holds with probability
at least 1 � T

�6. Thus, by taking a union bound for {(xt, ut)}Tt=0, we have P(E) � 1 � 2T�5.
Moreover, combining (C.20) and (D.17) further implies that, on event E , we have

max
0tT

�
kxtk

2
2 + kutk

2
2

 
 C1 · log T ·

��e⌃K

��+ tr
�e⌃K

�

�
C1 · log T + d+ k

�
·
��e⌃K

��

 2C1 · log T ·
��e⌃K

��  2C1 · log T ·
⇥
�
2 + (1 + kKk2fro) · k⌃Kk

⇤
. (C.21)

In the sequel, we study the stochastic optimization problem in (3.18) with the restriction that E holds.
Specifically, for any state-action pair (x, u), we define the truncated feature function as

e�(x, u) = �(x, u) · 1
n��k�(x, u)k22 � tr(e⌃K)

��  C1 · log T ·
��e⌃K

��
o
. (C.22)

By this definition, for any t 2 {0, . . . , t}, we have e�(xt, ut) = �(xt, ut) · 1Et . Now we replace
�(x, u) by e�(x, u) in (3.18) and consider the following minimiax optimization problem:

min
#2X⇥

max
!2X⌦

eF (#,!) =
⌦
E(x,u,x0,u0)

⇥ eG(x, u, x0
, u

0;#)
⇤
,!
↵
� 1/2 · k!k22, (C.23)
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where, similar to G(x, u, x0
, u

0;#) in (C.1), we define eG(x, u, x0
, u

0;#) by
eG1(x, u, x0

, u
0;#) = #

1
� ec(x, u),

eG2(x, u, x0
, u

0;#) = #
1
· e�(x, u) +

�⇥e�(x, u)� e�(x0
, u

0)
⇤>

#
2
� ec(x, u)

 
· e�(x, u).

(C.24)

Here we denote ec(x, u) = he�(x, u), svec[diag(Q,R)]i in (C.24) to simplify the notation.

We remark that, when E is true, (b#, b!) is also the solution returned by the gradient-based algorithm
for the minimax optimization problem in (C.23). As a result, when E holds, the primal-dual gap of
(C.23) is equal to max!2X⌦

eF (b#,!)�min#2X⇥
eF (#, b!).

In the following, we characterize the difference between the objective functions in (3.18) and (C.23).
For any (#,!) 2 X⇥ ⇥ X⌦, by (C.2) and (C.23) we have
��F (#,!)� eF (#,!)

�� =
��⌦E(x,u,x0,u0)

⇥
G(x, u, x0

, u
0;#)� eG(x, u, x0

, u
0;#)

⇤
,!
↵��


��E(x,u,x0,u0)

⇥
G

1(x, u, x0
, u

0;#)� eG1(x, u, x0
, u

0;#)
⇤�� · J(K0)

+
��E(x,u,x0,u0)

⇥
G

2(x, u, x0
, u

0;#)� eG2(x, u, x0
, u

0;#)
⇤��

2
· eR⌦.
(C.25)

By the definitions of G(x, u, x0
, u

0;#) and eG(x, u, x0
, u

0;#) in (C.1) and (C.24), we have

G
1(x, u, x0

, u
0;#)� eG1(x, u, x0

, u
0;#) = c(x, u) · 1Ac (C.26)

G
2(x, u, x0

, u
0;#)� eG2(x, u, x0

, u
0;#) = G

2(x, u, x0
, u

0;#) · 1Ac +�(x0
, u

0)>#2
· �(x, u) · 1A ·1Bc ,

where we denote {|k�(x, u)k22 � tr(e⌃K)|  C1 · log T · ke⌃Kk} and {|k�(x, u)k22 � tr(e⌃K)| 
C1 · log T · ke⌃Kk} by A and B, respectively, and A

c, Bc are the complement sets of A and B.

For the first term on the right-hand side of (C.25), Cauchy-Schwarz inequality implies that
��E(x,u,x0,u0)

⇥
G

1(x, u, x0
, u

0;#)� eG1(x, u, x0
, u

0;#)
⇤�� 

p
P(Ac) ·

p
E[c2(x, u)]. (C.27)

Since c(x, u) is a quadratic form of a Gaussian random variable, by Lemma D.3, we have

E[c2(x, u)] = 2 tr
⇥e⌃Kdiag(Q,R)e⌃Kdiag(Q,R)

⇤
+
�
tr
⇥e⌃Kdiag(Q,R)

⇤ 2

 3(kQkfro + kRkfro)
2
· ke⌃Kk

2
fro  3(kQkfro + kRkfro)

2
·
⇥
�
2
· k + (d+ kKk2fro)

2
· k⌃Kk

2
⇤
,

where the last inequality follows from (D.17). Besides, for the second term on the right-hand side of
(C.25), combining (C.25), (C.26), triangle inequality, and Cauchy-Schwarz inequality, we have
��E(x,u,x0,u0)

⇥
G

2(x, u, x0
, u

0;#)� eG2(x, u, x0
, u

0;#)
⇤��

2



n��E(x,u,x0,u0)[G
2(x, u, x0

, u
0;#) · 1Ac ]

��
2
+
��E(x,u,x0,u0)[�(x

0
, u

0)>#2
· �(x, u)1Bc ]

��
2

o



np
P(Ac) ·

q
E
⇥��G2(x, u, x0, u0;#)

��2
2

⇤
+
p

P(Bc) ·
q

E
⇥���(x, u) · �(x0, u0)>#2

��2
2

⇤o
.

(C.28)

For the expectations on the right-hand side of (C.28), using the inequality (a+ b)2  2a2 + 2b2, we
have

E
⇥��G2(x, u, x0

, u
0;#)

��2
2

⇤

 2 · E
n⇥

#
1
� c(x, u) + �(x, u)>#2

⇤2
· k�(x, u)k22

o
+2 · E

⇥���(x, u) · �(x0
, u

0)>#2
��2
2

⇤
.

(C.29)

Further applying Cauchy-Schwarz inequality to (C.29), we have

E
n⇥

#
1
� c(x, u) + �(x, u)>#2

⇤2
· k�(x, u)k22

o



⇣
E
�⇥
#
1
� c(x, u) + �(x, u)>#2

⇤4 
·E
⇥
k�(x, u)k42

⇤⌘1/2
, (C.30)

E
⇥���(x, u) · �(x0

, u
0)>#

��2
2

⇤


⇣
E
⇥
|�(x0

, u
0)>#|4

⇤
· E
⇥
k�(x, u)k42

⇤⌘1/2
. (C.31)
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Since the marginal distributions of (x, u) and (x0
, u

0) are both N(0, e⌃K), in (C.30) and (C.31) we
bound the two terms in (C.29) using the fourth moments of N(0, e⌃K), which can be written as a
polynomial of J(K0), kKkfro, kQk, kRk, eR⇥, and eR⌦.

Meanwhile, recall that we have shown that P(Ac)  T
�6 and P(Bc)  T

�6. Thus, when T is
sufficiently large, by combining (C.25), (C.27), (C.28), and (C.29), we have |F (#,!)� eF (#,!)| 
1/T, which implies that

���Gap(b#, b!)�
h
max
!2X⌦

eF (b#,!)� min
#2X⇥

eF (#, b!)
i���

 max
!2X⌦

��F (b#,!)� eF (b#,!)
��+ max

#2X⇥

��F (#, b!)� eF (#, b!)
��  2

T
. (C.32)

Hereafter, we study the primal-dual gap in (C.13) conditioning on event E . To simplify the notation,
we define function H(#,!;�,�0) on X⇥ ⇥ X⌦ by

H(#,!;�,�0) =
⌦ eG(x, u, x0

, u
0;#),!

↵
� 1/2 · k!k22,

where the function e�(x, u) is defined in (C.22), and we denote e�(x, u) and e�(x0
, u

0) by � and
�
0, respectively. Using this definition, the objective function eF (#,!) in (C.23) can be written as
eF (#,!) = E(x,u,x0,u0)[H(#,!;�,�0)], where (x, u) and (x0

, u
0) are two consecutive state-action

pairs. Note that H(#,!;�,�0) is a quadratic function of (#,!) for all � and �
0. The partial gradients

of H(#,!;�,�0) are given by

r#1H(#,!;�,�0) = !
1 + e�(x, u)>!2

, (C.33)

r#2H(#,!;�,�0) = [e�(x, u)>!2] · [e�(x, u)� e�(x0
, u

0)], (C.34)

r!1H(#,!;�,�0) = #
1
� ec(x, u)� !

1
, (C.35)

r!2H(#,!;�,�0) = eG2(x, u, x0
, u

0;#)� !
2
. (C.36)

By combining (C.22), (C.33), and (C.34), we can bound the norm of r#H(#,!;�,�0) by

kr#H(#,!;�,�0)
��
2
 |!

1 + e�(x, u)>!2
|+
��[e�(x, u)>!2] · [e�(x, u)� e�(x0

, u
0)]
��
2

(C.37)

 |!
1
|+ 2ke�(x, u)k2 · k!2

k2 ·
⇥
ke�(x, u)k2 + ke�(x0

, u
0)k2

⇤

 J(K0) + 16C2
1 · (1 + kKk2fro)

2
· log2 T ·

⇥
�
2 + (1 + kKk2fro) · k⌃Kk

⇤2
· eR⌦.

Here the second inequality holds when ke�(x, u)k2 � 1 and the last inequality follows from (C.21).
Similarly, combining triangle inequality, (C.35), and (C.36), we have
��r!H(#,!;�,�0)

��
2
 |#

1
� ec(x, u)� !

1
|++

⇥
(kQkfro + kRkfro) · ke�(x, u)k2

+ (ke�(x0
, u

0)k2 + ke�(x, u)k2) · eR⇥
⇤
· ke�(x, u)k2

 2J(K0) + 16C2
1 · log2 T ·

⇥
�
2 + (1 + kKk2fro) · k⌃Kk

⇤2
· eR⇥. (C.38)

where the last equality holds since eR⇥ � kQkfro+kRkfro. Moreover, we haver2
##H(#,!;�,�0) =

0 and �r2
!!H(#,!;�,�0) is the identity matrix.

We utilize the following lemma, obtained from [69], to handle the dependence along the trajectory.
Lemma C.3 (Geometrically �-mixing). Consider a linear dynamical system Xt+1 = LXt + ",
where {Xt}t�0 ✓ Rm, " ⇠ N(0, ) is the random noise, and L 2 Rm⇥m has spectral radius smaller
than one. We denote by ⌫t the marginal distribution of Xt for all t � 0. Besides, the stationary
distribution of this Markov chain is denoted by N(0,⌃1). For any integer k � 1, we define the k-th
mixing coefficient as

�(k) = sup
t�0

Ex⇠⌫t

⇥��PXk(· |X0 = x)� PN(0,⌃1)(·)
��

TV

⇤
.

Furthermore, for any ⇢ 2 (⇢(L), 1) and any k � 1, we have

�(k)  C⇢,L ·
⇥
tr(⌃1) +m · (1� ⇢)�2

⇤1/2
· ⇢

k
,

where C⇢,L is a constant that solely depends on ⇢ and A. That is, {Xt}t�0 is geometrically �-mixing.
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Proof. See Proposition 3.1 in [69] for a detailed proof.

Recall that under policy ⇡K , {(xt, ut)}t�0 form a linear dynamic system characterized by (D.13)
and (D.14). Since ⇢(L) = ⇢(A�BK) < 1, Lemma C.3 implies that, for all ⇢ 2 (⇢(A�BK), 1),
(xt, ut)t�0 is a geometrically �-mixing stochastic process with parameter ⇢. The following theorem,
adapted from Theorem 1 in [72], establishes the primal-dual gap for a convex-concave minimax
optimization problem involving a geometrically �-mixing stochastic process.
Theorem C.4 (Primal-dual gap for minimax optimization). Let X and Y are bounded and closed
convex sets such that kx�x

0
k2  D for all x, x0

2 X and ky�y
0
k2  D for all y, y0 2 Y . Consider

the gradient algorithm for stochastic minimax optimization problem

min
x2X

max
y2Y

F (x, y) = E⇠⇠⇡⇠ [�(x, y; ⇠)], (C.39)

where ⇠ is a random variable with distribution ⇡⇠ and F (x, y) is convex in x and concave in y.
In addition, we assume that ⇡⇠ is the stationary distribution of a Markov chain {⇠t}t�0 which is
geometrically �-mixing with parameter ⇢ 2 (0, 1). Specifically, we assume that there exists a constant
C⇠ > 0 such that, for all k � 1, the k-th mixing coefficient satisfy �(k)  C⇠ · ⇢

k. Furthermore, we
consider the case where, almost surely for every ⇠ ⇠ ⇡⇠, �(x, y; ⇠) is L1-Lipschitz in both x and y,
rx�(x, y; ⇠) is L2-Lipschitz in x for all y 2 Y , andry�(x, y; ⇠) is L2-Lipschitz in y for all x 2 X .
Here, without loss of generality, we assume that D,L1, L2 > 1. Consider solving the optimization
problem in (C.39) via T iterations of the gradient-based updates

xt = ⇧X
⇥
xt�1 � ↵trx�(xt�1, yt�1; ⇠t�1)

⇤
, yt = ⇧Y

⇥
yt�1 + ↵t ·ry�(xt�1, yt�1; ⇠t�1)

⇤
,

where t 2 [T ], ⇧X and ⇧Y are projection operators, and {↵t = ↵/
p
t}t2[T ] are the stepsizes, where

↵ > 0 is a constant. Let

bx =

P
t2[T ] ↵t · xtP

t2[T ] ↵t
, by =

P
t2[T ] ↵t · ytP

t2[T ] ↵t

be the final output of the algorithm. Then, there exists an absolute constant C > 0 such that, for any
� 2 (0, 1), with probability at least 1� �, the primal-dual gap satisfies

max
y2Y

F (bx, y)�min
x2X

F (x, by)  C · (D2 + L
2
1 + L1L2D)

log(1/⇢)
·
log2 T + log(1/�)

p
T

+
C · C⇠L1D

T
.

Proof. This theorem follows from Theorem 1 in [72], where we set ↵t = ↵/
p
t for all t � 1, and

focus on the case where {⇠t}t�0 is geometrically �-mixing. Under the mixing assumption, for any
k � 1, the k-th mixing coefficient of {⇠t}t�0 satisfies �(k)  C⇠ · ⇢

k. Then, for any �, ⌘ 2 (0, 1),
Theorem 1 in [72] implies

max
y2Y

F (bx, y)�min
x2X

F (x, by) 
✓ TX

t=1

↵t

◆�1
 
A0 +A1 · ⌘ ·

TX

t=1

↵t +A2
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t=1

↵
2
t+ (C.40)

16DL1 ·

⇢
2⌧(⌘) · log[⌧(⌘)/�] ·

 TX

t=1

↵
2
t + ⌧(⌘) · ↵1

��1/2
!
,

where we define ⌧(⌘) = log(⌘/C⇠)/ log(⇢) and denote

A0 = D
2 + 12D · ↵1 · ⌧(⌘) A1 = 4L1D A2 = 10L2

1 + (24L2
1 + 8L1L2D) · ⌧(⌘).

Now we set ↵t = ↵/
p
t and ⌘ = C⇠/T in (C.40), which implies that ⌧(⌘) = log T/ log(1/⇢).

Moreover, note that for all T � 1, we have 2
p
T + 1�2 

PT
t=1 1/

p
t  2

p
T�1 and

PT
t=1 1/t 

log T + 1. The last term on the right-hand side of (C.40) can be upper bounded by

16DL1 ·
�
2 log T/ log(1/⇢) · log[⌧(⌘)/�] ·

⇥
log T + 1 + ↵ · log T/ log(1/⇢)

⇤ 1/2

 16DL1 ·
�
2 log T/ log(1/⇢) · [log log T + log(1/�)] ·

⇥
log T + 1 + ↵ · log T/ log(1/⇢)

⇤ 1/2

 C ·DL1 · log T/ log(1/⇢) ·
p
log log T + log(1/�), (C.41)
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where C is an absolute constant. Moreover, for the first three terms, we have

A0 = D
2 + 12D · ↵ · log T/ log(1/⇢)  C ·D

2 log T/ log(1/⇢), A1 · ⌘  C · C⇠L1D/T,

(C.42)

A2 ·

TX

t=1

↵
2
t 

⇥
10L2

1 + (24L2
1 + 8L1L2D) · log T/ log(1/⇢)

⇤
· (log T + 1)

 C · [L2
1 + L1L2D] · log2 T/ log(1/⇢). (C.43)

Thus, combining (C.40), (C.41), (C.42), and (C.43), we obtain that

max
y2Y

F (bx, y)�min
x2X

F (x, by)  C ·
⇥
(D2 + L

2
1 + L1L2D)/ log(1/⇢) · log T · log(T/�)/

p

T + C⇠L1D/T
⇤
,

which concludes the proof of Theorem C.4.

In order to apply Theorem C.4 to the minimax optimization in (C.23), we only need to specify
parameters C⇠, D, L1, and L2. First, for any ⇢ 2 (⇢(A�BK), 1), by Lemma C.3, we can set

C⇠ = C⇢,L ·
⇥
tr(e⌃K) + (d+ k) · (1� ⇢)2]1/2

 2C⇢,L ·
p
d+ k ·

�⇥
�
2 + (1 + kKk2fro) · k⌃Kk

⇤1/2
+ (1� ⇢)�1

 
. (C.44)

Moreover, by the definitions of X⇥ and X⌦ in (4.1) and (4.2), respectively, we can set D by

D
2 = 2[J(K0)]

2 + eR2
⇥ + (1 + kKk2fro)

4
· eR2

⌦. (C.45)

Moreover, by (C.37), (C.38), and the form of r2
G(✓,!;�,�0), we have

L1  16C2
1 · log2 T ·

⇥
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2 + (1 + kKk2fro) · k⌃Kk

⇤2
·
⇥
(1 + kKk2fro)

2
· eR⌦ + eR⇥

⇤
, L2 = 1.

(C.46)

Combining Theorem C.4, (C.44), (C.45), and (C.46), we to obtain an upper bound for the primal-dual
gap in (C.13). Specifically, for any ⇢ 2 (⇢(A�BK), 1) and any � 2 (0, 1), with probability at least
1� �, the primal-dual gap of the optimization problem in (C.23) is bounded by

C · log4 T ·
⇥
�
2 + (1 + kKk2fro) · k⌃Kk

⇤4
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◆
. (C.47)

where C > 0 is an absolute constant. Besides, we note that � is a constant and that k⌃Kk �

�min( ) > 0. Finally, recall that, when event E holds, the primal-dual gap is equal to
max!2X⌦

eF (b#,!) � min#2X⇥
eF (#, b!). Combining (C.32), (C.47) with � = T

�5, and the fact
that P(E) � 1� 2T�5, we conclude that
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log6 T
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T

(C.48)

holds with probability at least 1� 3T�5
� 1� T

�4, where in the second inequality we use the fact
that 1 � 1/x < log x < x + 1 holds for all x > 0, which implies that 1/ log(1/⇢)  1/(1 � ⇢).
This further implies that the first term on the right-hand side of the first inequality dominates the
second term. The upper bound of Gap(b#, b!) in (C.48) concludes the last step of our proof. Finally,
combining (C.17) and (C.48), we complete the proof of Theorem 4.2.
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C.2 Proof of Theorem 4.3

Proof. Our proof of the global convergence can be decomposed into two steps. In the first step,
similar to the analysis in [26], we study the geometry of the average return J(K), as a function of
K. Specifically, we show that J(K) is gradient dominated [51]. Note that we study the ergodic
setting with system noise and stochastic policies. In contrast, [26] study the case where both the
transition and the policy are deterministic. Thus, their analysis of the geometry of J(K) cannot be
directly applied to our problem. Motivated by their analysis, we follow the similar approach to with
modifications for our setting. In addition, in the second step, we utilize the geometry of J(K) to
show the global convergence of the actor-critic algorithm. Specifically, combining Theorem 4.2, we
show that, with high probability, Algorithm 1 constructs a sequence of policies that converges linearly
to the optimal policy ⇡K⇤ .

Step 1. As shown in (3.8) in Proposition 3.1, we can write J(K) as

J(K) = tr(PK �) + �
2
· tr(R) = Ex2N(0, �)

�
x
>
PKx

�
+ �

2
· tr(R).

In the following lemma, for two policies ⇡K and ⇡K0 , we bound the difference between x
>
PKx

and x
>
PK0x. Then, taking expectation with respect to x 2 N(0, �) yields the difference between

J(K) and J(K 0).
Lemma C.5. Let K and K

0 be two stable policies such that both ⇢(A�BK) and ⇢(A�BK
0) are

smaller than one. For any x 2 Rd, let {x0
t}t�0 ✓ Rd be the sequence of states satisfying x

0
0 = x and

x
0
t+1 = (A�BK

0)x0
t for all t � 0. Then it holds that

x
>
PK0x� x

>
PKx =

X

t�0

AK,K0(x0
t),

where the function AK,K0 : Rd
! Rd is defined as

AK,K0(x) = 2x>(K 0
�K)>EKx+ x

>(K 0
�K)>(R+B

>
PKB)(K 0

�K)x.

Proof. Note that both PK and PK0 satisfy the Bellman equation specified in (3.4). Moreover, using
the operator T >

K defined in (D.3), we have PK0 = T
>
K0(Q+K

0>
RK

0), which is equivalent to

x
>
PK0x =

X

t�0

x
>[(A�BK

0)t]>
�
Q+K

0>
RK

0�[(A�BK
0)t]x. (C.49)

By the construction in Lemma (C.5), for all t � 0, we have (A�BK
0)tx = x

0
t. Thus, by (C.49) we

have

x
>
PK0x =

X

t�0

x
0
t
>�

Q+K
0>
RK

0�
x
0
t =

X

t�0

�
x
0
t
>
Qx

0
t + u

0
t
>
Ru

0
t

�
, (C.50)

where we define u
0
t = �K

0
x
0
t for all t � 0. Thus, by (C.50), we have the following telescoping sum:

x
>
PK0x� x

>
PKx =

X

t�0

⇥
(x0

t
>
Qx

0
t + u

0
t
>
Ru

0
t

�
+ x

0
t
>
PKx

0
t � x

0
t
>
PKx

0
t

⇤
� x

0
0
>
PKx

0
0

=
X

t�0

⇥
(x0

t
>
Qx

0
t + u

0
t
>
Ru

0
t

�
+ x

0
t+1

>
PKx

0
t+1 � x

0
t
>
PKx

0
t

⇤
. (C.51)

Thus, in (C.51) we write x
>
PK0x� x

>
PKx as a summation where each term can be written as a

quadratic function of xt. To further simplify (C.51), for any x 2 Rd, we have

x
>
Qx+ (�K 0

x)>R(�K 0
x) + [(A�BK

0)x]>PK [(A�BK
0)x]� x

>
PKx (C.52)

= x
>⇥

Q+ (K 0
�K +K)>R(K 0

�K +K)
⇤
x+

x
>⇥

A�BK �B(K 0
�K)

⇤>
PK

⇥
A�BK �B(K 0

�K)
⇤
x� x

>
PKx

= 2x>(K 0
�K)>

⇥
(R+B

>
PKB)K �B

>
PKA

⇤
x+ x

>(K 0
�K)>(R+B

>
PKB)(K 0

�K)x.

= 2x>(K 0
�K)>EKx+ x

>(K 0
�K)>(R+B

>
PKB)(K 0

�K)x,

where EK = (R+B
>
PKB)K �B

>
PKA. Finally, combining (C.51) and (C.52), we complete the

proof of this lemma.
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In the following lemma, we utilize Lemma C.5 to show that J(K) is gradient dominated.
Lemma C.6 (Gradient domination of J(K)). Let K⇤ be an optimal policy. Suppose K has finite
cost. Then, it holds that

�min( ) · kR+B
>
PKBk

�1
· tr(E>

KEK)  J(K)� J(K⇤)

 1/�min(R) · k⌃K⇤k · tr(E>
KEK). (C.53)

Proof. For the upper bound in (C.53), bu (3.8) we obtain that

J(K)� J(K⇤) = tr[(PK � P
⇤
K) �] = Ex⇠N(0, �)

⇥
x
>(PK � P

⇤
K)x

⇤
, (C.54)

where � =  +�
2
BB

> does not involve K or K⇤. Applying Lemma C.5 to (C.54) with K
0 = K

⇤,
we have

J(K)� J(K⇤) = �Ex⇤
0⇠N(0, �)

X

t�0

AK,K⇤(x⇤
t )

�
, (C.55)

where we define x
⇤
t = (A�BK

⇤)tx⇤
0 for all t � 0. Besides, by direct computation, we have

Ex⇤
0⇠N(0, �)

X

t�0

x
⇤
t (x

⇤
t )

>
�

= Ex⇠N(0, �)

⇢X

t�0

(A�BK
⇤)txx>[(A�BK

⇤)t]>
�

= TK⇤( �) = ⌃K⇤ , (C.56)

where the operator TK is defined in (D.3).

Meanwhile, by the definition of AK,K0 , for any x 2 Rd, by completing the squares we have

AK,K0(x) = 2x>(K 0
�K)>EKx+ x

>(K 0
�K)>(R+B

>
PKB)(K 0

�K)x

= tr
n
xx

>⇥
K

0
�K + (R+B

>
PKB)�1

EK

⇤>
(R+B

>
PKB)

⇥
K

0
�K + (R+B

>
PKB)�1

EK

⇤o

� tr
⇥
xx

>
E

>
K(R+B

>
PKB)�1

EK

⇤

� � tr
⇥
xx

>
E

>
K(R+B

>
PKB)�1

EK

⇤
, (C.57)

where the equality is attained by K
0 = K � (R+B

>
PKB)�1

EK .

Thus, combining (C.55), (C.56), and (C.57), we obtain that

J(K)� J(K⇤)  tr
⇥
⌃K⇤E

>
K(R+B

>
PKB)�1

EK

⇤
 k⌃K⇤k · tr

⇥
⌃K⇤E

>
K(R+B

>
PKB)�1

EK

⇤

 k⌃K⇤k · k(R+B
>
PKB)�1

k · tr(E>
KEK). (C.58)

Notice that R+B
>
PKB ⌫ R implies (R+B

>
PKB)�1

� R
�1. Therefore, by (C.58) we obtain

that J(K) � J(K⇤)  1/�min(R) · k⌃K⇤k · tr(E>
KEK), which establishes the upper bound in

(C.53).

Furthermore, for the lower bound, since K
0 = K � (R+B

>
PKB)�1

EK attains the lower bound
in (C.57) and K

⇤ is the optimal policy, similar to (C.55) and (C.56), we have

J(K)� J(K⇤) � J(K)� J(K 0) = �Ex⇤
0⇠N(0, �)

X

t�0

AK,K0(x0
t)

�

= tr
⇥
⌃K0E

>
K(R+B

>
PKB)�1

EK

⇤
� �min( ) · kR+B

>
PKBk

�1
· tr(E>

KEK),

where in the first equality we define x
0
t = (A�BK

0)t for all t � 0, and the last inequality follows
from the fact that ⌃K0 ⌫  ⌫ �min( ) · Id. Therefore, we conclude the proof of Lemma C.6.

Notice that K = K
⇤ achieves the minimum of J(K). Lemma C.6 implies that

J(K)� J(K⇤)  � · hEK , EKi,
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where � = 1/�min(R) · k⌃K⇤k. That is, the difference of the objective can be bounded by the
norm of the natural gradient. Therefore, updating the policy parameter K in the direction of natural
gradient EK yields decreases the objective value. Therefore, we conclude the first step.

Step 2. In the second part of the proof, equipped with Lemma C.6, we establish the global convergence
of the natural actor-critic algorithm. Recall that we assume that the initial policy ⇡K0 is stable, which
implies that J(K0) is finite. Moreover, according to Algorithm 1, the policy parameters are updated
via

Kt+1 = Kt � � · bEKt ,
bEKt = b⇥22

t Kt �
b⇥21
t , (C.59)

where b⇥t is the estimator of ⇥Kt returned by Algorithm 2.

We use mathematical induction to show that {J(Kt)}t�0 is a monotone decreasing sequence. Suppose
J(Kt)  J(K0). We define K 0

t+1 = Kt � � ·EKt , i.e., K 0
t+1 is obtained by a single step of natural

policy gradient, starting from Kt. In the sequel, we use J(K 0
t+1) to connect J(Kt) and J(Kt+1).

By Lemma C.5, we have
J(K 0

t+1)� J(Kt) = Ex⇠N(0, �)[x
>(PK0

t+1
� PKt)x]

= �2� · tr
�
⌃K0

t+1
· E

>
Kt

EKt

�
+ �

2
· tr
⇥
⌃K0

t+1
· E

>
Kt

(R+B
>
PKtB)EKt

⇤

= �2� · tr
�
⌃K0

t+1
· E

>
Kt

EKt

�
+ �

2
· kR+B

>
PKtBk · tr

�
⌃K0

t+1
· E

>
Kt

EKt

�
.

(C.60)
When � is sufficiently small such that

� ·
⇥
kRk+ �

�1
min( ) · kBk

2
· J(K0)

⇤
 1, (C.61)

by triangle inequality, we have
� · kR+B

>
PKtBk  � ·

⇥
kRk+ kBk2 · kPKtk

⇤
 � ·

⇥
kRk+ �

�1
min( ) · kBk

2
· J(K0)

⇤
< 1,

(C.62)
where the second inequality follows from Lemma C.1 and the induction assumption that J(Kt) 
J(K0), and the last inequality follows from (C.61). Thus, combining (C.60) and (C.62), we have

J(K 0
t+1)� J(Kt)  �� · tr

�
⌃K0

t+1
· E

>
Kt

EKt

�
 �� · �min( ) · tr

�
E

>
Kt

EKt

�
,

 �� · �min( ) · �min(R) · k⌃K⇤k
�1

·
⇥
J(Kt)� J(K⇤)

⇤
. (C.63)

where the third inequality follows from the fact that ⌃K0
t+1
⌫  , and the last inequality follows from

Lemma C.6. Note that (C.63) implies that J(K 0
t+1)  J(Kt)  J(K0).

Furthermore, by the difference between J(Kt+1) and J(K 0
t+1) can be bounded by

��J(Kt+1)� J(K 0
t+1)

�� =
��tr
⇥
(PKt+1 � PK0

t+1
) · �

⇤��  k �kfro ·
��PKt+1 � PK0

t+1

��


⇥
k kfro ·+�

2
· kBk

2
fro

⇤
·
��PKt+1 � PK0

t+1

��. (C.64)

Now we utilize the following Lemma, obtained from [26], to construct and upper bound for kPKt+1�

PK0
t+1
k.

Lemma C.7 (Perturbation of PK). Suppose ⇡K0 is a small perturbation of ⇡K in the sense that
kK

0
�Kk  �min( )/4 · k⌃Kk

�1
kBk

�1
· (kA�BKk+ 1)�1

, (C.65)
then we have
kPK0 � PKk  6��1

min( ) · k⌃Kk · kKk · kRk

·
�
kKk · kBk · kA�BKk+ kKk · kBk+ 1

�
· kK �K

0
k. (C.66)

Proof. This lemma is a slight modification of Lemma 24 in [26]. Here we sketch the proof. See [26,
Lemmas 17 and 24] for a detailed proof.

Recall that we define operator TK in (D.3). The operator norm of TK is defined as kTKk 
sup⌦ kTK(⌦)k/k⌦k, where the supremum is taken over all symmetric matrices. As shown in
Lemma 17 in [26], we have kTKk  �

�1
min( ) · k⌃Kk. Moreover, under the condition in (C.65), in

the proof of Lemma 24 in [26], it is shown that
kPK0 � PKk  6kTKk · kKk · kRk ·

�
kKk · kBk · kA�BKk+ kKk · kBk+ 1

�
· kK �K

0
k.

Combining this with the upper bound on kTKk, we conclude the proof.
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To use this lemma, we need to verify (C.65). That is,

4kKt+1 �K
0
t+1k · (1 + kA�BK

0
t+1k) · kBk · k⌃K0

t+1
k  �min( ). (C.67)

By the definition of Kt+1 and K
0
t+1, we have

kKt+1 �K
0
t+1k = � · k bEKt � EKtk  � · kb⇥t �⇥Ktkfro · (1 + kKtk), (C.68)

where bEKt is defined in (C.59). Plugging (C.68) into the left-hand side of (C.67), we obtain that

4kKt+1 �K
0
t+1k · (1 + kA�BK

0
t+1k) · kBk · k⌃K0

t+1
k

 4� · kb⇥t �⇥Ktkfro · (1 + kKtk) · (1 + kA�BK
0
t+1k) · kBk · k⌃K0

t+1
k. (C.69)

Utilizing Lemma (C.1) and the fact that J(K 0
t+1)  J(K0), we have

k⌃K0
t+1
k  J(K 0

t+1)/�min(Q)  J(K0)/�min(Q). (C.70)

In addition, by triangle inequality, we have

kA�BK
0
t+1k  kA�BKtk+ � · kBk · kEKtk

 kA�BKtk+ � · kBk · k⇥Ktk · (1 + kKtk). (C.71)

By the definition of ⇥K in (3.7), we have

k⇥Ktk  kQk+ kRk+ (kAkfro + kBkfro)
2
· kPKtk

 kQk+ kRk+ (kAkfro + kBkfro)
2
· J(K0)/�min( ), (C.72)

where the last inequality follows from Lemma (C.1) and the induction assumption. Furthermore, by
triangle inequality, it holds that

kKt+1k  kKtk+ � · kEKtk  kKtk+ � · k⇥Ktk · (1 + kKtk)

 kKtk+ � ·
⇥
kQk+ kRk+ (kAkfro + kBkfro)

2
· J(K0)/�min( )

⇤
· (1 + kKtk).

(C.73)

In the sequel, we set

� =
⇥
kRk+ �

�1
min( ) · kBk

2
· J(K0)

⇤�1
. (C.74)

Note that we assume that kQk, kRk, kAk, kBk, �min(Q), �min(R) are all constants. Combining
(C.69), (C.70), (C.71), and (C.72), we conclude that there exists a polynomial ⌥1(·, ·) such that

4kKt+1 �K
0
t+1k · (1 + kA�BK

0
t+1k) · kBk · k⌃K0

t+1
k  ⌥1

⇥
kKtk, J(K0)

⇤
· kb⇥t �⇥Ktkfro.

(C.75)

Furthermore, for the right-hand side of (C.66), combining (C.68), (C.69), (C.70), (C.71), (C.72), and
(C.73). we conclude that there exists a polynomial ⌥2(·, ·) such that
⇥
k kfro ·+�

2
· kBk

2
fro

⇤
· 6��1

min( ) · k⌃K0
t+1
k · kKt+10k · kRk

·
�
kK

0
t+1k · kBk · kA�BK

0
t+1k+ kK

0
t+1k · kBk+ 1

�
· kKt+1 �K

0
t+1k

 ⌥2

⇥
kKtk, J(K0)

⇤
· kb⇥t �⇥Ktkfro. (C.76)

Meanwhile, in Theorem 4.2 we have shown that, there exists a polynomial ⌥3(·, ·) such that, for T
sufficiently large, Algorithm 2 with T iterations returns an estimator b⇥t for ⇥Kt such that

kb⇥t �⇥Ktkfro 
⌥3

⇥
kKtk, J(K0)

⇤


⇤
Kt

·
p

(1� ⇢)
·
log3 T

T 1/4
(C.77)

holds with probability at least 1� T
�4, where ⇢ 2 (⇢(A�BKt), 1) and 

⇤
Kt

is specified in Lemma
3.2, which depends only on ⇢, �, and �min( ). Notice that log3 T ·T

�1/4
 T

�1/5 for T sufficiently
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large. Therefore, in the GTD algorithm for estimating ⇥Kt , we set the number of iterations Tt

sufficiently large such that

⌥1

⇥
kKtk, J(K0)

⇤
·⌥3

⇥
kKtk, J(K0)

⇤
· 

⇤
Kt

�1
· (1� ⇢)�1/2

· T
�1/5
t  �min( ),

⌥2

⇥
kKtk, J(K0)

⇤
·⌥3

⇥
kKtk, J(K0)

⇤
· 

⇤
Kt

�1
· (1� ⇢)�1/2

· T
�1/5
t

 ✏/2 · �min( ) · �min(R) · k⌃K⇤k
�1 (C.78)

hold simultaneously. For such a Tt, combining (C.75) and (C.77), we conclude that (C.67) holds.
Lemma C.7 implies that (C.66) is true. Combining (C.64), (C.66), (C.76), and (C.77), we conclude
that

��J(Kt+1)� J(K 0
t+1)

��  ✏/2 · �min( ) · �min(R) · k⌃K⇤k
�1 (C.79)

holds with probability at least 1 � T
�4
t . Thus, when J(Kt) � J(K⇤) > ✏, combining (C.63) and

(C.79) we have

J(Kt+1)� J(Kt)  �✏/2 · ��min( ) · �min(R) · k⌃K⇤k
�1

< 0.

Therefore, we have shown that, as long as J(Kt) � J(K⇤) � ✏, J(Kt+1) < J(Kt) holds with
probability at least 1� T

�1/4
t .

Meanwhile, (C.63) implies that,

J(K 0
t+1)� J(K⇤) 

⇥
1� � · �min( ) · �min(R) · k⌃K⇤k

�1
⇤
·
⇥
J(Kt)� J(K⇤)

⇤

By (C.79), when J(Kt)� J(K⇤) � ✏, with probability 1� T
�4
t , we have

J(Kt+1)� J(K⇤) 
⇥
1� �/2 · �min( ) · �min(R) · k⌃K⇤k

�1
⇤
·
⇥
J(Kt)� J(K⇤)

⇤
,

which shows that, in terms of the policy parameter, natural actor-critic algorithm converges linearly.
Specifically, with

N � 2k⌃K⇤k/� · �
�1
min( ) · �

�1
min(R) · log

�
2[J(K0)� J(K⇤)]/✏

 
(C.80)

policy updates, we have J(KN )� J(K⇤)  ✏ with high-probability, where � is specified in (C.74).

Finally, it remains to determine Tt for all t 2 [N ]. Notice that Tt satisfies the two inequalities in
(C.78). Thus, we set

Tt � ⌥4[kKtk, J(K0)] · 
⇤
Kt

�5
· (⌅Kt) ·

⇥
1� ⇢(A�BKt)

⇤�5/2
· ✏

�5

for some polynomial function ⌥4(·, ·). With such a Tt, the fail probability T
�4
t  ✏

�20. Notice that
the total number of iterations depends on ✏ only through log(1/✏). Thus, the total fail probability can
be bounded by ✏

10. Therefore, we conclude the proof.

D Proofs of the Auxiliary Results

In this section, we provides the proofs for Proposition 3.1 and Lemma 3.2.

D.1 Proof of Proposition 3.1

Proof. We first establish (3.8). Note that under ⇡K , we can write ut as �Kxt + � · ⌘t, where
⌘t ⇠ N(0, Id). This implies that, for all � 0, we have

E[c(xt, ut) |xt] = x
>
t Qxt + E⌘t⇠N(0,Id)[(�Kxt + � · ⌘t)

>
R(�Kxt + � · ⌘t)]

= x
>
t (Q+K

>
RK)xt + �

2
· tr(R). (D.1)

Thus, combining (D.1) and the definition of J(K) in (2.1), we have
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= Ex⇠⌫K [x>(Q+K
>
RK)x] + �

2
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>
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2
· tr(R), (D.2)
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where the third inequality in (D.2) holds because the limiting distribution of {xt}t�0 is ⌫K .

It remains to establish the second equality in (3.8). To this end, for K 2 Rk⇥d such that ⇢(A�BK) <
1, we define operators we define TK and T

>
K by

TK(⌦) =
X

t�0

(A�BK)t⌦
⇥
(A�BK)t

⇤>
, T

>
K (⌦) =

X

t�0

⇥
(A�BK)t

⇤>
⌦(A�BK)t,

(D.3)

where ⌦ 2 Rd⇥d is positive definite. By definition, TK(⌦) and T
>
K (⌦) satisfy Lyapunov equations

TK(⌦) = ⌦+ (A�BK)TK(⌦)(A�BK)>, (D.4)

T
>
K (⌦) = ⌦+ (A�BK)>T >

K (⌦)(A�BK), (D.5)

respectively. Moreover, for any positive definite matrices ⌦1,⌦2, since ⇢(A�BK) < 1, we have

tr[⌦1 · TK(⌦2)] =
X

t�0

tr
�
⌦1(A�BK)t⌦2[(A�BK)t]>

 

=
X

t�0

tr
�
[(A�BK)t]>⌦1(A�BK)t⌦2

 
= tr[T >

K (⌦1) · ⌦2]. (D.6)

Meanwhile, by combining (3.3), (3.4), (D.4), and (D.5), we have ⌃K = TK( �) andPK = T
>
K (Q+

K
>
RK). Thus, (D.6) implies that

tr
⇥
(Q+K

>
RK) · ⌃K

⇤
= tr

⇥
(Q+K

>
RK) · TK( �)

⇤
= tr

⇥
T

>
K (Q+K

>
RK) · �

⇤
= tr(PK �).

Combining this equation with (D.2), we establish the second equation of (3.8).

In the following, we establish the value functions. In the setting of LQR, the state-value function VK

is given by

VK(x) =
1X

t=0

�
E[c(xt, ut) |x0 = x, ut = �Kxt + � · ⌘t]� J(K)

 

=
1X

t=0

�
E[x>

t (Q+K
>
RK)xt] + �

2
· tr(R)� J(K)}. (D.7)

Combining the linear dynamics in (3.2) and (D.7), we see that VK is a quadratic function, which is
denoted by Vk(x) = x

>
PKx+ ↵K , where both PK and ↵K depends on K. Note that VK satisfies

the Bellman equation

VK(x) = Eu⇠⇡K [c(x, u)]� J(K) + E[VK(x0) |x],

where x
0 is the next state given (x, u). Thus, for any x 2 Rd, we have

x
>
PKx = x(Q+K

>
RK)x+ x

>(A�BK)>PK(A�BK)x.

Thus, PK is the unique positive definite solution to the Bellman equation in (3.4). Meanwhile, since
Ex⇠⌫K [VK(x)] = 0, we have ↵K = � tr(PK⌃K). Hence, we establish (3.5).

Furthermore, for any state-action pair (x, u), we have

QK(x, u) = c(x, u)� J(K) + E[VK(x0) |x, u]

= c(x, u)� J(K) + (Ax+Bu)>PK(Ax+Bu) + tr(PK )� tr(PK⌃K)

= x
>
Qx+ u

>
Ru+ (Ax+Bu)>PK(Ax+Bu)� �

2
· tr(R+ PKBB

>)� tr(PK⌃K),

where x0 in the first equality is the next state following (x, u), and the last equality follows from (3.8)
and the fact that  � =  + �

2
·BB

>. Thus, we prove (3.6).

It remains to derive the policy gradient rKJ(K). By (3.8), we have

rKJ(K) = 2RK⌃K +rK tr(Q0 · ⌃K)
��
Q0=Q+K>RK

, (D.8)

where the second term denotes that we first take compute the gradientrK tr[Q0⌃K ] with respect to
K and then set Q0 = Q+K

>
RK. Recall that we can write ⌃K = TK( �). The following lemma

enables us to compute the gradient involving TK .
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Lemma D.1. Let W and  be two positive definite matrices. Then it holds that

rK tr
⇥
W · TK( )

⇤
= �2B>

T
>
K (W )(A�BK)TK( ).

Proof. To simplify the notation, we define operator FK by

F
>
K(⌦) = (A�BK)>⌦(A�BK)

and let F>,t
K be the t-th composition of FK . Thus, by the definition of T >

K and F
>
K , we have

T
>
K (⌦) =

X

t�0

F
>,t
K (⌦).

Moreover, by (D.4) we have

tr
⇥
W · TK( )

⇤
= tr(W ) + tr

⇥
(A�BK)>W (A�BK) · TK( )

⇤
,

which implies that

rK tr
⇥
W · TK( )

⇤
= �2B>

W (A�BK)TK( ) +rK tr[W1TK( )]
���
W1=FK(⌦)

. (D.9)

For any k � 1, by recursively applying (D.9) for k times, we have

rK tr
⇥
W · TK( )

⇤

= �2B>
 kX

t=0

F
>,t
K (W )

�
(A�BK)TK( ) +rK tr[W1TK( )]

���
W1=F(k+1)

K (⌦)
. (D.10)

Meanwhile, since ⇢(A�BK) < 1, we have

lim
k!1

tr
⇥
F

>,k
K (W )TK( )

⇤
 lim

k!1
kWk · tr[TK( )] · ⇢(A�BK)2k = 0.

Thus, by letting k on the right-hand side of (D.10) go to infinity, we obtain

rK tr
⇥
W · TK( )

⇤
= �2B>

 1X

t=0

F
>,t
K (W )

�
(A�BK)TK( ) = �2B>

T
>
K (W )(A�BK)TK( ).

Therefore, we conclude the proof of the lemma.

By the above lemma, since ⌃K = TK( �), we have

rK tr(Q0 · ⌃K)
��
Q0=Q+K>RK

= rK tr
⇥
Q0 · TK( �)

⇤���
Q0=Q+K>RK

= �2B>
T

>
K (Q+K

>
RK)(A�BK)TK( �) = �2B

>
PK(A�BK)⌃K , (D.11)

where we use the fact that PK = T
>
K (Q +K

>
RK). Therefore, combining (D.8) and (D.11), we

establish (3.9), which completes the proof of Proposition 3.1.

D.2 Proof of Lemma 3.2

We present a stronger lemma than Lemma 3.2, whose proof automatically validates Lemma 3.2.

Lemma D.2. Suppose ⇢(A � BK) < 1. Let N(0, e⌃K) be the stationary distribution of the state-
action pair (x, u) when following policy ⇡K . Then for ⌅K defined in (3.15), we have

⌅K =
�e⌃K ⌦s

e⌃K

�
�
�e⌃KL

>�
⌦s

�e⌃KL
>� =

�e⌃K ⌦s
e⌃K

��
I � L

>
⌦s L

>�
. (D.12)

Moreover, ⌅K is a invertible matrix whose operator norm is bounded by 2[�2+(1+kKk2fro) ·k⌃Kk].
There exists a positive number ⇤

K such that the minimum singular value of the matrix in the left-hand
side of (3.16) is lower bounded by a constant ⇤

K > 0, where 
⇤
K only depends on ⇢(A�BK), �,

and �min( ). Furthermore, since ⌅K is invertible, the linear equation in (3.16) has unique solution
#
⇤
K , whose first and second components are J(K) and svec(⇥K), respectively.
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Proof. Throughout the proof of Lemma D.2, for any state-action pair (x, u) 2 Rd+k, we denote the
next state-action pair following policy ⇡K by (x0

, u
0). Then we can write

x
0 = Ax+Bu+ ✏, u

0 = �Kx
0 + � · ⌘ = �KAx�KBu�K✏+ � · ⌘, (D.13)

where ✏ ⇠ N(0, ) and ⌘ 2 N(0, Ik). For notational simplicity, we denote (x, u) and (x0
, u

0) by z

and z
0, respectively. Thus, we can write z

0 = Lz + ", where we define

L =

✓
A B

�KA �KB

◆
=

✓
Id

�K

◆
(A B) , " =

✓
✏

�K✏+ � · ⌘

◆
. (D.14)

Since it holds that ⇢(MN) = ⇢(NM) for any two matrices M and N [32, Theorem 1.3.22], we
have ⇢(L) = ⇢(A�BK) < 1. Meanwhile, by definition, " 2 Rd+k is a centered Gaussian random
variable with covariance

✓
 � K>

�K K K> + �
2
· Ik

◆
, (D.15)

which is denoted by e � for notational simplicity. In addition, for x ⇠ ⌫K and u ⇠ ⇡K(· |x),
we denote the joint distribution of z = (x, u) by e⌫K , which is a centered Gaussian distribution
in Rd⇥k. Since x ⇠ N(0,⌃K) and u = �Kx + � · Ik, we can write e⌫K as N(0, e⌃K), where
e⌃K 2 R(d+k)⇥(d+k) can be written as

e⌃K =

✓
⌃K �⌃KK

>

�K⌃K K⌃KK
> + �

2
· Ik

◆
=

✓
0 0
0 �

2
· Ik

◆
+

✓
Id

�K

◆
⌃K

✓
Id

�K

◆>
. (D.16)

Thus, by triangle inequality we have
��e⌃K

��
fro
 �

2
· k + k⌃Kk · (d+ kKk

2
fro),

��e⌃K

�� �
2 + (1 + kKk2fro) · k⌃Kk, (D.17)

where in (D.17) we use the fact that kABkfro  kAkfro · kBk.

Furthermore, since L defined in (D.14) satisfy ⇢(L) < 1, e⌃K is the unique positive definite solution
to the Lyapunov equation

e⌃K = Le⌃KL
> + e K , (D.18)

where e K is defined in (D.15). Moreover, the feature mapping can be written as �(x, u) = �(z) =
svec(zz>), which implies that

�(x, u)� �(x0
, u

0) = svec
⇥
zz

>
� (Lz + ")(Lz + ")>

⇤

= svec
�
zz

>
� Lzz

>
L
>
� Lz"

>
� "z

>
L
>
� ""

>�
.

Hence, since " is independent of z, by the definition of ⌅K in (3.15), we have

⌅K = Ez⇠e⌫K [�(z) svec(xx>
� Lxx

>
L
>
� e �)

>].

Now let M and N by any two matrices, by direct computation, we have

svec(M)>⌅K svec(N) = Ez⇠e⌫K

⇥
hzz

>
,Mi · hzz

>
� Lzz

>
L
>
� e �, Ni

⇤

= Ez⇠e⌫K

⇥
z
>
Mzz

>(N � L
>
NL)z

⇤
� Ez⇠e⌫K [z>Mz] · he �, Ni

= Eg⇠N(0,Id+k)

⇥
g
>e⌃1/2

K M e⌃1/2
K gg

>e⌃1/2
K (N � L

>
NL)e⌃1/2

K g
⇤
�
⌦e⌃K ,M

↵
·
⌦e �, N

↵
,

(D.19)

where e⌃1/2
K is the square root of e⌃K defined in (D.18). We utilize the following Lemma to compute

the expectation of the product of quadratic forms of Gaussian random variables.
Lemma D.3. Let g ⇠ N(0, Id) be the standard Gaussian random variable in Rd and let A1, A2 be
two symmetric matrices. Then we have

E[g>A1g · g
>
A2g] = 2 tr(A1A2) + tr(A1) · tr(A2).

Proof. See, e.g., [48, 43] for a detailed proof.

31



Applying this lemma to (D.19), we have

svec(M)>⌅K svec(N)

= 2 tr
⇥e⌃1/2

K M e⌃1/2
K · e⌃1/2

K (N � L
>
NL)e⌃1/2

K

⇤

+ tr
�e⌃1/2

K M e⌃1/2
K

�
· tr
⇥e⌃1/2

K (N � L
>
NL)e⌃1/2

K

⇤
� he⌃K ,Mi ·

⌦e �, N
↵

= 2
⌦
M, e⌃K(N � L

>
NL)e⌃K

↵
+
⌦
M, e⌃K

↵
·
⇥⌦
N � L

>
NL, e⌃K

↵
�
⌦e �, N

↵⇤
. (D.20)

Note that e⌃K satisfy the Lyapunov equation in (D.18), which implies that
⌦
N � L

>
NL, e⌃K

↵
=
⌦
N, e⌃K

↵
�
⌦
N,Le⌃KL

>↵ =
⌦
N, e �

↵
.

Thus, by (D.20) we have

svec(M)>⌅K svec(N) = 2
⌦
M, e⌃K(N � L

>
NL)e⌃K

↵
= 2 svec(M)> svec

⇥e⌃K(N � L
>
NL)e⌃K

⇤

= 2 svec(M)>
�e⌃K ⌦s

e⌃K �
e⌃KL

>
⌦s
e⌃KL

>� svec(N)>

= 2 svec(M)>
⇥�e⌃K ⌦s

e⌃K

�
(I � L

>
⌦ L

>)
⇤

svec(N),

where the last equality follows from the fact that

(A⌦s B)(C ⌦s D) = 1/2 · (AC ⌦s BD +AD ⌦s BC)

holds for any matrices A, B, C, D. Thus, we have established (D.12). Since ⇢(L) = ⇢(A�BK) < 1,
I � L

>
⌦ L

> is positive definite, which implies that ⌅K is invertible.

Now we consider the linear equation in (3.16). Since ⌅K is invertible,

e⌅K =

✓
1 0

E(x,u)[�(x, u)] ⌅K

◆
=

✓
1 0

svec(e⌃K) ⌅K

◆
(D.21)

is also invertible. Thus, (3.16) has unique solution #
⇤
K . Moreover, to bound the smallest singular

value of e⌅K , we note that the inverse of e⌅K can be written as

e⌅�1
K =

✓
1 0

�⌅�1
K svec(e⌃K) ⌅�1

K

◆
,

whose operator norm is bounded via
��e⌅�1

K

��2  1 +
��⌅�1

K svec(e⌃K)
��2
2
+ k⌅�1

K k
2
. (D.22)

By (D.12), we have

⌅�1
K svec(e⌃K) = (I � L

>
⌦s L

>)�1(e⌃K ⌦s
e⌃K)�1 svec(e⌃K)

= (I � L
>
⌦s L

>)�1(e⌃�1
K ⌦s

e⌃�1
K ) svec(e⌃K) = (I � L

>
⌦s L

>)�1 svec(e⌃�1
K ). (D.23)

The following lemma characterizes the eigenvalues of symmetric Kronecker matrices.
Lemma D.4 (Lemma 7.2 in [2]). Let A and B be two matrices in Rm⇥m that can be diagonalized si-
multaneously. Moreover, let �1, . . . ,�m and µ1, . . . , µm be the eigenvalues of A and B, respectively.
Then, the eigenvalues of A⌦s B are given by {1/2 · (�iµj + �jµi), i, j 2 [m]}.

By Lemma D.4, the spectral radius of L>
⌦s L

> is bounded by ⇢
2(L) = ⇢

2(A � BK) < 1. By
(D.23) we have
��⌅�1

K svec(e⌃K)
��
2

⇥
1� ⇢

2(L)
⇤�1

· ke⌃�1
K kF 

p
d+ k ·

⇥
1� ⇢

2(L)
⇤�1

· ke⌃�1
K k. (D.24)

Besides, by (D.12) we have

k⌅�1
K k 

��(I � L
>
⌦s L

>)�1
�� ·
��e⌃�1

K ⌦s
e⌃�1
K

��  [1� ⇢
2(L)

⇤�1
·
��e⌃�1

K

��2. (D.25)

Notice that ke⌃�1
K k = 1/�min(e⌃K). Hence, combining (D.22), (D.24), and (D.25) we conclude that

��e⌅�1
K

��2  1 + (d+ k) · [1� ⇢(L)2
⇤�2

· [�min(e⌃K)]�2 + [1� ⇢(L)2
⇤�2

· [�min(e⌃K)]�4
,
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which implies that

�min(e⌅K) �
[1� ⇢

2(A�BK)] · [�min(e⌃K)]2
⇣
1 + [1� ⇢2(A�BK)]2 · [�min(e⌃K)]4 + (d+ k) · [�min(e⌃K)]2

⌘1/2 > 0.

Moreover, to see that �min(e⌃K) only depends on � and �min( ), for any a 2 Rd and b 2 Rk, we
have
✓
a

b

◆>
e⌃K

✓
a

b

◆
= E(x,u)⇠e⌫K

[(a>x+ b
>
u)2] = Ex⇠⌫K ,⌘⇠N(0,Ik)

�
[(a�K

>
b)x+ � · ⌘]2

 

� �
2
· kbk

2
2 + �min( ) · ka�K

>
bk

2
2 � (�2

� �min( ) · kKk
2) · kbk22 + �min( ) · kak

2
2.

Thus, suppose �
2 is sufficiently large such that �2

� �min( ) · kKk2 > 0, �min(e⌃K) is lower
bounded by min{�2

� �min( ) · kKk2,�min( )}. Therefore, we can find a constant ⇤
K depending

only on ⇢(A�KB), �, and �min( ) such that �min(e⌅K) � 
⇤
K .

Finally, to obtain an upper bound on k⌅Kk, by triangle inequality and Lemma D.4 we have

k⌅Kk 
��e⌃K ⌦s

e⌃K

�� ·
�
1 + kL>

⌦s L
>
k
�

��e⌃K

��2 ·
�
1 + kLk2

�
 2
��e⌃K

��2,

where we use the fact that ⇢(L) < 1. Applying (D.17) to the inequality above, we obtain that

k⌅Kk  2
⇥
�
2 + (1 + kKk2fro) · k⌃Kk

⇤
,

which concludes the proof.
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