
A Matrix Estimation Literature Review

Over the past decade, matrix estimation has spurred tremendous theoretical and empirical research
across numerous fields, including recommendation systems (cf. [38, 39, 42, 28, 25, 40, 23, 44, 30]),
social network analysis (cf. [3, 4, 5, 12, 34]), and graph learning (graphon estimation) (cf. [8, 55,
21, 20]). Traditionally, the end goal is to recover the underlying mean matrix from an incomplete
and noisy sampling of its entries; the quality of the estimate is often measured through the Frobenius
norm. Further, entry-wise independence and sub-gaussian noise is typically assumed. A key property
of many matrix estimation methods is that they are model agnostic (i.e., the de-noising procedure
does not change with the noise assumptions). We advance state-of-art for HSVT, a specific matrix
estimation method, by: (i) analyzing its error with respect to the ‖·‖2,∞ matrix norm; (ii) allow for
a broader class of noise distributions (e.g., sub-exponential). Such generalizations are necessary to
enable the various applications detailed in Section 6.

B Applications

Throughout this section, N,n, p, Y, β∗,A,X,Z, and Ω, will be as in Section 2. Recall that A ∈
RN×p denotes the underlying covariate matrix, where its entries are assumed to be bounded by
Γ (Property 2.2). Recall, X ∈ RN×p is a random matrix with independent rows and the (i, j)-th
element Xij has expected value equal to Aij (Property 2.5). Z is then the masked version of X ,
denoting the observed, corrupted covariate matrix; here, the (i, j)-th element Zij = Xij is observed
with probability ρ and Zij = ? is unobserved with probability 1 − ρ (Property 2.4). The (noisy)
response vector is denoted by Y ∈ RN and is equal in expectation to Aβ∗ (Property 2.3). Finally,
Ω ∈ [N ] represents the training set of size n; thus, Y Ω ∈ Rn denotes the elements of Y that are
observed, while ZΩ ∈ Rn×p represents the observed covariates corresponding to the observed
responses.

For each application, we first introduce the required the mathematical notation to formally describe the
problem and second, show how the results in the preceding sections immediately provide meaningful
finite sample analyses.

B.1 Synthetic Control

Problem formulation. Synthetic control is a popular method for comparative case studies and policy
evaluation in econometrics to predict a counterfactual for a unit of interest after its exposure to a
treatment. To do so, a synthetic treatment unit is constructed using a combination of so-called “donor”
units. Proposed by [2], it has been analyzed in [11], [1], [32], [35], [14], [13]. A canonical example
is in [1], where the unit of interest is California, the donor pool is all other states in the U.S., and the
treatment is Proposition 99; the goal is to isolate the effect of Proposition 99 on cigarette consumption
in California. In other words, to evaluate the treatment effect, synthetic control methods estimate the
unobservable counterfactual (tobacco consumption in the absence of Proposition 99 in the example
above) for the target unit using observations from the donor units, which are assumed to be unaffected
by the treatment.

More generally, both the target unit and each donor unit is associated with a time series over N
periods (e.g., a time series of monthly cigarette consumption for each U.S. state in the example above).
Let p denote the number of donors. Suppose the intervention occurs at time n, where 1 ≤ n < N .
We will refer to the pre- and post- intervention periods as the time periods prior to and after the
intervention point, and denote Ω = [n] as the pre-treatment indices.

Let A ∈ RN×p represent the true utilities of the p donor units across the entire time horizon N ;
hence, A·,j ∈ RN represents the time series over N periods for donor j ∈ [p]. Rather than observing
A, we are given access to Z ∈ RN×p, a sparse, noisy instantiation of A.

For every i ∈ [N ], let Yi denote the noisy utility of the target unit in the absence of intervention.
However, since the target unit experiences treatment for all time instances n < i ≤ N , we only
have access to a noisy version of the target unit’s utility for the pre-intervention period, i.e., we only
observe Y Ω = [Yi] for i ∈ [n]. We will denote E[Y ] as the true, latent utility for the target unit if the
intervention never occurred. Hence, given data (Y Ω,Z), the aim is to recover E[Y ]. Please refer to
Figure 1 for a graphical overview of the setup of the problem.
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Figure 1: Caricature of observed data (Y Ω,Z) for synthetic control (with ? denoting unobserved data in
the donor matrix). Here, “?” represents the counterfactual observations for the target unit in the absence of
intervention.

How it fits our framework. We now motivate applying PCR to this problem by arguing that: (i) A
is (approximately) low-rank; (ii) a linear relationship exists between the target units and the donor
units (i.e., why linear regression is justified).

Why is A low-rank? A natural generalization of the typical factor model, which is commonly utilized
in the Econometrics literature (cf. [2], [1]), is the generic latent variable model (LVM). LVMs are
known to be general nonlinear models that capture complex latent structures in various applications.
Let A′ = [A′ij ] ∈ RN×(p+1) be the concatenation of A with the vector of underlying utilities for the
target unit, E[Y ]. In particular, let A′·,0 = E[Y ] represent the true utility vector for the target unit,
and let A′·,j = A·,j for all j ∈ [p] denote the true utilities for the donor pool. Thus, A′ represents the
matrix of mean utilities for all p+ 1 units (target unit and donor pool) in the absence of intervention.
If the underlying matrix A′ is generated as per a LVM, then

A′ij = g(θi, ρj). (8)

Here, θi ∈ Rd1 and ρj ∈ Rd2 are latent feature vectors capturing unit and time specific information,
respectively, for some d1, d2 ≥ 1; and the latent function g : Rd1 × Rd2 → R captures the model
relationship. If g is “well-behaved” (i.e. Lipschitz) and the latent spaces are compact, then it can be
seen that A′ (and consequently A) is approximately low-rank. This is made more rigorous by the
following proposition.

Proposition B.1 (Proposition 2.1 of [10]) Let A′ satisfy (8). Let g be an L-Lipschitz function with
θi ∈ [0, 1]d1 and ρj ∈ [0, 1]d2 for all i ∈ [N ] and j ∈ {0, . . . , p}. Then, for any δ > 0, there exists a
low-rank matrix T of rank r ≤ C · δ−min(d1,d2) such that

‖A′ − T ‖max ≤ L · δ.

Here, C is a constant that depends on the latent spaces ([0, 1]d1 , [0, 1]d2), ambient dimensions
(d1, d2), and Lipschitz constant L.

Further theoretical justification of the LVM model comes from the celebrated result by cf. [9], which
states that a LVM is indued when the underling A′ is random and its rows/columns are exchangeable
Indeed, it has been shown empirically that many real-world data exhibit low-rank donor pool matrices
(e.g., see Figure 1 of [11] and Figure 3 of [10]). Thus this (approximate) low-rank structure induced
by LVMs motivates why we make a low-rank assumption on A, the donor pool matrix.

Why use linear regression? Here, we justify the usage of linear regression by arguing that the target
unit is a linear combination of the donor units with high probability. This is made rigorous by the
following Proposition.

Proposition B.2 (Proposition 4.1 of [10]) Assume Property 2.2 holds and that the rank of A′ is
bounded by r. Suppose the target unit is chosen uniformly at random amongst the p + 1 units;
equivalently, let the units be re-indexed as per some permutation chosen uniformly at random. Then,
with probability 1− r/(p+ 1), there exists a β∗ ∈ Rp such that the target unit (represented by index
0) satisfies for all j ∈ [N ],

A′j0 =

p∑
k=1

β∗k ·A′jk.
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Thus, under the low-rank property of A, the target unit is shown to be a linear combination of the
donor units with high probability. Assuming (without loss of generality) that target unit corresponds
to column index j = 0 of A′ (as described above), we can express the underlying utility of the target
unit as

E[Yi] = A′i0 = Ai,·β
∗

for all i ∈ [N ] and some β∗ ∈ Rp. Hence, in effect, observations generated via a generic latent
variable model (as per (8)), which encompass a large class of models, naturally fit within the synthetic
control framework.

Results. We now present the post-intervention prediction error, which is a corollary of Theorem 4.2.
Here, we assume that the underlying covariate matrix A is low-rank.

Corollary B.1 Let the conditions of Theorem 4.2 and Proposition B.2 hold. Then with probability at
least 1− r/(p+ 1),

E

[
1

N − n

N∑
i=n+1

(
Âi,·β̂ −Ai,·β

∗
)2
]

≤ C1 ·
(

4σ2r

n
+ C(α)

C ′ log2(np)

nρ2
‖β∗‖21

(
r +

(n2ρ+ np) log3(np)

ρ2τ2
r

))
+ C2r

2α̂2 ·
√

log(np)

n
,

where C1 > 0 is a universal constant; C ′ = (1 + γ + Γ +Kα)4; C2 = CB2 · Γ‖β∗‖1 with C > 0
a universal constant; C(α) > 0 a constant that may depend on α ≥ 1; τr is rth singular value of
true covariate matrix A; and α̂2 = E[‖Â‖2max].

B.2 Time Series Analysis

Problem formulation.

We follow the formulation in [7]. Specifically, consider a discrete-time setting with t ∈ Z representing
the time index and f : Z → R representing the latent time series of interest. The underlying time
series is denoted as f = [f(t)] for all t ∈ [T ]. For each t ∈ [T ] and probability ρ ∈ (0, 1], the random
variable X(t) such that E[X(t)] = f(t) is observed. Under this setting, the objective of interest is to
accurately interpolate (impute) the T observations and forecast the evolution of the underlying time
series at time T + 1, i.e., given access to the time series X(t) for t ∈ [T ], our goal is to estimate f(t)
for all t ∈ [T + 1].

We focus on the case where f follows a Linear Recurrent Formulae (LRF)1. LRFs have the following
form:

f(t) =

r∑
l=1

αlf(t− l). (9)

LRFs admit a rich class of time series as seen by the following proposition.

Proposition B.3 (Proposition 5.2 in [7]) Let Pma be a polynomial of degree ma. Then,

f(t) =

G∑
g=1

exp(αgt) · cos(2πωgt+ φg) · Pmg (t)

admits a representation as in (9). Further the order r of f(t) is independent of T , the number of
observations, and is bounded by

r ≤ G(mmax + 1)(mmax + 2),

where mmax = maxg∈Gmg .

How it fits our framework. We motive why PCR works for this problem by first showing how
N,n, p, Y, β∗,A,X,Z are induced for the forecasting problem defined above for a LRF (refer to
(9)). Let T = N × p with p > r and n = T . We then have

Y Ω = [X(p), X(2p), . . . , X(T − p)] ∈ Rn

1In the control systems literature, such f are known as Linear Time Invariant (LTI) systems.
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Figure 2: Caricature of the underlying time series f(t) for t ∈ [T ] generated as per a LRF model (described by
(9)) represented as a matrix vector product.

A = [Aij ] = [f((i− 1)p+ j)],where A ∈ RN×(p−1)

Z = [Zij ] = [X((i− 1)p+ j) · πij ],where Z ∈ RN×(p−1), and πij ∼ Bernoulli(ρ)

β∗ = [0, 0 . . . , α1, . . . , αr] ∈ Rp−1

In words, A is a matrix of non-overlapping entries of the underlying, unobserved time series f .
Please refer to Figure 2 for a graphical depiction of the matrices/vectors induced by the latent time
series f . Z is analogously defined with respect to the noisy, sparse observations. β∗ refers to the
(unobserved) coefficients that define the LRF. Y Ω are observations within the time series we use as
response variables.

Results. It is easy to see that rank(A) ≤ r. We can now immediately apply Theorem 4.2 to bound
the overall imputation and forecast error under PCR.

Corollary B.2 Let the conditions of Theorem 4.2 hold. Suppose the underlying time series f and
rank r are defined as in (9). Then,

E

[
1

T + 1

T+1∑
t=1

(
f(t)− f̂(t)

)2
]

≤ 4σ2r

T
+ C(α)

C ′ log2(Tp)

Tρ2
‖β∗‖21

(
r +

(T 2ρ+ Tp) log3(Tp)

ρ2τ2
r

)
+ C2r

2α̂2 ·
√

log(Tp)

T
,

where C ′ = (1 + γ + Γ +Kα)4; C2 = CB2 · Γ‖β∗‖1 with C > 0 a universal constant; C(α) > 0
a constant that may depend on α ≥ 1; τr is rth singular value of true covariate matrix A; and
α̂2 = E[‖Â‖2max].

B.3 Regression with Privacy

Problem formulation. With the increasing use of machine learning for critical operations, analysts
must maximize the accuracy of their predictions and simultaneously protect sensitive information
(i.e. covariates). An important notion of privacy is that of differential privacy; this requires that the
outcome of a database query cannot greatly change due to the presence or absence of any individual
data record (cf. [33] and references therein). More specifically, let δ be a positive real number, D be
a collection of datasets, and A : D → im(A) be a randomized algorithm that takes a dataset as input.
The algorithm A is said to provide δ-differential privacy if, for all datasets D1 and D2 in D that differ
on a single element, and all subsets S ∈ im(A), the following holds:

P (A(D1) ∈ S) ≤ exp(δ) · P (A(D2) ∈ S) , (10)

where the randomness lies in the algorithm. Thus, (10) guarantees that little can be learned about any
particular record within the database.

One popular mechanismA to guarantee differential privacy is known as the Laplacian mechanism. In
this setting, noise is drawn from a Laplacian distribution and added to query responses. In particular,
introducing additive noise W ∼ Laplace(0,∆f/δ) to any database query guarantees δ-privacy (cf.
[33] and references therein); here, ∆f = maxD1,D2∈D|f(D1) − f(D2)|, where the maximum is
taken over all pairs of datasets D1 and D2 in D differing in at most one element, and f : D → Rd is
a vector-valued function denoting the true, latent query response. We now describe how PCR can be
applied in the context of a differentially private framework.
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How it fits our framework. Let A denote the true, fixed database of N sensitive individual records
and p covariates. We consider the setting where an analyst is allowed to ask two types of queries of
the data: (1) fA - querying for individual data records, i.e., Ai,· for i ∈ [N ]; (2) fY - querying for a
linear combination of an individual’s covariates, i.e. Ai,·β

∗. A typical example would be where Ai,·
is the genomic information for patient i and Ai,·β

∗ denotes patient i’s outcome for a clinical study.

In order to provide δ-differential privacy, the Laplacian mechanism will return query responses with
additive Laplacian noise. For query type (1), let Zij for j ∈ [p], i ∈ [N ] by the returned response;
here, Zij = Aij + ηij with probability ρ and Zij = ? with probability 1− ρ, where ηi,· = [ηij ] for
j ∈ [p] is independent Laplacian noise with the variance parameter proportional to ∆fA/δ

2. For query
type (2), when an analyst queries for the response variable Ai,·β

∗, she observes Yi = Ai,·β
∗ + εi,

where εi is again independent Laplacian noise with variance parameter proportional to ∆fY /δ. We
note that the above setup naturally fits our framework since the Laplacian distribution belongs to the
family of sub-exponential distributions i.e. satisfying Property 2.5 with α = 1.

Finally, let Y Ω denote the n noisy observed responses (e.g., corresponding to the outcomes of n
patient clinical trials), and let Z denote the noisy observed covariates (e.g., the collection of genomic
information of all N patients). Ultimately, the goal in such a setup is to accurately learn in- and
out-of-sample global statistics (e.g., having low MSEΩ(Ŷ ) and MSE(Ŷ ) respectively) about the data,
while preserving the individual privacy of the users.

Why is privacy preserved? It is worth highlighting that the de-noising step of the PCR algorithm
(i.e., applying HSVT to Z) does not compromise the security of any single data record. To begin,
Lemma 5.1 demonstrates that the estimated covariate matrix Â via HSVT achieves small average
`2,∞-error (column-squared error); hence, for instance, HSVT can accurately learn the average age
of all patients. However, this does not translate to accurately estimating the age of any particular
patient (i.e., corresponding to an entry-wise error bound). Similarly, Corollary B.3 (stated below),
establishes that PCR can estimate the vector Aβ∗ well on average, but not any particular element of
this vector. Hence, the privacy of any individual record is maintained while small average prediction
error is achieved.

Results. We now state the following theorem, which demonstrates the efficacy of PCR (with respect
to prediction) in the context of a differentially private framework.

Corollary B.3 Consider PCR with parameter k ≥ 1. Let conditions of Theorem 5.1 and Lemma
5.1 hold. Let ηij be sampled independently from ∼ Laplace(0,∆fA/δ) for i ∈ [N ], j ∈ [p]. Let
εi be sampled independently from ∼ Laplace(0,∆fY /δ). Let n = Θ(N). Then, PCR preserves
δ-differential privacy of A and Aβ∗, and

MSEΩ(Ŷ ) ≤ 4k

n
·
(

∆fY

δ

)2

+
CC ′‖β∗‖21 log2 np

nρ2

(
(n2ρ+ np) log3 np

ρ2(τk − τk+1)2
+ k

)
+

6‖β∗‖21
n
‖Ak−A‖22,∞,

where C ′ =
(

1 + γ + Γ +
∆fA

δ

)4

and C > 0 is an absolute constant.

Note test prediction error is bounded as in Theorem 4.2 without any change with r replaced by k for
PCR with parameter k ≥ 1.

B.4 Regression with Mixed Valued Features

Problem formulation. Regression models with mixed discrete and continuous covariates are ubiq-
uitous in practice. With respect to discrete covariates, a standard generative model assumes the
covariates are generated from a categorical distribution (i.e., a generalized Bernoulli distribution).
Formally, a categorical distribution for a random variable X is such that X has support in [G] and the
probability mass function (pmf) is given by P(X = g) = ρg for g ∈ [G] with

∑G
g=1 ρjg = 1.

For simplicity, we focus on the case where the regression is being done with a collection of Bernoulli
random variables (i.e., each X has support in {0, 1}). The extension to general categorical random
variables, in addition to continuous covariates, is straightforward and discussed below.

2Note that an auxiliary benefit of our setup is that it allows for a significant fraction of the query response to
be masked, in addition to to the Laplacian noise corruption.
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A standard model in regression with Bernoulli random variables assumes that the response variable
is a linear function of the latent parameters of the observed discrete outcomes. Formally, Ai,· =

[ρ
(i)
1 , ρ

(i)
2 , . . . , ρ

(i)
p ] ∈ R1×p, where ρ(i)

j for j ∈ [p] is the latent Bernoulli parameter for the j-
th feature and i-th measurement. Further, the mean of the response variable satisfies E[Yi] =∑p
j=1 ρ

(i)
j βj . Unfortunately, for each feature, we only get binary observations, i.e., Xij ∈ {0, 1}.

As an example, consider E[Yi] to be the expected health outcome of patient i. Let there be a
total of p possible observable binary symptoms (e.g., cold, fever, headache, etc.). Then Ai,· de-
notes the vector of (unobserved) probabilities that patient i has some collection of symptoms (e.g.,
Ai1 = P(patient i has a cold), Ai2 = P(patient i has a fever), . . . ). However, for each patient, we
only observe the binary outcome of these symptoms (i.e., Xi1 = 1(patient i has a cold), Xi2 =
1(patient i has a fever)), even though the response is linearly related with the underlying probabilities
of the symptoms. The objective in such a setting is to accurately recover Aβ∗ given Y Ω and X .

Current practice for mixed valued features. A common practice for regression with categorical
variables is to build a separate regression model for every possible combination of the categorical
outcomes (i.e., to build a separate regression model conditioned on each outcome). In the healthcare
example above, this would amount to building 2p separate regression models corresponding to each
combination of the observed p binary symptoms. This is clearly not ideal for the following two major
reasons: (i) the sample complexity is exponential in p; (ii) we do not have access to the underlying
probabilities Ai,· (recall Xi,· ∈ {0, 1}p), which is what we actually want to regress Y Ω against.

How it fits our framework. Recall from Property 2.5 that the key structure we require of the covariate
noise ηij is that E[ηij ] = 0. Now even though Xij ∈ {0, 1}, it still holds that E[Xij ] = ρ

(i)
j = Aij ,

which immediately implies E[ηij ] = E[Xij − Aij ] = 0. Further, ηij is sub-Gaussian (α = 2)
since |ηij |≤ 1. Thus, the key conditions on the noise are satisfied for PCR to effectively (in the
‖·‖2,∞-norm) de-noise X to recover the underlying probability matrix A; this, in turn, allows PCR
to produce accurate estimates Âβ̂ through regression, as seen by Theorem 4.2.

Pleasingly, the required sample complexity grows with the rank of A (the inherent model complexity),
rather than exponentially in p. Further, the de-noising step allows us to regress against the estimated
latent probabilities rather than their “noisy", binary outcomes.

Extension from Bernoulli to general categorical random variables. Recall from above that a categori-
cal random variable has support in [G] for G ∈ N. In this case, one can translate a categorical random
variable to a a collection of binary random variables using the standard one-hot encoding method. It
is worth highlighting that by using one-hot encoding, clearly ηij1 will not be independent of ηij2 for
any (j1, j2) pair, which encodes the same categorical variable. However, from Property 2.5, we only
require independence of the noise across rows, not within them. Thus this lack of independence is
not an issue. Further, the generalization to multiple categorical variables, in addition to continuous
covariates, is achieved by simply appending these features to each row and collectively de-noising
the entire matrix before the regression step.
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C Matrix and Vector Norm Definitions

In this section, we will define a series of matrix and vector norms. For any vector v = [vi] ∈ Rn and
real number p ≥ 1, we define the `p-norm of v as

‖v‖p =

(
n∑
i=1

|vi|p
)1/p

.

In particular, if p = 2, this corresponds to the Euclidean norm, i.e., ‖v‖22=
∑n
i=1 v

2
i . Similarly, p = 1

yields ‖v‖1=
∑n
i=1|vi| and p =∞ yields maxi∈[n]|vi|. Further, we define

‖v‖0= |{i : vi 6= 0}|
as the number of nonzero elements of v.

For any matrix Q = [Qij ]
m×n, we define the Frobenius norm of Q as

‖Q‖F =

 m∑
i=1

n∑
j=1

Q2
ij

1/2

,

and the spectral (operator) norm as

‖Q‖ = σmax(Q) = sup
v:‖v‖2=1

‖Qv‖2,

where σmax(Q) denotes the largest singular value of Q. We define the max-norm of Q as

‖Q‖max = max
i∈[m],j∈[n]

|Qij |.

Finally, we denote the `2,∞ mixed norm of Q as

‖Q‖2,∞ = max
j∈[n]

n∑
i=1

Q2
ij .

We now define an important class of random variables/vectors.

Definition C.1 For any α ≥ 1, we define the ψα-norm of a random variable X as ‖X‖ψα =

inf{t > 0 : E exp(|X|α/tα) ≤ 2}. If ‖X‖ψα < ∞, we call X a ψα-random variable. More
generally, we say X in Rn is a ψα-random vector if all one-dimensional marginals 〈X, v〉 are
ψα-random variables for any fixed vector v ∈ Rn. We define the ψα-norm of the random vector
X ∈ Rn as ‖X‖ψα = supv∈Sn−1 ‖〈X, v〉‖ψα , where Sn−1 := {v ∈ Rn : ‖v‖2 = 1}, 〈·, ·〉 usual
inner product. Note that α = 2 and α = 1 represent the class of sub-gaussian and sub-exponential
random variables/vectors, respectively.

D Useful Theorems

D.1 Bounding ψα-norm

Lemma D.1 Sum of independent sub-gaussians random variables.
Let X1, . . . , Xn be independent, mean zero, sub-gaussian random variables. Then

∑n
i=1Xi is also

a sub-gaussian random variable, and∥∥∥ n∑
i=1

Xi

∥∥∥2

ψ2

≤ C
n∑
i=1

‖Xi‖2ψ2

where C is an absolute constant.

Lemma D.2 Product of sub-gaussians is sub-exponential.
Let X and Y be sub-gaussian random variables. Then XY is sub-exponential. Moreover,

‖XY ‖ψ1
≤ ‖X‖ψ2

‖Y ‖ψ2
.
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D.2 Concentration Inequalities for Random Variables

Lemma D.3 Bernstein’s inequality.
Let X1, X2, . . . , XN be independent, mean zero, sub-exponential random variables. Let S =∑n

i=1Xi. Then for every t > 0, we have

P{|S| ≥ t} ≤ 2 exp

(
−cmin

[
t2∑N

i=1 ‖Xi‖2Ψ1

,
t

maxi ‖Xi‖Ψ1

])

Lemma D.4 McDiarmid inequality.
Let x1, . . . , xn be independent random variables taking on values in a set A, and let c1, . . . , cn be
positive real constants. If φ : An → R satisfies

sup
x1,...,xn,x′i∈A

|φ(x1, . . . , xi, . . . , xn)− φ(x1, . . . , x
′
i, . . . , xn)| ≤ ci,

for 1 ≤ i ≤ n, then

P
{
|φ(x1, . . . , xn)− Eφ(x1, . . . , xn)| ≥ ε

}
≤ exp

(
−2ε2∑n
i=1 c

2
i

)
.

D.2.1 Upper Bound on the Maximum Absolute Value in Expectation

Lemma D.5 Maximum of sequence of random variables.
Let X1, X2, . . . , Xn be a sequence of random variables, which are not necessarily independent, and
satisfy E[X2p

i ]
1
2p ≤ Kp

β
2 for some K,β > 0 and all i. Then, for every n ≥ 2,

E max
i≤n
|Xi| ≤ CK log

β
2 (n).

Remark D.1 Lemma D.5 implies that if X1, . . . , Xn are ψα random variables with ‖Xi‖ψα≤ Kα

for all i ∈ [n], then

E max
i≤n
|Xi| ≤ CKα log

1
α (n).

D.3 Other Useful Lemmas

Lemma D.6 Perturbation of singular values (Weyl’s inequality).
Let A and B be two m× n matrices. Let k = m ∧ n. Let λ1, . . . , λk be the singular values of A
in decreasing order and repeated by multiplicities, and let τ1, . . . , τk be the singular values of B in
decreasing order and repeated by multiplicities. Let δ1, . . . , δk be the singular values of A−B, in
any order but still repeated by multiplicities. Then,

max
1≤i≤k

|λi − τi| ≤ max
1≤i≤k

|δi|.

E Equivalence

E.1 Proof of Proposition 3.1

Proof E.1 Using the orthonormality of U ,V , we obtain

Ŷ PCR,k = Z̃ · Vk · βPCR,k = Z̃ · Vk ·
(
ZPCR,k,Ω)† Y Ω

= U · S · V T · Vk ·
(

(Z̃ · Vk)Ω
)†
· Y Ω = Uk · Sk ·

(
(Uk · Sk)Ω

)† · Y Ω

= Uk · Sk ·
(
UΩ
k · Sk

)† · Y Ω = Uk · Tk · S−1
k (UΩ

k )T · Y Ω

= Uk · (UΩ
k )T · Y Ω. (11)

Similarly,

Ŷ HSVT,k = ZHSVT,k · βHSVT,k = ZHSVT,k ·
(
ZHSVT,k,Ω)† · Y Ω
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= Uk · Sk · V T
k ·

(
(Uk · Sk · V T

k )Ω
)† · Y Ω

= Uk · Sk · V T
k ·

(
UΩ
k · Sk · V T

k

)† · Y Ω

= Uk · Sk · V T
k · Vk · S−1

k · (U
Ω
k )† · Y Ω

= Uk · (UΩ
k )T · Y Ω. (12)

From (11) and (12), we obtain Ŷ PCR,k = Ŷ HSVT,k for any k ≤ N .

F Proof of Theorem 5.1

F.1 Background

Recall that the (a, b)-mixed norm of a matrix B ∈ RN×p is defined as

‖B‖a,b=

 p∑
j=1

‖B·,j‖ba

1/b

=

 p∑
j=1

(
N∑
i=1

Ba
ij

)b/a1/b

.

We are interested in the (2,∞)-mixed norm, which corresponds to the maximum `2 column norm:

‖B‖2,∞= max
j∈[p]
‖B·,j‖2 = max

j∈[p]

(
N∑
i=1

B2
ij

)1/2

.

Lemma F.1 Let B be a real-valued n × p matrix and x a real-valued p dimensional vector. Let
q1, q2 ∈ [1,∞] with 1/q1 + 1/q2 = 1. Then,

‖Bx‖2 ≤ ‖x‖q1 ‖B‖2,q2 .

Proof F.1 Using Hölder’s Inequality, we have

‖Bx‖22 =

n∑
i=1

〈Bi,·, x〉2 ≤ ‖x‖2q1
n∑
i=1

‖Bi,·‖2q2 = ‖x‖2q1 · ‖B‖
2
2,q2

.

F.2 Proof of Theorem 5.1

Proof F.2 For simplicity of notation, let us define Â = ZHSVT,k, ÂΩ = ZHSVT,k,Ω. Due to equiva-
lence relationship of Proposition 3.1 between PCR and performing linear regression using ÂΩ, in
the remainder of the proof we shall focus on linear regression using ÂΩ. Per notation of Section
3.2, let βHSVT,k be the solution of linear regression using ÂΩ and predicted response variables
Ŷ HSVT,k = ZHSVT,kβHSVT,k; for simplicity, we will denote β̂ = βHSVT,k and Ŷ = Ŷ HSVT,k = Âβ̂.
Recall, per our model specification in (1), Y Ω = AΩβ∗ + φ+ ε. Now observe∥∥∥ÂΩβ̂ − Y Ω

∥∥∥2

2
=
∥∥∥ÂΩβ̂ −AΩβ∗ + φ

∥∥∥2

2
+ ‖ε‖22 − 2εT (ÂΩβ̂ −AΩβ∗)− 2εTφ. (13)

On the other hand, the optimality of β̂ (recall that β̂ ∈ arg min‖ÂΩβ̂ − Y Ω‖22) yields∥∥∥ÂΩβ̂ − Y Ω
∥∥∥2

2
≤
∥∥∥ÂΩβ∗ − Y Ω

∥∥∥2

2

=
∥∥∥(ÂΩ −AΩ)β∗ + φ

∥∥∥2

2
+ ‖ε‖22 − 2εT (ÂΩ −AΩ)β∗ − 2εTφ. (14)

Combining (13) and (14) and taking expectations, we have

E
∥∥∥ÂΩβ̂ −AΩβ∗ + φ

∥∥∥2

2
≤ E

∥∥∥(ÂΩ −AΩ)β∗ + φ
∥∥∥2

2
+ 2E[εT ÂΩ(β̂ − β∗)]. (15)
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Let us bound the final term on the right hand side of (15). Under our independence assumptions (ε is
independent of H), observe that

E[εT ÂΩ]β∗ = E[εT ]E[ÂΩ]β∗ = 0.

Recall that β̂ = (ÂΩ)
†
Y = (ÂΩ)

†
AΩβ∗ + (ÂΩ)

†
ε. Using the cyclic and linearity properties of the

trace operator (coupled with similar independence arguments), we further have

E[εT ÂΩβ̂] = E[εT ÂΩ(ÂΩ)
†
]AΩβ∗ + E[εT ÂΩ(ÂΩ)

†
ε]

= E[ε]TE[ÂΩ(ÂΩ)
†
]AΩβ∗ + E

[
tr
(
εT ÂΩ(ÂΩ)

†
ε
)]

= E
[
tr
(
ÂΩ(ÂΩ)

†
εεT
)]

= tr
(

E[ÂΩ(ÂΩ)
†
] · E[εεT ]

)
≤ σ2E

[
tr
(
ÂΩ(ÂΩ)

†
)]

= σ2E[rank(ÂΩ)] ≤ σ2k, (16)

where the inequality follows from Property 2.3 and the fact that rank of ÂΩ is at most that of
ÂΩ = ZHSVT,k and which by definition at most k. Consider∥∥∥ÂΩβ̂ −AΩβ∗ + φ

∥∥∥2

2
=
∥∥∥ÂΩβ̂ −AΩβ∗

∥∥∥2

2
+ ‖φ‖22 + 2φT (ÂΩβ̂ −AΩβ∗). (17)

and ∥∥∥(ÂΩ −AΩ)β∗ + φ
∥∥∥2

2
=
∥∥∥(ÂΩ −AΩ)β∗

∥∥∥2

2
+ ‖φ‖22 + 2φT ((ÂΩ −AΩ)β∗). (18)

From (16), (17) and (18), the (15) becomes

E
∥∥∥ÂΩβ̂ −AΩβ∗

∥∥∥2

2
≤ E

∥∥∥(ÂΩ −AΩ)β∗
∥∥∥2

2
+ 2σ2k

+ 2E|φT (ÂΩβ̂ −AΩβ∗)|+2E|φT ((ÂΩ −AΩ)β∗)|. (19)

Now

|φT (ÂΩβ̂ −AΩβ∗)| ≤ ‖φ‖∞‖ÂΩβ̂ −AΩβ∗‖1, (20)

|φT ((ÂΩ −AΩ)β∗)| ≤ ‖φ‖2‖(ÂΩ −AΩ)β∗‖2 ≤
√
n‖φ‖∞‖(ÂΩ −AΩ)β∗‖2. (21)

From Lemma F.1 with q1 = 1 and q2 =∞ to obtain∥∥∥(ÂΩ −AΩ)β∗
∥∥∥2

2
≤ ‖β∗‖21 ·max

j∈[p]

∥∥∥(AΩ − ÂΩ)·,j

∥∥∥2

2
= ‖β∗‖21‖A

Ω − ÂΩ‖22,∞. (22)

Using (20), (21) and (22) in (19), we obtain

E
∥∥∥ÂΩβ̂ −AΩβ∗

∥∥∥2

2
≤ 2σ2k + ‖β∗‖21E‖AΩ − ÂΩ‖22,∞+2

√
n‖φ‖∞‖β∗‖1E‖AΩ − ÂΩ‖2,∞

+ 2‖φ‖∞E
∥∥∥ÂΩβ̂ −AΩβ∗

∥∥∥
1

Dividing by 1/n on both sides, using Jensen’s inequality and fact that ‖v‖1≤
√
n‖v‖2 for all v ∈ Rn,

we obtain

1

n
E
∥∥∥ÂΩβ̂ −AΩβ∗

∥∥∥2

2
≤ 2σ2k

n
+
‖β∗‖21E‖AΩ − ÂΩ‖22,∞

n
+ 2‖φ‖∞

√
‖β∗‖21E‖AΩ − ÂΩ‖22,∞

n

+ 2‖φ‖∞

√
1

n
E
∥∥∥ÂΩβ̂ −AΩβ∗

∥∥∥2

2
. (23)

Let

x =
1

n
E
∥∥∥ÂΩβ̂ −AΩβ∗

∥∥∥2

2
, y =

2σ2k

n
+
‖β∗‖21E‖AΩ − ÂΩ‖22,∞

n
+2‖φ‖∞

√
‖β∗‖21E‖AΩ − ÂΩ‖22,∞

n
.
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Then (23) can be viewed as x ≤ y+ 2‖φ‖∞
√
x with both x, y ≥ 0. Therefore, either x ≤ 4‖φ‖∞

√
x

or x ≤ 2y. That is, x ≤ 16‖φ‖2∞ or x ≤ 2y. That is, x ≤ 2y + 16‖φ‖2∞. Replacing values of x, y
as above we obtain

1

n
E
∥∥∥ÂΩβ̂ −AΩβ∗

∥∥∥2

2
≤ 4σ2k

n
+

2‖β∗‖21E‖AΩ − ÂΩ‖22,∞
n

+ 4‖φ‖∞

√
‖β∗‖21E‖AΩ − ÂΩ‖22,∞

n
+ 16‖φ‖2∞

≤ 4σ2k

n
+

3‖β∗‖21E‖AΩ − ÂΩ‖22,∞
n

+ 20‖φ‖2∞,

where in the last inequality we have used the fact that for any x, y ∈ R, 2xy ≤ x2 + y2.

G Bound on Spectral Norm of Random Matrix

Here we state and derive bound on the spectral norm of random matrix whose rows (or columns)
are generated independently per ψα-distribution for α ≥ 1. The bounds we shall state and derive
(Theorem G.1) are not the sharpest possible. But they are sufficient for our purposes. Sharp bound
for α = 1 and α ≥ 2 can be found in [6] and [51] respectively. We provide the proof here for
completeness as well as ease of exposition.

G.1 Outline

We begin by presenting Proposition G.1, which holds for general random matrices W ∈ RN×p. We
note that this result depends on two quantities: (1)

∥∥EW TW
∥∥ and (2) ‖Wi,·‖ψα for all i ∈ [N ].

We then instantiate W := Z − ρA and present Lemmas G.1 and G.2, which bound (1) and (2),
respectively, for our choice of W . We state and prove Theorem G.1 that will be crucial in establishing
properties of HSVT. The proofs of various results stated on the way will follow near the end of this
section.

Proposition G.1 Let W ∈ RN×p be a random matrix whose rows Wi,· (i ∈ [N ]) are independent
ψα-random vectors for some α ≥ 1. Then for any δ1 > 0,

‖W ‖ ≤
∥∥EW TW

∥∥1/2
+ C(α)

√
(1 + δ1)pmax

i∈[N ]
‖Wi,·‖ψα

(
1 + (2 + δ1) log(Np)

) 1
α√

log(Np)

with probability at least 1− 2
N1+δ1pδ1

. Here, C(α) > 0 is an absolute constant that depends only on
α.

Lemma G.1 Assume Property 2.4 holds. Then,∥∥E(Z − ρA)T (Z − ρA)
∥∥ ≤ ρ(1− ρ) max

j∈[p]
‖A·,j‖22 + ρ2

∥∥EHTH
∥∥.

Lemma G.2 Assume Properties 2.1, 2.5, and 2.4 hold. Then for any α ≥ 1 with which Property 2.5
holds, we have

‖Zi,· − ρAi,·‖ψα ≤ C(Kα + Γ) for all i ∈ [N ],

where C > 0 is an absolute constant.

G.2 Key Result: Theorem G.1

Now we state the main result.

Theorem G.1 Suppose Properties 2.1, 2.5 for some α ≥ 1 and 2.4 hold. Then for any δ1 > 0,

‖Z − ρA‖ ≤
√
Nρ
√
ργ2 + (1− ρ)Γ2

+ C(α)
√

1 + δ1
√
p(Kα + Γ)

(
1 + (2 + δ1) log(Np)

) 1
α√

log(Np)

with probability at least 1− 2
N1+δ1pδ1

. Here, C(α) is an absolute constant that depends only on α.

Proof G.1 The proof follows by plugging the results of Lemmas G.1 and G.2 into Proposition G.1
for W := Z − ρA and applying Properties 2.1 and 2.5.
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G.3 Proof of Proposition G.1

Proof G.2 We prove the proposition in four steps.

Step 1: picking the threshold value. Let e1, . . . , ep ∈ Rp denote the canonical basis3 of Rp.
Observe that ‖Wi,·‖22 = Wi,·W

T
i,· =

∑p
j=1 (Wi,·ej)

24 . Therefore, for any t ≥ 0,

P
{
‖Wi,·‖22 > t

}
= P

{ p∑
j=1

(Wi,·ej)
2
> t

}
(a)

≤
p∑
j=1

P

{
(Wi,·ej)

2
>
t

p

}

≤
p∑
j=1

P

{
|Wi,·ej | >

√
t

p

}
(b)

≤ 2p exp

−C(α)

(
t

p‖Wi,·‖2ψα

)α
2

,
where (a) uses the union bound and (b) follows from the definition of ψα-random vector (C(α) is an
absolute constant which depends only on α ≥ 1). Choosing t = C

2
αC(α)−

2
α p‖Wi,·‖2ψα( log(2p))

2
α

for some C > 1 gives

P
{
‖Wi,·‖22 > C

2
αC(α)−

2
α p‖Wi,·‖2ψα( log(2p))

2
α

}
≤
( 1

2p

)C−1

.

Applying the union bound, we obtain

P

{
max
i∈[N ]

‖Wi,·‖22 > C
2
αC(α)−

2
α pmax

i∈[N ]
‖Wi,·‖2ψα( log(2p))

2
α

}
≤ N

( 1

2p

)C−1

.

For δ1 > 0, we define C(δ1) , 1 + (2 + δ1) log2p(Np) and let C = C(δ1). Also, we define

t0(δ1) , C(δ1)
2
αC(α)−

2
α pmax

i∈[N ]
‖Wi,·‖2ψα( log(2p))

2
α .

We have

P
{

max
i∈[N ]

‖Wi,·‖22 > t0(δ1)
}
≤ N

( 1

2p

)(2+δ1) log2p(Np)

=
1

N1+δ1p2+δ1
. (24)

Step 2: decomposing W by truncation. Next, given δ1 > 0, we decompose the random matrix
W as follows:

W = W ◦(δ1) + W×(δ1)

where for each i ∈ [N ],

W ◦(δ1)i,· = Wi,·1
{
‖Wi,·‖22 ≤ t0(δ1)

}
and W×(δ1)i,· = Wi,·1

{
‖Wi,·‖22 > t0(δ1)

}
.

Then it follows that

‖W ‖ ≤ ‖W ◦(δ1)‖+
∥∥W×(δ1)

∥∥ ≤ ‖W ◦(δ1)‖+
∥∥W×(δ1)

∥∥
F
. (25)

3Column vector representation
4Recall that Wi,· is a row vector and hence Wi,·W

T
i,· is a scalar.
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Step 3: bounding ‖W ◦(δ1)‖ and ‖W×(δ1)‖F . We define two events for conditioning:

E1(δ1) :=

{
‖W ◦(δ1)‖ ≤

∥∥EW TW
∥∥1/2

+

√
1 + δ1
c

t0(δ1) log(Np)

}
, (26)

E2(δ1) :=
{∥∥W×(δ1)

∥∥
F

= 0
}
. (27)

First, given δ1 > 0, we let Σ◦(δ1) = EW ◦(δ1)TW ◦(δ1). By definition of W ◦(δ1), we have
‖Wi,·‖2 ≤

√
t0(δ1) for all i ∈ [N ]. Then it follows that for every s ≥ 0,

‖W ◦(δ1)‖ ≤ ‖Σ◦(δ1)‖1/2 + s
√
t0(δ1)

with probability at least 1 − p exp
(
−cs2

)
(see Theorem 5.44 of [51] and Eqs. (5.32) and

(5.33) in reference, and replacing the common second moment Σ = EW T
i,·Wi,· with the av-

erage second moment for all rows, Σ = 1
N

∑N
i=1 EW T

i,·Wi,·, i.e., redefining Σ). Note that
‖Σ◦(δ1)‖ =

∥∥EW ◦(δ1)TW ◦(δ1)
∥∥ ≤ ∥∥EW TW

∥∥. Now we define Ẽ1(s) parameterized by s > 0
as

Ẽ1(s; δ1) :=
{
‖W ◦(δ1)‖ >

∥∥EW TW
∥∥1/2

+ s
√
t0(δ1)

}
.

If we pick s =
(

1+δ1
c log(Np)

)1/2
, then E1(δ1) = Ẽ1(s; δ1) and

P (E1(δ1)c) ≤ p exp
(
−cs2

)
= p exp (−(1 + δ1) log(Np)) =

1

N1+δ1pδ1
.

Next, we observe that ‖W×(δ1)‖F = 0 if and only if W×(δ1) = 0. If W×(δ1) 6= 0, then
maxi∈[n] ‖Wi,·‖22 > t0(δ1). Therefore,

P (Ec2) ≤ 1

N1+δ1p2+δ1

by the analysis in Step 1; see (24).

Step 4: concluding the proof. For any given δ1 > 0,

P

(
‖W ‖ >

∥∥EW TW
∥∥1/2

+

√
1 + δ1
c

t0(δ1) log(Np)

∣∣∣∣ E1(δ1) ∩ E2(δ1)

)
= 0.

by (25), (26), and (27). By the law of total probability and the union bound,

P

(
‖W ‖ >

∥∥EW TW
∥∥1/2

+

√
1 + δ1
c

t0(δ1) log(Np)

)

≤ P

(
‖W ‖ >

∥∥EW TW
∥∥1/2

+

√
1 + δ1
c

t0(δ1) log(Np)

∣∣∣∣ E1(δ1) ∩ E2(δ1)

)
+ P (E1(δ)c) + P (E2(δ)c)

≤ 1

N1+δ1pδ1
+

1

N1+δ1p2+δ1

≤ 2

N1+δ1pδ1
.

This completes the proof.

G.4 Proof of Lemma G.1

Proof G.3 When Property 2.4 holds, then

E(Z − ρA)T (Z − ρA) = ρ(1− ρ)diag(ATA) + ρ2E(X −A)T (X −A)

by [48, Lemma A.2]. Applying triangle inequality, we have∥∥E(Z − ρA)T (Z − ρA)
∥∥ ≤ ρ(1− ρ)

∥∥diag(ATA)
∥∥+ ρ2

∥∥E(X −A)T (X −A)
∥∥

≤ ρ(1− ρ) max
j∈[p]
‖A·,j‖22 + ρ2

∥∥EHTH
∥∥.
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G.5 Proof of Lemma G.2

G.5.1 Auxiliary Lemmas

Lemma G.3 Suppose that X ∈ Rn and P ∈ {0, 1}n are random vectors. Then for any α ≥ 1,

‖X ◦ P‖ψα ≤ ‖X‖ψα .

Proof G.4 Given a deterministic binary vector P0 ∈ {0, 1}n, let IP0
= {i ∈ [n] : Qi = 1}. Observe

that
X ◦ P0 =

∑
i∈IP0

eie
T
i X.

Here, ◦ denotes the Hadamard product (entrywise product) of two matrices. By definition of the
ψα-norm,

‖X‖ψα = sup
u∈Sn−1

∥∥uTX∥∥
ψα

= sup
u∈Sn−1

inf
{
t > 0 : EX

[
exp (|uTX|α/tα)

]
≤ 2
}
.

Let u0 ∈ Sn−1 denote the maximum-achieving unit vector (such u0 exists because inf{· · ·} is
continuous with respect to u and Sn−1 is compact). Then,

‖X ◦ P‖ψα = sup
u∈Sn−1

∥∥uTX ◦ P∥∥
ψα

= sup
u∈Sn−1

inf
{
t > 0 : EX,P

[
exp

(
|uTX ◦ P |α/tα

) ]
≤ 2
}

= sup
u∈Sn−1

inf
{
t > 0 : EP

[
EX
[

exp
(
|uTX ◦ P |α/tα

) ∣∣∣ P]] ≤ 2
}

= sup
u∈Sn−1

inf

{
t > 0 : EP

[
EX

[
exp

(∣∣∣uT ∑
i∈IP

eie
T
i X
∣∣∣α/tα) ∣∣∣∣ P]] ≤ 2

}

= sup
u∈Sn−1

inf

{
t > 0 : EP

[
EX

[
exp

(∣∣∣∣( ∑
i∈IP

eie
T
i u
)T
X

∣∣∣∣α/tα) ∣∣∣∣ P]] ≤ 2

}
.

For any u ∈ Sn−1 and P0 ∈ {0, 1}n, observe that

EX

[
exp

(∣∣∣∣( ∑
i∈IP

eie
T
i u
)T
X

∣∣∣∣α/tα) ∣∣∣∣ P = P0

]
≤ EX

[
exp

(
|uT0 X|α/tα

)]
.

Therefore, taking supremum over u ∈ Sn−1, we obtain

‖X ◦ P‖ψα ≤ ‖X‖ψα .

Lemma G.4 Let X be a mean-zero, ψα-random variable for some α ≥ 1. Then for |λ|≤ 1
C‖X‖ψα

,

E exp (λX) ≤ exp
(
Cλ2‖X‖2ψα

)
.

Proof G.5 See [52], Section 2.7.

Lemma G.5 Let X1, . . . , Xn be independent random variables with mean zero. For α ≥ 1,∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
ψα

≤ C

(
n∑
i=1

‖Xi‖2ψα

)1/2

.

Proof G.6 Immediate by Lemma G.4.
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G.5.2 Proof of Lemma G.2

Proof G.7 Let P ∈ {0, 1}N×p denote a random matrix whose entries are i.i.d. random variables
that take value 1 with probability ρ and 0 otherwise. Note that Zi,· = Xi,· ◦ Pi,· when Property 2.4
is assumed and ? is identified with 0. By triangle inequality,

‖Zi,· − ρAi,·‖ψα = ‖Xi,· ◦ Pi,· − ρAi,·‖ψα
= ‖(Xi,· ◦ Pi,·)− (Ai,· ◦ Pi,·)− ρAi,· + (Ai,· ◦ Pi,·)‖ψα
≤ ‖(Xi,· −Ai,·) ◦ Pi,·‖ψα + ‖(Ai,· ◦ Pi,·)− ρAi,·‖ψα .

By definition of X , Property 2.5, and Lemma G.3, we have that

‖(Xi,· −Ai,·) ◦ Pi,·‖ψα ≤ ‖Xi,· −Ai,·‖ψα = ‖ηi,·‖ψα ≤ CKα.

Moreover, Property 2.1 and the i.i.d. property of Pij for different j gives∥∥∥(Ai,· ◦ Pi,·)− ρAi,·

∥∥∥
ψα

= sup
u∈Sp−1

∥∥∥∥ p∑
j=1

ujAi,j(Pi,j − ρ)

∥∥∥∥
ψα

≤ sup
u∈Sp−1

( p∑
j=1

u2
j‖Ai,j(Pi,j − ρ)‖2ψα

)1/2

≤
(

sup
u∈Sp−1

∑
j

u2
j max
j∈[p]
|Ai,j |2

)1/2

‖P1,1 − ρ‖ψα

≤ Γ‖P1,1 − ρ‖ψα .

The first inequality follows from Lemma G.5, the second inequality is immediate, and the last
inequality follows from Property 2.1. Lastly, ‖P1,1 − ρ‖ψα ≤ C because P1,1 − ρ is a bounded
random variable in [−ρ, 1− ρ].

H Proof of Lemma 5.1

H.1 Outline

To bound the error in estimation of HSVT, ZHSV T,k with thresholding at kth singular value, and
underlying covariate matrix A with respect to ‖·‖2,∞ matrix norm, we shall start by presenting
Lemma H.1 which bounds ‖ZHSV T,k −A‖2,∞ as a function of few quantities. Next, we bound
these quantities with high probability in our setting through help of sequence of results including the
spectral norm bound stated in Theorem G.1. We conclude the proof of Lemma 5.1 and subsequently
proofs of helper results on our way.

Notation. Consider a matrix B ∈ RN×p such that B =
∑N∧p
i=1 σi(B)xiy

T
i . With a specific choice

of λ ≥ 0, we can define a function ϕB
λ : RN → RN as follows: for any vector w ∈ RN ,

ϕB
λ (w) =

N∧p∑
i=1

1(σi(B) ≥ λ)xix
T
i w. (28)

Note that ϕB
λ is a linear operator and it depends on the tuple (B, λ); more precisely, the singular

values and the left singular vectors of B, as well as the threshold λ. If λ = 0, then we will adopt the
shorthand notation: ϕB = ϕB

0 .

Lemma H.1 Suppose that

1. ‖Z − ρA‖ ≤ ∆ for some ∆ ≥ 0,

2. 1
ερ ≤ ρ̂ ≤ ερ for some ε ≥ 1.
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Let Â = ZHSVT,k, Ak = HSVTτk(A) and E = A−Ak. Then for any j ∈ [p],∥∥∥Â·,j −A·,j

∥∥∥2

2
≤ 4ε2

ρ2

∆2

ρ2(τk − τk+1)2
‖Z·,j − ρA·,j‖22

+
4ε2

ρ2

∥∥∥ϕAk

(Z·,j − ρA·,j)
∥∥∥2

2
+ 2(ε− 1)2‖A·,j‖22.

+
2∆2

ρ2(τk − τk+1)2

∥∥Ak
·,j
∥∥2

2
+ 2 ‖E·,j‖22.

High probability events for conditioning. We define the following four events:

E1 :=

{
‖Z − ρA‖ ≤

√
Nρ
√
ργ2 + (1− ρ)Γ2

+ 2C(α)
√
p(Kα + Γ)

(
1 + 9 log(Np)

) 1
α√

log(Np)

}

E2 :=

{(
1−

√
20 log(Np)

Npρ

)
ρ ≤ ρ̂ ≤ 1

1−
√

20 log(Np)
Npρ

ρ

}

E3 :=

{
max
j∈[p]

∥∥∥Z·,j − ρA·,j∥∥∥2

2
≤ 11C(Kα + Γ)2N log

2
α (Np)

}
E4 :=

{
max
j∈[p]

∥∥∥ϕAk

(Z·,j − ρA·,j)
∥∥∥2

2
≤ 11C(Kα + Γ)2r log

2
α (Np)

}
.

Here, C(α) is the same absolute constant that appears in Theorem G.1, and C > 0 is an absolute
constant. The proof of Lemmas H.2, H.3, H.4, and H.5 can be found in Appendix H.5.

Observation 1: E1 occurs with high probability.

Lemma H.2 Suppose that Properties 2.1, 2.5 for α ≥ 1, and 2.4 hold. Then for any δ1 > 0,

‖Z − ρA‖ ≤
√
Nρ
√
ργ2 + (1− ρ)Γ2

+ C(α)
√

1 + δ1
√
p(Kα + Γ)

(
1 + (2 + δ1) log(Np)

) 1
α√

log(Np)

with probability at least 1− 2
N1+δ1pδ1

; C(α) > 0 is an absolute constant that depends only on α.

Remark H.1 By letting δ1 = 10 in Lemma H.2, we have that P (Ec1) ≤ 2
N10p10 .

Observation 2: E2 occurs with high probability.

Lemma H.3 Suppose that Property 2.4 holds. Then for any ε > 1,

P

(
1

ε
ρ ≤ ρ̂ ≤ ερ

)
≥ 1− 2 exp

(
− (ε− 1)2

2ε2
Npρ

)
.

Remark H.2 Let ε =

(
1−

√
20 log(Np)

Npρ

)−1

in Lemma H.3. Then, P (Ec2) ≤ 2
N10p10 .

Observation 3: E3 and E4 occur with high probability.

Lemma H.4 Suppose Properties 2.1, 2.5, and 2.4 hold. Then,

P (Ec3) ≤ 2

N10p10
.

Lemma H.5 Suppose properties 2.1, 2.5, and 2.4 hold. Then,

P (Ec4) ≤ 2

N10p10
.
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H.2 Completing Proof of Lemma 5.1

Proof H.1 Recall that our goal is to establish

E[‖ZHSVT,k −A‖22,∞] ≤ C(K2
α + Γ2)

ρ2

(
k +

N∆2

ρ2(τk − τk+1)2

)
log

2
α Np+ 2‖Ak −A‖22,∞,

where C > 0 is a universal constant. To that end, define E , E1 ∩ E2 ∩ E3 ∩ E4. By Lemmas H.2,
H.3, H.4 and H.5, it follows that

P (Ec) ≤ P (Ec1 ∪ Ec2 ∪ Ec3 ∪ Ec4) ≤ 8

N10p10
.

Observe (with Â = ZHSVT,k),

E[‖Â−A‖22,∞] = E max
j∈[p]

∥∥∥Â·,j −A·,j

∥∥∥2

2

= E

[
max
j∈[p]

∥∥∥Â·,j −A·,j

∥∥∥2

2
· 1(E)

]
+ E

[
max
j∈[p]

∥∥∥Â·,j −A·,j

∥∥∥2

2
· 1(Ec)

]
. (29)

In the rest of the proof, we upper bound the two terms in (29) separately.

Upper bound on the first term in (29). Under event E, from Lemma H.1, we have

max
j∈[p]

∥∥∥Â·,j −A·,j

∥∥∥2

2
≤ C(Kα + Γ)2

ρ2

(
∆2N

ρ2(τr − τr+1)2
+ r

)
log

2
α (Np) + 2 max

j∈[p]
‖E·,j‖22.

where C > 0 is an absolute constant. To see this, note that ε2 ≤ 10 since ρ ≥ 64 log(Np)
Np ;

‖Ak
j ‖22≤ ‖Aj‖22≤ Γ2N due to argument similar to the contraction property of HSVT operator cf.

Lemma H.8 and Property 2.1. Since P (E) ≤ 1, it follows that

E

[
max
j∈[p]

∥∥∥Â·,j −A·,j

∥∥∥2

2
· 1(E)

]
≤ C(Kα + Γ)2

ρ2

(
∆2N

ρ2(τr − τr+1)2
+ r

)
log

2
α (Np) + 2 max

j∈[p]
‖E·,j‖22.

(30)

Upper bound on the second term in (29). To begin with, we note that for any j ∈ [p],∥∥∥Â·,j −A·,j

∥∥∥
2
≤
∥∥∥Â·,j∥∥∥

2
+ ‖A·,j‖2

by triangle inequality. By the model assumption, the covariates are bounded (Property 2.1) and
‖A·,j‖2 ≤ Γ

√
N for all j ∈ [p]. By definition, for any j ∈ [p],

Â·,j =
1

ρ̂
HSVTλ(Z)·,j

for a given threshold λ = sk, the kth singular value of Z. Therefore,

‖Â·,j‖2=
1

ρ̂
‖HSVTλ(Z)·,j‖2

(a)

≤ Np‖HSVTλ(Z)·,j‖2
(b)

≤ Np‖Z·,j‖2.

Here, (a) follows from ρ̂ ≥ 1
Np ; and (b) follows from Lemma H.8 – the HSVT operator is a contraction

on the columns.

max
j∈[p]
‖Â·,j −A·,j‖2 ≤ max

j∈[p]
‖Â·,j‖2+ max

j∈[p]
‖A·,j‖2

≤ Np max
j∈[p]
‖Z·,j‖2+Γ

√
N

≤ (N
3
2 p+

√
N)Γ +N

3
2 pmax

ij
|ηij |

≤ 2N
3
2 p
(

Γ + max
ij
|ηij |

)
(31)
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because maxj∈[p]‖Z·,j‖2≤
√
N maxi,j |Zij | ≤

√
N maxi,j |Aij + ηij | ≤

√
N(Γ + maxi,j |ηij |).

Now we apply Cauchy-Schwarz inequality on E[ maxj∈[p]‖Â·,j −A·,j‖22·1(Ec)] to obtain

E
[

max
j∈[p]
‖Â·,j −A·,j‖22 · 1(Ec)

]
≤ E

[
max
j∈[p]
‖Â·,j −A·,j‖42

] 1
2 · E

[
1(Ec)

] 1
2

= E
[

max
j∈[p]
‖Â·,j −A·,j‖42

] 1
2 · P (Ec)

1
2

(a)

≤ 4N3p2E
[(

Γ + max
ij
|ηij |

)4] 1
2 · P (Ec)

1
2

(b)

≤ 8
√

2N3p2
(

Γ4 + E[ max
ij
|ηij |4]

) 1
2 · P (Ec)

1
2

(c)

≤ 8
√

2N3p2
(

Γ2 + E[ max
ij
|ηij |4]

1
2

)
· P (Ec)

1
2 . (32)

Here, (a) follows from (31); and (b) follows from Jensen’s inequality:

E
[(

Γ + max
ij
|ηij |

)4]
= E

[(1

2
(2Γ + 2 max

ij
|ηij |)

)4
]
≤ E

[
1

2

(
(2Γ)

4
+ (2 max

ij
|ηij |)4

)]
= 8E

[
Γ4 + max

ij
|ηij |4

]
= 8
(

Γ4 + E[max
ij
|ηij |4]

)
;

and (c) follows from the trivial inequality:
√
A+B ≤

√
A+
√
B for any A,B ≥ 0.

Now it remains to find an upper bound for E[ maxij |ηij |4]. Note that for any α > 0 and θ ≥ 1, ηij
being a ψα-random variable implies that |ηij |θ is a ψα/θ-random variable. With the choice of θ = 4,
we have that

E max
ij
|ηij |4 ≤ C ′K4

α log
4
α (Np) (33)

for some C ′ > 0 by Lemma D.5 (also see Remark D.1). Inserting (33) to (32) yields

E
[

max
j∈[p]
‖Â·,j −A·,j‖22 · 1(Ec)

]
≤ 8
√

2N3p2
(

Γ2 + C ′
1/2
K2
α log

2
α (Np)

)
· P (Ec)

1
2

(a)

≤ 32
(

Γ2 + C ′
1/2
K2
α log

2
α (Np)

) 1

N2p2
, (34)

where (a) follows from recalling that P (Ec) ≤ 8/N10p10.

Concluding the Proof. Thus, combining (30) and (34) in (29) and noticing that term in (34) is
smaller order term than that in (30), by defining appropriate constant C > 0, we obtain the desired
bound:

E[‖Â−A‖22,∞] ≤ C(Kα + Γ)2

ρ2

(
∆2N

ρ2(τr − τr+1)2
+ r

)
log

2
α (Np) + 2 max

j∈[p]
‖E·,j‖22

+
C

N2p2

(
Γ2 +K2

α log
2
α (Np)

)
,

with

∆ =
√
Nρ
√
ργ2 + (1− ρ)Γ2 + 2C(α)

√
p(Kα + Γ)

(
1 + 9 log(Np)

) 1
α√

log(Np).

H.3 More on HSVT

H.3.1 Interlacing of Singular Values

Lemma H.6 Given covariate matrix ARN×p and its noisy observation with missing values, Z ∈
RN×p, let 2‖Z − ρA‖< ρ(τk − τk+1) where τi is ith singular value of A for i ∈ [N ]. Then,

sk+1 ≤ ρτk+1 + ‖Z − ρA‖ < ρτk − ‖Z − ρA‖ ≤ sk,
where si is the ith singular value of Z for i ∈ [N ].
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Proof H.2 We may write
Z = ρA + (Z − ρA).

Recall that si are the singular values of Z. Then, from Weyl’s inequality as in Lemma D.6 the result
follows immediately.

H.3.2 Column Operator Induced by HSVT

Lemma H.7 Let B ∈ RN×p and λ ≥ 0 be given. Then for any j ∈ [p],

ϕB
λ (B·,j) = HSVTλ(B)·,j .

Proof H.3 By (28) and the orthonormality of the left singular vectors,

ϕB
λ (B·,j) =

N∧p∑
i=1

1(σi(B) ≥ λ)xix
T
i B·,j =

N∧p∑
i=1

1(σi(B) ≥ λ)xix
T
i

(N∧p∑
i′=1

σi′(B)xi′yi′
)
·,j

=

N∧p∑
i,i′=1

σi′(B)1(σi(B) ≥ λ)xix
T
i xi′(yi′)j =

N∧p∑
i,i′=1

σi′(B)1(σi(B) ≥ λ)xiδii′(yi′)j

=

N∧p∑
i=1

1(σi(B) ≥ λ∗)σixi(yi)j

= HSVTλ(B)·,j .

This completes the proof.

Remark H.3 Suppose we have missing data. Then the estimator Â has the following representation:

Â =
1

ρ̂
HSVTλ∗(Z) =

1

ρ̂

N∧p∑
i=1

si1(si ≥ λ∗) · uivTi .

By Lemma H.7, we note that

Â·,j =
1

ρ̂
ϕZ
λ∗(Z·,j). (35)

H.3.3 HSVT Operator is a Contraction

Lemma H.8 Let B ∈ RN×p and λ ≥ 0 be given. Then for any j ∈ [p],∥∥∥HSVTλ(B)·,j

∥∥∥
2
≤ ‖B·,j‖2.

Proof H.4 By (28) and Lemma H.7, we have

∥∥∥HSVTλ(B)·,j

∥∥∥2

2
=
∥∥ϕB

λ (B·,j)
∥∥2

2
=

∥∥∥∥∥
N∧p∑
i=1

1(σi(B) ≥ λ) · xixTi ·B·,j

∥∥∥∥∥
2

2

(a)
=

N∧p∑
i=1

∥∥1(σi(B) ≥ λ) · xixTi ·B·,j
∥∥2

2
≤
N∧p∑
i=1

∥∥xixTi ·B·,j∥∥2

2

(b)
=

∥∥∥∥∥
N∧p∑
i=1

xix
T
i ·B·,j

∥∥∥∥∥
2

2

= ‖B·,j‖22.

Note that (a) and (b) use the orthonormality of the left singular vectors.
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H.4 Proof of Lemma H.1

Proof H.5 First, we recall three conditions assumed in the Lemma that will be used in the proof:

1. ‖Z − ρA‖ ≤ ∆ for some ∆ ≥ 0.

2. 1
ερ ≤ ρ̂ ≤ ερ for some ε ≥ 1.

We will use notation λ∗ = sk, the kth singular value of Z for simplicity. We prove our Lemma in
three steps.

Step 1. Fix a column index j ∈ [p]. Observe that

Â·,j −A·,j =
(
Â·,j − ϕZ

λ∗(A·,j)
)

+
(
ϕZ
λ∗(A·,j)−A·,j

)
.

By choice, rank(Â) = k. By definition (see (28)), we have that ϕZ
λ∗ : RN → RN is the projection

operator onto the span of the top k left singular vectors of Z, namely, span{u1, . . . , uk}. Therefore,

ϕZ
λ∗(A·,j)−A·,j ∈ span{u1, . . . , uk}⊥

and by (35) (using Lemma H.7),

Â·,j − ϕZ
λ∗(A·,j) =

1

ρ̂
ϕZ
λ∗(Z·,j)− ϕZ

λ∗(A·,j) ∈ span{u1, . . . , uk}.

Hence, 〈Â·,j − ϕZ
λ∗(A·,j), ϕ

Z
λ∗(A·,j)−A·,j〉 = 0 and∥∥∥Â·,j −A·,j

∥∥∥2

2
=
∥∥∥Â·,j − ϕZ

λ∗(A·,j)
∥∥∥2

2
+
∥∥∥ϕZ

λ∗(A·,j)−A·,j

∥∥∥2

2
(36)

by the Pythagorean theorem. It remains to bound the terms on the right hand side of (36).

Step 2. We begin by bounding the first term on the right hand side of (36). Again applying Lemma
H.7, we can rewrite

Â·,j − ϕZ
λ∗(A·,j) =

1

ρ̂
ϕZ
λ∗(Z·,j)− ϕZ

λ∗(A·,j) = ϕZ
λ∗

(1

ρ̂
Z·,j −A·,j

)
=

1

ρ̂
ϕZ
λ∗(Z·,j − ρA·,j) +

ρ− ρ̂
ρ̂

ϕZ
λ∗(A·,j).

Using the Parallelogram Law (or, equivalently, combining Cauchy-Schwartz and AM-GM inequali-
ties), we obtain∥∥∥Â·,j − ϕZ

λ∗(A·,j)
∥∥∥2

2
=

∥∥∥∥1

ρ̂
ϕZ
λ∗(Z·,j − ρA·,j) +

ρ− ρ̂
ρ̂

ϕZ
λ∗(A·,j)

∥∥∥∥2

2

≤ 2

∥∥∥∥1

ρ̂
ϕZ
λ∗(Z·,j − ρA·,j)

∥∥∥∥2

2

+ 2

∥∥∥∥ρ− ρ̂ρ̂ ϕZ
λ∗(A·,j)

∥∥∥∥2

2

≤ 2

ρ̂2

∥∥ϕZ
λ∗(Z·,j − ρA·,j)

∥∥2

2
+ 2
(ρ− ρ̂

ρ̂

)2

‖A·,j‖22

≤ 2ε2

ρ2

∥∥ϕZ
λ∗(Z·,j − ρA·,j)

∥∥2

2
+ 2(ε− 1)2‖A·,j‖22. (37)

because Condition 2 implies 1
ρ̂ ≤

ε
ρ and

(
ρ−ρ̂
ρ̂

)2

≤ (ε− 1)2.

Note that the first term of (37) can further be decomposed (using the Parallelogram Law and recalling
A = Ak + E, we have∥∥ϕZ

λ∗(Z·,j − ρA·,j)
∥∥2

2

≤ 2
∥∥∥ϕZ

λ∗(Z·,j − ρA·,j)− ϕAk

(Z·,j − ρA·,j)
∥∥∥2

2
+ 2

∥∥∥ϕAk

(Z·,j − ρA·,j)
∥∥∥2

2
. (38)
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We now bound the first term on the right hand side of (38) separately. First, we apply the Davis-Kahan
sin Θ Theorem (see [31, 54]) to arrive at the following inequality:

‖Pu1,...,uk − Pµ1,...,µk‖2 ≤
‖Z − ρA‖
ρτk − ρτk+1

≤ ∆

ρ(τk − τk+1)
(39)

where Pu1,...,uk and Pµ1,...,µk denote the projection operators onto the span of the top k left singular
vectors of Z and Ak, respectively. We utilized Condition 1 to bound ‖Z−ρA‖2≤ ∆. Then it follows
that ∥∥∥ϕZ

λ∗(Z·,j − ρA·,j)− ϕAk

(Z·,j − ρA·,j)
∥∥∥

2
≤ ‖Pu1,...,uk − Pµ1,...,µk‖2‖Z·,j − ρA·,j‖2

≤ ∆

ρ(τk − τk+1)
‖Z·,j − ρA·,j‖2.

Combining the inequalities together, we have∥∥∥Â·,j − ϕZ
λ∗(A·,j)

∥∥∥2

2
≤ 4ε2

ρ2

∆2

ρ2(τk − τk+1)2
‖Z·,j − ρA·,j‖22

+
4ε2

ρ2

∥∥∥ϕAk

(Z·,j − ρA·,j)
∥∥∥2

2
+ 2(ε− 1)2‖A·,j‖22. (40)

Step 3. We now bound the second term of (36). Recalling A = Ak + E and using (39)∥∥ϕZ
λ∗(A·,j)−A·,j

∥∥2

2
=
∥∥ϕZ

λ∗(A
k
·,j + E·,j)−Ak

·,j −E·,j
∥∥2

2

≤ 2
∥∥ϕZ

λ∗(A
k
·,j)−Ak

·,j
∥∥2

2
+ 2

∥∥ϕZ
λ∗(E·,j)−E·,j

∥∥2

2

= 2
∥∥∥ϕZ

λ∗(A
k
·,j)− ϕAk

(Ak
·,j)
∥∥∥2

2
+ 2

∥∥ϕZ
λ∗(E·,j)−E·,j

∥∥2

2

≤ 2 ‖Pu1,...,uk − Pµ1,...,µk‖
2∥∥Ak

·,j
∥∥2

2
+ 2 ‖E·,j‖22

≤ 2∆2

ρ2(τk − τk+1)2

∥∥Ak
·,j
∥∥2

2
+ 2 ‖E·,j‖22. (41)

Inserting (40) and (41) back to (36) completes the proof.

H.5 Proof of E1, E2, E3, E4 Being High-probability Events

H.5.1 Proof of Lemma H.2

Proof H.6 Observe that ‖A·,j‖22 ≤ NΓ2 when Property 2.1 holds, and
∥∥EHTH

∥∥ ≤ Nγ2 when
Property 2.5 holds. By Theorem G.1, we know that for any δ1 > 0,

‖Z − ρA‖ ≤
√
Nρ
√
ργ2 + (1− ρ)Γ2

+ C(α)
√

1 + δ1
√
p(Kα + Γ)

(
1 + (2 + δ1) log(Np)

) 1
α√

log(Np)

with probability at least 1− 2
N1+δ1pδ1

.

H.5.2 Proof of Lemma H.3

Proof H.7 Recall that ρ̂ = 1
Np

∑N
i=1

∑p
j=1 1(Zij 6= ?) ∨ 1

Np . By the binomial Chernoff bound, for
ε > 1,

P (ρ̂ > ερ) ≤ exp

(
− (ε− 1)2

ε+ 1
Npρ

)
, and

P

(
ρ̂ <

1

ε
ρ

)
≤ exp

(
− (ε− 1)2

2ε2
Npρ

)
.

By the union bound,

P

(
1

ε
ρ ≤ ρ̂ ≤ ερ

)
≥ 1− P (ρ̂ > ερ)− P

(
ρ̂ <

1

ε
ρ

)
.

Noticing ε+ 1 < 2ε < 2ε2 for all ε > 1 completes the proof.
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H.5.3 Two Helper Lemmas for the Proof of Lemmas H.4 and H.5

Lemma H.9 Assume Properties 2.1, 2.5, and 2.4 hold. Then for any α ≥ 1 with which Property 2.5
holds,

‖Z·,j − ρA·,j‖ψα ≤ C(Kα + Γ), ∀j ∈ [p]

where C > 0 is an absolute constant.

Proof H.8 Observe that

‖Z·,j − ρA·,j‖ψα = sup
u∈SN−1

∥∥uT (Z·,j − ρA·,j)
∥∥
ψα

= sup
u∈SN−1

∥∥uT (Z − ρA)ej
∥∥
ψα

= sup
u∈SN−1

∥∥∥∥∥
n∑
i=1

ui(Zi,· − ρAi,·)ej

∥∥∥∥∥
ψα

(a)

≤ C sup
u∈SN−1

(
n∑
i=1

u2
i ‖(Zi,· − ρAi,·)ej‖2ψα

)1/2

≤ C max
i∈[N ]

‖Zi,· − ρAi,·‖ψα ,

where (a) follows from Lemma G.5. Then the conclusion follows from Lemma G.2.

Lemma H.10 Let W1, . . . ,Wn be a sequence of ψα-random variables for some α ≥ 1. For any
t ≥ 0,

P

(
n∑
i=1

W 2
i > t

)
≤ 2

n∑
i=1

exp

−( t

n‖Wi‖2ψα

)α/2 .

Proof H.9 Note that
∑n
i=1W

2
i > t implies that there exists at least one i ∈ [n] with W 2

i >
t
n . By

the union bound,

P

(
n∑
i=1

W 2
i > t

)
≤

n∑
i=1

P

(
W 2
i >

t

n

)
≤

n∑
i=1

P

(
|Wi|>

√
t

n

)
≤

n∑
i=1

2 exp

−( t

n‖Wi‖2ψα

)α/2 .

H.5.4 Proof of Lemma H.4

Proof H.10 Fix j ∈ [p]. Let ei ∈ RN denote the i-th canonical basis of RN (column vector
representation). Note that ∥∥∥Z·,j − ρA·,j∥∥∥2

2
=

N∑
i=1

(
eTi (Z·,j − ρA·,j)

)2

and eTi (Z·,j − ρA·,j) is a ψα-random variable with
∥∥eTi (Z·,j − ρA·,j)

∥∥
ψα
≤ ‖Z·,j − ρA·,j‖ψα .

By Lemma H.9, ‖Z·,j − ρA·,j‖ψα ≤ C(Kα + Γ) for all j ∈ [p]. By Lemma H.10 and the union
bound,

P (Ec3) ≤
p∑
j=1

P

(∥∥∥Z·,j − ρA·,j∥∥∥2

2
> 11C2(Kα + Γ)2N log

2
α (Np)

)

≤ 2

p∑
j=1

N∑
i=1

exp (−11 log(Np))

=
2

N10p10
.
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H.5.5 Proof of Lemma H.5

Proof H.11 Recall that rank(Ak) = k. We write∥∥∥ϕAk

(Z·,j − ρA·,j)
∥∥∥2

2
=

k∑
i=1

(
uTi (Z·,j − ρA·,j)

)2

,

where u1, . . . , uk denote the left singular vectors of Ak. The proof has the same structure with that
of Lemma H.4 with u1, . . . , uk in place of e1, . . . , en.

I Proof of Corollary 5.1

Corollary 5.1 follows from Lemma 5.1 and Theorem 5.1. The key step is simplification of bound on
∆, as stated in (42), which we briefly discuss here. To that end, since α ≥ 1,

∆2 ≤ C1(α)
(
Nρ(γ2 + Γ2) + p(Kα + Γ)2 log3(Np)

)
(42)

≤ C2(α)(1 + γ + Γ +Kα)2(Nρ+ p) log3(Np).

for some constants C1(α), C2(α), which may depend on α. Using this bound, replacing in Lemma
5.1 and subsequently in Theorem 5.1 with n = Θ(N), we obtain the desired result of Corollary 5.1.

J Proof of Theorem 4.1

The proof of Theorem 4.1 follows from Corollary 5.1 by observing that φ = 0, and for k = r,
Ak = A and τk+1 = τr+1 = 0.

K Proof of Theorem 4.2

The proof of Theorem 4.2 follows the standard approach in terms of establishing generalization error
bounds using Rademacher complexity (cf. [16] and references therein). We note two important
contributions: (1) relating our notion of generalization error to the standard definitions; (2) arguing
that the Rademacher complexity of our matrix estimation regression algorithm (using HSVT) can be
identified with the Rademacher complexity of regression with `0-regularization.

Outline. We start by introducing some useful notation. We define a conditioning event of relevance
and show that this event occurs with high probability. Lemma K.3 then bounds the expected
generalization error in terms of the Rademacher complexity of the class of squared loss functions
for linear predictors. Due to Lemma 4.1, we analyze the Rademacher complexity of squared loss
functions under r-sparse linear predictors, which is summarized in Lemma K.4. Using these, we
conclude the proof of Theorem 4.2.

Notation, Setup. We consider PCR with parameter k = r for some r ≥ 1. Recall that the training
sample set Ω ⊂ [N ] with |Ω|= n. The PCR with parameter r is equivalent to Linear Regression with
pre-processing of noisy covariates using HSVT as argued in Proposition 3.1. Let Â = ZHSVT,r and
β̂ = βHSVT,r.

Model Class. We now state our model class of consideration for the purposes of generalization:

F = {β ∈ Rp : ‖β‖2≤ B, ‖β‖0≤ r},
where B > 0 is an absolute constant. We will now justify the above model class of interest.

As aforementioned, the goal of this work is to analyze the prediction properties of the PCR algorithm;
hence, for the purposes of generalization (and in line with standard assumptions on generalization
properties of linear regression algorithms), we begin by restricting the hypothesis class of candidate
regression vectors FPCR to have bounded `2-norm, i.e., FPCR = {β ∈ Rr : ‖β‖2≤ B}. For any
βPCR,r ∈ FPCR, we highlight that

Ŷ PCR = ZPCR,r · βPCR,r = Z̃ · Vr · βPCR,r = Zr · Vr · βPCR,r = Ŷ HSVT. (43)
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Recall that Zr = UrSrV
T
r , where Ur = [u1, . . . , ur],Vr = [v1, . . . , vr], and Sr =

diag(s1, . . . , sr) denote the top r left and right singular vectors, and singular values, respectively (as
defined in Section 3.1); hence, ZHSVT,r = Zr. This allows us to rewrite (43) as

Ŷ HSVT = ZHSVT,r · Vr · βPCR,r = ZHSVT,r · βHSVT,r,

where βHSVT,r = Vr · βPCR,r ∈ Rp. Using the orthonormality property of the vectors in Vr, we
obtain the following `2-bound for any βHSVT,r:

‖βHSVT,r‖22 = ‖Vr · βPCR,r‖22

= ‖
r∑
j=1

βPCR,r
j · vj‖22

=

r∑
j=1

(βPCR,r
j )2 · ‖vj‖22

=

r∑
j=1

(βPCR,r
j )2

= ‖βPCR,r‖22 ≤ B2.

Thus, we consider the collection of candidate vectors βHSVT,r = Vr · βPCR,r ∈ Rp such that
‖βHSVT,r‖2≤ B.

Further, by definition, recall that ZHSVT,r has rank r. Then by Proposition 4.1, for any ZHSVT,r and
corresponding βHSVT,r ∈ Rp, there exists an r-sparse vector β′ ∈ Rp such that

ZHSVT,r · βHSVT,r = ZHSVT,r · β′.

Therefore, we consider the collection of candidate vectors β′ ∈ Rp that are r-sparse, i.e., ‖β′‖0≤ r.
In other words, for analyzing properties of PCR with parameter r, or equivalently Linear regression
with covariate pre-processing using HSVT with rank r thresholding, we can restrict our model class
to linear predictors with sparsity r.

Given the above two observations, we will consider the family of regression vectors defined by F ,
which have bounded `2-norm and are r-sparse.

Generalization error and Rademacher complexity. For any hypothesis β ∈ F and training set Ω,
the empirical error is

ÊΩ(β) =
1

n

∑
ω∈Ω

(
Âω,·β −Aω,·β

∗
)2

. (44)

Similarly, we define the test error as

E(β) =
1

N

N∑
i=1

(
Âi,·β −Ai,·β

∗
)2

. (45)

The generalization error is defined as the supremum of the gap between (44) and (45) over F .
Precisely, for training set Ω,

φ(Ω) = sup
β∈F

(
E(β)− ÊΩ(β)

)
.

The notion of Radamacher complexity has been very effective for establishing generalization error.
To begin with, Radamacher complexity of a set A ⊂ Rn is defined as

R(A) = Eσ

[
sup
a∈A

1

n

n∑
i=1

σiai

]
,

where σ1, . . . , σn are i.i.d. Radamacher variables with uniform distribution of {−1, 1} and the
expectation above is with respect to their randomness. This has been naturally extended for setting of
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prediction problem as follows: given a collection of real-valued response variables and covariates,
say (Yi, Xi), i ∈ [n], collection of real-valued functions or hypothesis G that map covariates to real
values, and loss function L : R2 → [0,∞) that measures the error or loss in prediction for a given
function, define

RS(G) = Eσ

[
sup
g∈G

1

n

n∑
i=1

σig(Xi)

]
, RS(L ◦ G) = Eσ

[
sup
g∈G

1

n

n∑
i=1

σiL(Yi, g(Xi))

]
.

In our setting, the covariates that predictor uses are de-noised rows of Â, defined as Â =

{Â1,·, . . . , ÂN,·}. We use linear functions as predictors with hypothesis or function classes of
interest are F∞B , F0

r . The loss function of interest is quadratic function: `(y, y′) = (y − y′)2. The
ideal response variable of our interest are Ai,·β

∗ for i ∈ [N ]. Given that, our algorithm observes
(noisy) response variables in the index set Ω, we shall use the sample set {(Aω,·β

∗, Âω,·) : ω ∈ Ω}.
It turns out that the appropriate adaptation of the Radamacher complexity for our setting is as follows:

Rn(F) = Eσ,Ω

[
sup
β∈F

(
1

n

∑
ω∈Ω

σωÂω,·β

)]
, Rn(` ◦ F) = Eσ,Ω

[
sup
β∈F

(
1

n

∑
ω∈Ω

σω`(Aω,·β
∗, Âω,·β)

)]
,

where EΩ represents average with respect to uniformly at random selection of Ω ⊂ [N ] of size n.

High probability event. We define the following event:

E5 =

φ(Ω) ≤ EΩ [φ(Ω)] +

√
8 · C(Â) · log(Np)

n

 ,

where C(Â) = 2
[
(rB · ‖Â‖max)2 + (Γ‖β∗‖1)2

]
.

Helpful Lemmas. We now state a series of lemmas that will help us prove Theorem 4.2.

Lemma K.1 Let Property 2.1 hold. Then, for any β ∈ F ,

max
i∈[N ]

`(Ai,·β
∗, Âi,·β) ≤ C(Â).

Lemma K.2 Let Properties 2.1 and 2.5 hold. Then,

P(Ec5) ≤ 2

N10p10
.

Lemma K.3 Let φ(Ω) be defined as in (51). Let Ω be random subset of [N ] of size n that is chosen
uniformly at random. Then,

EΩ [φ(Ω)] ≤ 2Rn(` ◦ F).

Lemma K.4 Let rank(Â) = r. Then,

Rn(F) ≤ rB√
n
· ‖Â‖max.

Lemma K.5 Lipschitz composition of Rademacher averages.
Suppose {φi}, {ψi}, i = 1, . . . , n, are two sets of functions on Θ such that for each i and θ, θ′ ∈ Θ,
|φi(θ)− φi(θ′)| ≤ |ψi(θ)− ψi(θ′)|. Then, for all functions c : Θ→ R,

E

[
sup
θ∈Θ

{
c(θ) +

n∑
i=1

σiφi(θ)

}]
≤ E

[
sup
θ∈Θ

{
c(θ) +

n∑
i=1

σiψi(θ)

}]
,

where σi are Rademacher random variables.
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Completing The Proof of Theorem 4.2. Now we are ready to complete the proof of Theorem 4.2.

Proof K.1 The testing error for PCR with parameter r or equivalent Linear Regression with covariate
pre-processing using HSVT with thresholding done at rth singular value, is

MSE(Ŷ ) =
1

N
E

[
N∑
i=1

(
Ŷi −Ai,·β

∗
)2
]

= E
[
E(β̂)

]
.

And, for a given training set Ω, the training error is

MSEΩ(Ŷ ) =
1

|Ω|
E

[∑
i∈Ω

(
Ŷi −Ai,·β

∗
)2
]

= E
[
EΩ(β̂)

]
. (46)

We shall consider the training set Ω being chosen uniformly at random amongst subset of [N ] of

size n. Our interest is in bounding E
[
E(β̂)

]
in terms of EΩE

[
EΩ(β̂)

]
where randomness in the data

generation as well as Ω. Let E , E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5. Then,

E
[
E(β̂)

]
= E

[
E(β̂) · 1(E)

]
+ E

[
E(β̂) · 1(Ec)

]
. (47)

We will bound each term on the right-hand side of (47) separately.

Upper bound on first term in (47) . Given any Ω, observe that

E(β̂) ≤ ÊΩ(β̂) + sup
β∈F

(
E(β)− ÊΩ(β)

)
= ÊΩ(β̂) + φ(Ω). (48)

Further, under E (and hence E5),

φ(Ω) ≤ EΩ [φ(Ω)] +

√
8 · C(Â) · log(Np)

n
≤ 2Rn(` ◦ F) +

√
8 · C(Â) · log(Np)

n
,

where the second inequality follows from Lemma K.3. Using Lemma K.1, we have for any β ∈ F ,

max
i∈[N ]
|`′(Ai,·β

∗, Âi,·β)| ≤ 2

√
C(Â),

where `′(·, ·) denotes the derivative of the loss function with respect to our estimate. Since our
loss function of interest has bounded first derivative, the Lipschitz constant of `(·, ·) is bounded by
2C(Â)1/2; hence, applying a corollary of Lemma K.5 for Lipschitz functions and using Lemma K.4
yields the following inequality:

Rn(` ◦ F) ≤ 2

√
C(Â) ·Rn(F) ≤ 2rB ·

√
C(Â)

n
· ‖Â‖max.

Plugging the above results into (48), we obtain

EΩE
[
E(β̂) · 1(E)

]
≤ EΩE

[
ÊΩ(β̂) · 1(E)

]
+ EΩE [φ(Ω) · 1(E)]

≤ EΩE
[
ÊΩ(β̂)

]
+ E

4rB ·

√
C(Â)

n
· ‖Â‖max + 2

√
2 ·

√
C(Â) · log(Np)

n


= EΩE

[
ÊΩ(β̂)

]
+

4
√

2 · (rB)2

√
n

· E
[
‖Â‖2max

]
+

4rBΓ‖β∗‖1√
n

· E
[
‖Â‖max

]
+ 4

(
rB · E

[
‖Â‖max

]
+ Γ‖β∗‖1

)
·
√

log(Np)

n
.

By (46), the first term on the right-hand side of the above corresponds to EΩ[MSEΩ(Ŷ )]; hence,

E
[
E(β̂) · 1(E)

]
≤ EΩ[MSEΩ(Ŷ )] + C1 · (rB)2 · Γ‖β∗‖1·E

[
‖Â‖2max

]
·
√

log(Np)

n
, (49)
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where C1 is a universal positive constant.

Upper bound on second term in (47) . We begin with the following trivial bound on the expected
prediction error: since β̂ ∈ F , Lemma K.1 gives

E(β̂) =
1

N

N∑
i=1

(
Âi,·β̂ −Ai,·β

∗
)2

≤ max
i∈[N ]

(
Âi,·β̂ −Ai,·β

∗
)2

≤ C(Â).

Further, by a simple application of DeMorgan’s Law and the union bound, we have

P(Ec) ≤
5∑
q=1

P(Ecq ) ≤ 9

N10p10
.

By Cauchy-Schwarz inequality, the following inequality holds:

E
[
E(β̂) · 1(Ec)

]2
≤ E

[
E(β̂)2

]
· E [1(Ec)] = E

[
E(β̂)2

]
· P(Ec).

Putting everything together yields

E
[
E(β̂) · 1(Ec)

]
≤ E

[
C(Â)2

]1/2
· P(Ec)1/2

≤ 2
√

2
(

(rB)4 · E
[
‖Â‖4max

]
+ (Γ‖β∗‖1)4

)1/2

· P(Ec)1/2

≤ 2
√

2

(
(rB)2 · E

[
‖Â‖4max

]1/2
+ (Γ‖β∗‖1)2

)
· P(Ec)1/2

≤ C2

(
(rB)2 · E

[
‖Â‖4max

]1/2
+ (Γ‖β∗‖1)2

)
· 1

N5p5
, (50)

where C2 is an absolute constant.

Concluding the proof. Plugging (49) and (50) into (47) gives the following bound:

MSE(Ŷ ) ≤ EΩ[MSEΩ(Ŷ )] + C1 · (rB)2 · Γ‖β∗‖1·E
[
‖Â‖2max

]
·
√

log(Np)

n

+ C2

(
(rB)2 · E

[
‖Â‖4max

]1/2
+ (Γ‖β∗‖1)2

)
· 1

N5p5
.

Let C3 = C2B
2Γ‖β∗‖1. Then,

MSE(Ŷ ) ≤ EΩ[MSEΩ(Ŷ )] + C3 · r2 · E
[
‖Â‖2max

]
·
√

log(Np)

n
.

This completes the proof.

Lemma K.6 Let Ω = {i1, . . . , in} and Ω′ = {i1, . . . , i′j , . . . , in} such that Ω and Ω′ differ only in
their j-th elements. Let

φ(Ω) = sup
β∈F

(
E(β)− ÊΩ(β)

)
. (51)

Then for any β ∈ F ,

|φ(Ω)− φ(Ω′)| ≤ C(Â)

n
.

Proof K.2 Here, we will show that

φ(Ω) = sup
β∈F

(
E(β)− ÊΩ(β)

)
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satisfies the conditions necessary to invoke McDiarmid’s Inequality. We begin by noting that for any
real-valued functions f1, f2, supx f1(x)− supx f2(x) ≤ supx(f1(x)− f2(x)). Hence,

φ(Ω)− φ(Ω′) = sup
β∈F

(
E(β)− ÊΩ(β)

)
− sup
β∈F

(
E(β)− ÊΩ′(β)

)
≤ sup
β∈F

(
E(β)− ÊΩ(β)− E(β) + ÊΩ′(β)

)
= sup
β∈F

(
ÊΩ′(β)− ÊΩ(β)

)
≤ C(Â)

n
,

where the final equality follows from Lemma K.1 since Ω and Ω′ differ by only one element. Using
a similar argument, we can prove that φ(Ω′)− φ(Ω) ≤ C(Â)/n, and therefore |φ(Ω)− φ(Ω′)| ≤
C(Â)/n.

K.1 Proof of Lemma K.1

Proof K.3 Observe that for any i ∈ [N ] and β ∈ F ,

`(Ai,·β
∗, Âi,·β) = (Âi,·β −Ai,·β

∗)2 ≤ 2(Âi,·β)2 + 2(Ai,·β
∗)2.

Recall that every candidate vector β ∈ F has the following properties: ‖β‖0≤ r and ‖β‖2≤ B.
Hence, it follows that for any i ∈ [N ],

|Âi,·β̂| ≤ r · ‖β‖∞·max
j∈[p]
|Âij | ≤ r · ‖β‖2·‖Â‖max ≤ rB · ‖Â‖max.

Further, By Property 2.1 and Holder’s inequality, we have for any i ∈ [N ],

|Ai,·β
∗| ≤ ‖Ai,·‖∞ ‖β

∗‖1 ≤ Γ‖β∗‖1.

The desired result then follows from an immediate application of the above results.

K.2 Proof of Lemma K.2

Proof K.4 By Lemma K.1, we know that for any i ∈ [N ] and β ∈ F , `(Ai,·β
∗, Âi,·β) ∈ [0, C(Â)].

Lemma K.6 then allows us to apply McDiarmid’s Inequality (Lemma D.4), which gives

P{φ(Ω)− EΩφ(Ω) ≥ t1} ≤ exp
(
−t21n/C(Â)

)
.

Setting t1 =

√
10 · C(Â) · log(Np)/n completes the proof.

K.3 Proof of Lemma K.3

Proof K.5 Let Ω′ = {i′1, . . . , i′n} be a “ghost sample”, i.e., Ω′ is an independent set of n locations
sampled uniformly at random and without replacement from [N ]. Observe that E(β) = EΩ′ [ÊΩ′(β)]

and ÊΩ(β) = EΩ′ [ÊΩ(β)]. Thus,

EΩφ(Ω) = EΩ

[
sup
β∈F

(
E(β)− ÊΩ(β)

)]

= EΩ

[
sup
β∈F

(
EΩ′

[
ÊΩ′(β)− ÊΩ(β)

])]

≤ EΩ,Ω′

[
sup
β∈F

(
ÊΩ′(β)− ÊΩ(β)

)]

= EΩ,Ω′

[
sup
β∈F

1

n

n∑
k=1

(
`(Ai′k

β∗; Âi′k
β)− `(Aikβ

∗; Âikβ)
)]

,
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where the inequality follows by the convexity of the supremum function and Jensen’s Inequality.

To proceed, we will use the ghost sampling technique. Recall that the entries of Ω and Ω′

were drawn uniformly at random from [N ]. As a result, `(Ai′k
β∗; Âi′k

β) − `(Aikβ
∗; Âikβ) and

`(Aikβ
∗; Âikβ)− `(Ai′k

β∗; Âi′k
β) have the same distribution. Further, since σk takes value 1 and

−1 with equal probability, we have

EΩ,Ω′

[
sup
β∈F

1

n

n∑
k=1

(
`(Ai′k

β∗; Âi′k
β)− `(Aikβ

∗; Âikβ)
)]

= Eσ,Ω,Ω′

[
sup
β∈F

1

n

n∑
k=1

σk

(
`(Ai′k

β∗; Âi′k
β)− `(Aikβ

∗; Âikβ))
)]

.

Combining the above relation with the fact that the supremum of a sum is bounded above by the sum
of supremums, we obtain

EΩφ(Ω) ≤ Eσ,Ω,Ω′

[
sup
β∈F

1

n

n∑
k=1

σk

(
`(Ai′k

β∗; Âi′k
β)− `(Aikβ

∗; Âikβ)
)]

≤ Eσ,Ω,Ω′

[
sup
β∈F

1

n

n∑
k=1

σk`(Ai′k
β∗; Âi′k

β) + sup
β∈F

1

n

n∑
k=1

−σk`(Aikβ
∗; Âikβ)

]

= Eσ,Ω

[
sup
β∈F

1

n

n∑
k=1

σk`(Aikβ
∗; Âikβ)

]
+ Eσ,Ω′

[
sup
β∈F

1

n

n∑
k=1

σk`(Ai′k
β∗; Âi′k

β)

]
= 2 ·Rn(` ◦ F),

where the second to last equality holds because σk is a symmetric random variable.

K.4 Proof of Lemma K.4

Proof K.6 Let Iβ = {i ∈ [p] : βi 6= 0} denote the index set for the nonzero elements of β ∈ Rp. For
any vector v ∈ Rp, we denote vIβ as the vector that retains only its values in Iβ and takes the value 0
otherwise. Then,

Rn(F) = Eσ,Ω

[
sup
β∈F

(
1

n

n∑
i=1

σi〈αi, β〉

)]

=
1

n
Eσ,Ω

[
sup
β∈F

(
〈
n∑
i=1

σiαi, β〉

)]

=
1

n
Eσ,Ω

[
sup
β∈F

(∑
j∈Iβ

βj

( n∑
i=1

σiαi

)
j

)]
(a)

≤ 1

n
Eσ,Ω

[
sup
β∈F

∥∥∥βIβ∥∥∥
2
·
∥∥∥( n∑

i=1

σiαi

)
Iβ

∥∥∥
2

]
(b)

≤
√
rB

n
Eσ,Ω

[∥∥∥( n∑
i=1

σiαi

)
Iβ

∥∥∥
2

]
(c)

≤
√
rB

n

(
Eσ,Ω

[( n∑
i=1

σiαi

)T
Iβ

( n∑
k=1

σkαk

)
Iβ

])1/2

=

√
rB

n

(
EΩ

[
n∑
i=1

∥∥∥(αi)Iβ

∥∥∥2

2

])1/2

≤
√
rB

n

(
nrmax

i∈[n]

∥∥(αi)Iβ
∥∥2

∞

)1/2
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=
rB√
n
·max
i∈[n]
‖αi‖∞.

Note that (a) makes use of the Cauchy-Schwartz Inequality, (b) follows from the boundedness
assumption in the Lemma statement, and (c) applies Jensen’s Inequality. The proof is complete after
observing that ‖Â‖max= maxi∈[n] ‖αi‖∞.

L Examples

L.1 Embedded Random Gaussian Features.

Analysis for the Example. In this subsection, we show that sr(A) = Ω(
√
N) and Γ =

O
(√

r log(Np)
p

)
with high probability.

Lemma L.1 Suppose that r ≤
√
p

4
√

2 log p
+ 1 and let R ∈ Rr×p be a random matrix with independent

entries such that Rij = 1√
p with probability 1

2 and Rij = − 1√
p with probability 1

2 . With probability

at least 1− 1
p2 , for all v ∈ Rr,

1

2
‖v‖22≤ ‖vR‖22≤

3

2
‖v‖22.

Remark L.1 Lemma L.1 implies that given r ≤ 1 +
√
p

4
√

2 log p
, the right multiplication of R defines

a quasi-isometric embedding from Rr to Rp with high probability. More precisely, with probability at
least 1− 1

p2 , the following inequalities are true:

1

2
‖v‖22≤ ‖vR‖22≤

3

2
‖v‖22, ∀v ∈ Rr, and

2

3
‖w‖22≤ ‖Rw‖22≤ 2‖w‖22, ∀w ∈ rowspan(R).

Remark L.2 By Remark L.1, with probability at least 1− 1
p2 ,

sr(A) = sup
W⊂Rp

dimW=r

inf
w∈W

‖Aw‖2
‖w‖2

= sup
W⊂Rp

dimW=r

inf
w∈W

‖ÃRw‖2
‖w‖2

= inf
w∈rowspaceR

‖ÃRw‖2
‖w‖2

≥
√

2

3
inf

w∈rowspaceR

‖ÃRw‖2
‖Rw‖2

=

√
2

3
inf
v∈Rr

‖Ãv‖2
‖v‖2

=

√
2

3
sr(Ã).

Lemma L.2 (Spectral properties of Ã) Let Ã ∈ RN×r be a random matrix whose entries are i.i.d.
standard Gaussian random variable.

1. With probability at least 1− 2 exp
(
−2
√
Nr
)

, rank(Ã) = r and

s1(Ã)

sr(Ã)
≤
(
N1/4 + r1/4

N1/4 − r1/4

)2

.

2. With probability at least 1− exp
(
−Nr8

)
,

‖Ã‖2F>
Nr

2
.

Remark L.3 Lemma L.2 implies that with probability at least 1− 2 exp
(
−2
√
Nr
)
− exp

(
−Nr8

)
,

sr(Ã)2 ≥

[
1 + (r − 1)

s1(Ã)2

sr(Ã)2

]−1

‖Ã‖2F≥

[
1 + (r − 1)

(
N1/4 + r1/4

N1/4 − r1/4

)4
]−1

Nr

2
.

Lemma L.3 (Structural properties of A) Let A ∈ RN×p be a matrix generated as above. With
probability at least 1− 2

N2p ,

max
i,j
|Aij |≤ 4

√
r log(Np)

p
.
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Proof of Proposition 4.2

Proof L.1 Proof is immediate from Lemmas L.1, L.2, L.3 and Theorem 4.1 (along with Remarks L.2
and L.3).

L.1.1 Proof of Lemma L.1

Proof L.2 For i ∈ [r], let Ri denote the i-th row of R. Observe that ‖Ri‖2= 1 for all i ∈ [r]. Also,
note that for i 6= j ∈ [r], 〈Ri,Rj〉 = 1

p

∑p
k=1 RikRjk is a sum of p independent binary random

variables; RikRjk = 1 with probability 1
2 and −1 with probability 1

2 . Therefore, E〈Ri,Rj〉 = 0.
By Hoeffding’s inequality for bounded random variables,

P (|〈Ri,Rj〉|> t) ≤ 2 exp

(
−pt

2

2

)
.

Letting t = 2
√

2 log p√
p , we can conclude that for any pair of i 6= j ∈ [r], |〈Ri,Rj〉|≤ 2

√
2 log p√
p with

probability at least 1 − 2
p4 . There are

(
r
2

)
≤ r2

2 such pairs and r ≤ p. Thus, applying the union

bound, we know that |〈Ri,Rj〉|≤ 2
√

2 log p√
p for all pairs i 6= j with probability at least 1− 1

p2 .

Now we observe that

‖vR‖22 =

〈
r∑
i=1

viRi,

r∑
i=1

viRi,

〉

=

r∑
i=1

v2
i ‖Ri‖22+

r∑
i=1

∑
j 6=i

vivj〈Ri,Rj〉

≤
r∑
i=1

v2
i ‖Ri‖22+

r∑
i=1

∑
j 6=i

|vivj ||〈Ri,Rj〉|.

With probability at least 1− 1
p2 ,

‖vR‖22 ≤
r∑
i=1

v2
i ‖Ri‖22+

r∑
i=1

∑
j 6=i

|vivj |
2
√

2 log p
√
p

(a)

≤
r∑
i=1

v2
i + (r − 1)

r∑
i=1

v2
i

2
√

2 log p
√
p

≤ ‖v‖22
(

1 +
2(r − 1)

√
2 log p

√
p

)
where (a) follows from that ‖Ri‖22= 1 for all i ∈ [r] and the Cauchy-Schwarz inequality (2|vivj |≤
v2
i + v2

j ). By the same argument, ‖vR‖22≥ ‖v‖22
(

1− 2(r−1)
√

2 log p√
p

)
.

Lastly, we note that 2(r−1)
√

2 log p√
p ≤ 1

2 if and only if r ≤
√
p

4
√

2 log p
+ 1 to complete the proof.

L.1.2 Proof of Lemma L.2

Proof L.3 Since u1, . . . , ur are orthonormal, the row rank of U is r. Thus the column rank of u
is also r. By the generation process described above, ‖Ax‖2= ‖ÃUx‖2 and we can observe that
σk(A) = σk(Ã) for all k ∈ [r].

Proof of Claim 1 By [51, Corollary 5.35], for any t ≥ 0, we have
√
N −

√
r − t ≤ smin(Ã) ≤ smin(Ã) ≤

√
N +

√
r + t,

with probability at least 1− 2 exp
(
−t2/2

)
. Choosing t = 2(Nr)1/4 concludes the proof.
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Proof of Claim 2 Observe that ‖Ã‖2F=
∑
i,j Ã

2
ij . We can easily observe that E‖Ã‖2F= Nr. By

Bernstein’s inequality, it follows that for every t ≥ 0,

P{‖Ã‖2F−E‖Ã‖2F≤ −t} ≤ exp

(
−1

2
min

{
t2

Nr
, t

})
.

With t = Nr
2 , we have

P{‖Ã‖2F≤
Nr

2
} ≤ exp

(
−Nr

8

)
.

L.1.3 Proof of Lemma L.3

Proof L.4 Note that Aij ∼ N (0,
∑r
k=1R

2
kj). For each j, Aij and Ai′j are independent. Therefore,

E[maxi|Aij |] ≤ 2‖R·,j‖
√

logN . By the concentration of Lipschitz function,

P
(
|max

i
|Aij |−E[max

i
|Aij |]|≥ t

)
≤ 2 exp

(
− t2

2‖R·,j‖2
)
.

Letting t = 2‖R·,j‖
√

log(Np), it follows for each j ∈ [p] that

P
(
|maxi|Aij |≥ 4‖R·,j‖

√
log(Np)

)
≤ 2

N2p2 . Note that ‖R·,j‖=
√

r
p for all j ∈ [p].

Taking union bound over j ∈ [p], we achieve

max
i,j
|Aij |≤ 4 max

j∈[p]
‖R·,j‖

√
log(Np) = 4

√
r log(Np)

p

with probability at least 1− 2
N2p .

L.2 Geometrically Decaying Singular Values.

L.2.1 Proof of Lemma 5.2

Proof L.5 For (i, j) ∈ [N ]× [p], we have Aij =
∑N∧p
k=1 ΣkkUikVjk. Thus,

|Aij | =

∣∣∣∣∣
N∧p∑
k=1

ΣkkUikVjk

∣∣∣∣∣ ≤
N∧p∑
k=1

Σkk|Uik||Vjk|

(a)

≤
N∧p∑
k=1

Σ11θ
k−1 1√

Np
= Σ11

1− θN∧p

1− θ
1√
Np

(b)

≤ C

1− θ
.

Here, (a) follows from that |Uik|= 1√
N

, |Vjk|= 1√
p , and Σkk ≤ Σ11θ

k−1; and (b) follows from the

assumption Σ11 = C
√
Np and that 1− θN∧p ≤ 1.

M Proof of Proposition 5.1

Proof M.1 We wish to argue that for some constant C2 > 0, PCR with parameter k = C2
log log(np)
log(1/θ)

the following bound on training error holds:

MSEΩ(Ŷ ) ≤ 2C2σ
2 log lognp

n log(1/θ)
+
C ′(α, θ)(1 + γ + Γ +Kα)4‖β∗‖21 log5+2C2 np

nρ4
+
C
′′‖β∗‖21

log2C2 np
+ 20‖φ‖2∞,

where C ′(α, θ) > 0 constant dependent on α, θ and C
′′
> 0 a universal constant. We wish to utilize

bound in Corollary 5.1 to derive this result. To that end, the bound of Corollary 5.1 is

MSEΩ(Ŷ ) ≤ 4σ2k

n
+
C(α)(1 + γ + Γ +Kα)4‖β∗‖21 log2 np

nρ2

( (n2ρ+ np) log3 np

ρ2(τk − τk+1)2
+ k
)
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+
6‖β∗‖21
n
‖Ak −A‖22,∞+20‖φ‖2∞,

where C(α) > 0 is a constant that may depend on α ≥ 1. Let us evaluate each of the four terms in
the right hand side of (6) to reach the desired (7).

First term. Due to choice of k = C2
log log(np)
log(1/θ) it immediately follows that it is

4σ2k

n
=

4σ2C2 log log(np)

n log (1/θ)
.

Second term. For this, consider

n2ρ+ np

ρ2(τk − τk+1)2
log3(np) + k =

n(nρ+ p) log3 np

ρ2τ2
1 θ

2k−2(1− θ)2
+ k

≤ np log3 np

ρ2C2
1Np log2C2 np(1− θ)2θ−2

+
C2 log log np

log(1/θ)

≤ C3(θ)
log3+2C2 np

ρ2

where we have used the fact that τi = τ1θ
i−1 for i ≥ 1, τ1 = C1

√
Np, nρ ≤ N ≤ p and C3(θ) > 0

is a constant that depends on θ.

Third term. The goal is to bound ‖Ak −A‖22,∞. With notation E = A−Ak, this is equivalent
to bounding maxj∈[p]‖E·,j‖22. With A =

∑N
i=1 τiµiν

T
i where µi ∈ RN , νi ∈ Rp for i ∈ [N ], for

any j ∈ [p], we have

1

n
‖E·,j‖2 =

1

n

∥∥∥∥( N∑
i=k+1

τiµiν
T
i

)
ej

∥∥∥∥2

=
1

n

∥∥∥∥ N∑
i=k+1

τiµi(ν
T
i ej)

∥∥∥∥2

(a)
=

1

n

N∑
i=k+1

τ2
i (νTi ej)

2

(b)

≤ 1

n

N∑
i=k+1

τ2
1 θ

2(i−1)(νTi ej)
2

(c)

≤ C1Np

n

N∑
i=k+1

θ2(i−1)(νTi ej)
2

(d)

≤ C1Np

np

N∑
i=k+1

θ2(i−1)

(e)

≤ Cθ2k
(f)

≤ C

log2C2(np)

Here, (a) follows from the orthonormality of the (left) singular vectors; (b) follows from τi = τ1θ
i−1;

(c) follows from τ1 = C1

√
Np; (d) ‘incoherence’ property of singular vector, i.e. νTi ej = O(1/

√
p)

for all i, j ∈ [p]; (e) follows from property of geometric series for some absolute constant C > 0;
and (f) follows from choice of k.

Concluding the proof. The final term is repeat of 20‖φ‖2∞. Therefore, putting all of the above
together, the proof concludes.

44


	Introduction
	Background
	Contributions
	Related works

	Problem Setup
	Model
	Observations
	Objective
	Notations, definitions, and a summary of assumptions.

	Algorithm
	Principal Component Regression
	Linear Regression and Hard Singular Value Thresholding
	Equivalence

	PCR Prediction Error: Low-Rank Covariates
	Theorem Statements
	Example 

	PCR Prediction Error: Beyond Low-Rank Covariates, Mismatched Model
	Theorem Statements
	Example

	Applications
	Matrix Estimation Literature Review
	Applications
	Synthetic Control
	Time Series Analysis
	Regression with Privacy
	Regression with Mixed Valued Features

	Matrix and Vector Norm Definitions
	Useful Theorems
	Bounding _-norm
	Concentration Inequalities for Random Variables
	Upper Bound on the Maximum Absolute Value in Expectation

	Other Useful Lemmas

	Equivalence
	Proof of Proposition 3.1

	Proof of Theorem 5.1 
	Background
	Proof of Theorem 5.1

	Bound on Spectral Norm of Random Matrix
	Outline
	Key Result: Theorem G.1
	Proof of Proposition G.1
	Proof of Lemma G.1
	Proof of Lemma G.2
	Auxiliary Lemmas
	Proof of Lemma G.2


	Proof of Lemma 5.1
	Outline
	Completing Proof of Lemma 5.1
	More on HSVT
	Interlacing of Singular Values
	Column Operator Induced by HSVT
	HSVT Operator is a Contraction

	Proof of Lemma H.1
	Proof of E_1, E_2, E_3, E_4 Being High-probability Events
	Proof of Lemma H.2
	Proof of Lemma H.3
	Two Helper Lemmas for the Proof of Lemmas H.4 and H.5
	Proof of Lemma H.4
	Proof of Lemma H.5


	Proof of Corollary 5.1
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Lemma K.1
	Proof of Lemma K.2
	Proof of Lemma K.3
	Proof of Lemma K.4

	Examples
	Embedded Random Gaussian Features.
	Proof of Lemma L.1
	Proof of Lemma L.2
	Proof of Lemma L.3

	Geometrically Decaying Singular Values.
	Proof of Lemma 5.2


	Proof of Proposition 5.1

