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Abstract

Graph convolutional networks (GCNs) have recently received wide attentions, due
to their successful applications in different graph tasks and different domains. Train-
ing GCNs for a large graph, however, is still a challenge. Original full-batch GCN
training requires calculating the representation of all the nodes in the graph per
GCN layer, which brings in high computation and memory costs. To alleviate this
issue, several sampling-based methods have been proposed to train GCNs on a sub-
set of nodes. Among them, the node-wise neighbor-sampling method recursively
samples a fixed number of neighbor nodes, and thus its computation cost suffers
from exponential growing neighbor size; while the layer-wise importance-sampling
method discards the neighbor-dependent constraints, and thus the nodes sampled
across layer suffer from sparse connection problem. To deal with the above two
problems, we propose a new effective sampling algorithm called LAyer-Dependent
ImportancE Sampling (LADIES) 2. Based on the sampled nodes in the upper layer,
LADIES selects their neighborhood nodes, constructs a bipartite subgraph and
computes the importance probability accordingly. Then, it samples a fixed number
of nodes by the calculated probability, and recursively conducts such procedure
per layer to construct the whole computation graph. We prove theoretically and
experimentally, that our proposed sampling algorithm outperforms the previous
sampling methods in terms of both time and memory costs. Furthermore, LADIES
is shown to have better generalization accuracy than original full-batch GCN, due
to its stochastic nature.

1 Introduction
Graph convolutional networks (GCNs) recently proposed by Kipf et al. [12] adopt the concept of
convolution filter into graph domain [2, 6–8]. For a given node, a GCN layer aggregates the embed-
dings of its neighbors from the previous layer, followed by a non-linear transformation, to obtain an
updated contextualized node representation. Similar to the convolutional neural networks (CNNs)
[13] in the computer vision domain, by stacking multiple GCN layers, each node representation
can utilize a wide receptive field from both its immediate and distant neighbors, which intuitively
increases the model capacity.

Despite the success of GCNs in many graph-related applications [12, 17, 15], training a deep GCN
for large-scale graphs remains a big challenge. Unlike tokens in a paragraph or pixels in an image,
which normally have limited length or size, graph data in practice can be extremely large. For
example, Facebook social network in 2019 contains 2.7 billion users3. Such a large-scale graph is
impossible to be handled using full-batch GCN training, which takes all the nodes into one batch
to update parameters. However, conducting mini-batch GCN training is non-trivial, as the nodes
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Figure 1: An illustration of the sampling process of GraphSage, FastGCN, and our proposed LADIES.
Black nodes denote the nodes in the upper layer, blue nodes in the dashed circle are their neighbors,
and node with the red frame is the sampled nodes. As is shown in the figure, GraphSAGE will
redundantly sample a neighboring node twice, denoted by the red triangle, while FastGCN will
sample nodes outside of the neighborhood. Our proposed LADIES can avoid these two problems.

in a graph are closely coupled and correlated. In particular, in GCNs, the embedding of a given
node depends recursively on all its neighbors’ embeddings, and such computation dependency grows
exponentially with respect to the number of layers. Therefore, training deep and large GCNs is still a
challenge, which prevents their application to many large-scale graphs, such as social networks [12],
recommender systems [17], and knowledge graphs [15].

To alleviate the previous issues, researchers have proposed sampling-based methods to train GCNs
based on mini-batch of nodes, which only aggregate the embeddings of a sampled subset of neighbors
of each node in the mini-batch. Among them, one direction is to use a node-wise neighbor-sampling
method. For example, GraphSAGE [9] calculates each node embedding by leveraging only a fixed
number of uniformly sampled neighbors. Although this kind of approaches reduces the computation
cost in each aggregation operation, the total cost can still be large. As is pointed out in [11], the
recursive nature of node-wise sampling brings in redundancy for calculating embeddings. Even if two
nodes share the same sampled neighbor, the embedding of this neighbor has to be calculated twice.
Such redundant calculation will be exaggerated exponentially when the number of layers increases.
Following this line of research as well as reducing the computation redundancy, a series of work
was proposed to reduce the size of sampled neighbors. VR-GCN [3] proposes to leverage variance
reduction techniques to improve the sample complexity. Cluster-GCN [5] considers restricting the
sampled neighbors within some dense subgraphs, which are identified by a graph clustering algorithm
before the training of GCN. However, these methods still cannot well address the issue of redundant
computations, which may become worse when training very deep and large GCNs.

Another direction uses a layer-wise importance-sampling method. For example, FastGCN [4] calcu-
lates a sampling probability based on the degree of each node, and samples a fixed number of nodes
for each layer accordingly. Then, it only uses the sampled nodes to build a much smaller sampled
adjacency matrix, and thus the computation cost is reduced. Ideally, the sampling probability is calcu-
lated to reduce the estimation variance in FastGCN [4], and guarantee fast and stable convergence.
However, since the sampling probability is independent for each layer, the sampled nodes from two
consecutive layers are not necessarily connected. Therefore, the sampled adjacency matrix can be
extremely sparse, and may even have all-zero rows, meaning some nodes are disconnected. Such a
sparse connection problem incurs an inaccurate computation graph and further deteriorates the train-
ing and generalization performance of FastGCN. In order to capture the inter-layer correlation and
reduce the estimation variance, Huang et al. [11] proposed an adaptive and trainable sampling method
that conducts layer-wise sampling conditioned on the former layer, which has been demonstrated
to achieve higher accuracy than FastGCN. Yet the advantage of the importance sampling procedure
used in [11] in terms of time and memory costs is not fully justified theoretically or empirically.

Based on the pros and cons of the aforementioned sampling approaches, we argue that an ideal
sampling method should have the following features: 1) layer-wise, thus the neighbor nodes can be
taken into account together to calculate next layers’ embeddings without redundancy; 2) neighbor-
dependent, thus the sampled adjacency matrix is dense without losing much information for training;
3) the importance sampling method should be adopted to reduce the sampling variance and accelerate
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convergence. To this end, we propose a new efficient sampling algorithm called LAyer-Dependent
ImportancE-Sampling (LADIES) 4, which fulfills all the above features.

The procedure of LADIES is described as below: (1) For each current layer (l), based on the nodes
sampled in the upper layer (l + 1), it picks all their neighbors in the graph, and constructs a bipartite
graph among the nodes between the two layers. (2) Then it calculates the sampling probability
according to the degree of nodes in the current layer, with the purpose to reduce sampling variance.
(3) Next, it samples a fixed number of nodes based on this probability. (4) Finally, it constructs
the sampled adjacency matrix between layers and conducts training and inference, where row-wise
normalization is applied to all sampled adjacency matrices to stabilize training. As illustrated in
Figure 1, our proposed sampling strategy can avoid two pitfalls faced by existing two sampling
strategies: layer-wise structure avoids exponential expansion of receptive field; layer-dependent
importance sampling guarantees the sampled adjacency matrix to be dense such that the connectivity
between nodes in two adjacent layers can be well maintained.

We highlight our contributions as follows:

• We propose LAyer-Dependent ImportancE Sampling (LADIES) for training deep and large graph
convolutional networks, which is built upon a novel layer-dependent sampling scheme to avoid
exponential expansion of receptive field as well as guarantee the connectivity of the sampled
adjacency matrix.

• We prove theoretically that the proposed algorithm achieves significantly better memory and time
complexities compared with node-wise sampling methods including GraphSage [9] and VR-GCN
[3], and has a dramatically smaller variance compared with FastGCN [4].

• We evaluate the performance of the proposed LADIES algorithm on benchmark datasets and
demonstrate its superior performance in terms of both running time and test accuracy. Moreover,
we show that LADIES achieves high accuracy with an extremely small sample size (e.g., 256 for a
graph with 233k nodes), which enables the use of LADIES for training very deep and large GCNs.

2 Background
In this section, we review GCNs and several state-of-the-art sampling-based training algorithms,
including full-batch, node-wise neighbor sampling methods, and layer-wise importance sampling
methods. We summarize the notation used in this paper in Table 1.

2.1 Existing GCN Training Algorithms

Full-batch GCN. When given an undirected graph G, with P defined in Table 1, the l-th GCN layer
is defined as:

Z(l) = PH(l−1)W(l−1), H(l−1) = σ(Z(l−1)), (1)

Considering a node-level downstream task, given training dataset {(xi, yi)}vi∈Vs , the weight matrices
W(l) will be learned by minimizing the loss function: L = 1

|Vs|
∑

vi∈Vs `(yi, z
(L)
i ), where `(·, ·) is a

specified loss function, zLi denotes the output of GCN corresponding to the vertex vi, and VS denotes
the training node set. Gradient descent algorithm is utilized for the full-batch optimization, where the
gradient is computed over all the nodes as 1

|Vs|
∑

vi∈VS ∇`(yi, z
(L)
i ).

When the graph is large and dense, full-batch GCN’s memory and time costs can be very expensive
while computing such gradient, since during both backward and forward propagation process it
requires to store and aggregate embeddings for all nodes across all layer. Also, since each epoch only
updates parameters once, the convergence would be very slow.

One solution to address issues of full-batch training is to sample a a mini-batch of labeled nodes
VB ∈ VS , and compute the mini-batch stochastic gradient 1

|VB |
∑

vi∈VB ∇`(yi, z
L
i ). This can help

reduce computation cost to some extent, but to calculate the representation of each output node, we
still need to consider a large-receptive field, due to the dependency of the nodes in the graph.

Node-wise Neighbor Sampling Algorithms. GraphSAGE [9] proposed to reduce receptive field
size by neighbor sampling (NS). For each node in l-th GCN layer, NS randomly samples snode

4We would like to clarify that the proposed layer-dependent importance sampling is different from “layered
importance sampling” proposed in [14].
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Table 1: Summary of Notations
G = (V,A), ‖A‖0 G denotes a graph consist of a set of nodes V with node number |V|, A is the

adjacency matrix, and ‖A‖0 denotes the number of non-zero entries in A.
Mi,∗,M∗,j Mi,j Mi,∗ is the i-th row of matrix M, M∗,j is the j-th column of matrix M, and Mi,j

is the entry at the position (i, j) of matrix M.
Ã, D̃,P Ã = A + I, D̃ is a diagonal matrix satisfying D̃i,i =

∑
j Ãi,j , and

P = D̃− 1
2 ÃD̃− 1

2 is the normalized Laplacian matrix.
l, σ(·),H(l),Z(l),W(l) l denotes the GCN layer index, σ(·) denotes the activation function, H(l) =

σ(Z(l)) denotes the embedding matrix at layer l, H(0) = X, Z(l) =

PH(l−1)W(l−1) is the intermediate embedding matrix, and W(l) denotes the
trainable weight matrix at layer l.

L,K L is the total number of layers in GCN, and K is the dimension of embedding
vectors (for simplicity, assume it is the same across all layers).

b, snode, slayer For batch-wise sampling, b denotes the batch size, snode is the number of
sampled neighbors per node for node-wise sampling, and slayer is number of
sampled nodes per layer for layer-wise sampling.

Table 2: Summary of Complexity and Variance 6. Here φ denotes the upper bound of the `2 norm
of embedding vector, ∆φ denotes the bound of the norm of the difference between the embedding
and its history, D denotes the average degree, b denotes the batch size, and V̄ (b) denotes the average
number of nodes which are connected to the nodes sampled in the training batch.

Methods Memory Complexity Time Complexity Variance

Full-Batch [12] O(L|V|K + LK2) O(L‖A‖0K + L|V|K2) 0
GraphSage [9] O(bKsL−1

node + LK2) O(bKsLnode + bK2sL−1
node) O

(
Dφ‖P‖2F /(|V|snode)

)
VR-GCN [3] O(L|V|K + LK2) O(bDKsL−1

node + bK2sL−1
node) O

(
D∆φ‖P‖2F /(|V|snode)

)
FastGCN [4] O(LKslayer + LK2) O(LKs2layer + LK2slayer) O(φ‖P‖2F /slayer)
LADIES O(LKslayer + LK2) O(LKs2layer + LK2slayer) O

(
φ‖P‖2F V̄ (b)/(|V|slayer)

)
of its neighbors at the (l − 1)-th GCN layer and formulate an unbiased estimator P̂(l−1)H(l−1) to
approximate PH(l−1) in graph convolution layer:

P̂
(l−1)
i,j =

{ |N (vi)|
snode

Pi,j , vj ∈ N̂ (l−1)(vi);
0, otherwise.

(2)

where N (vi) and N̂ (l−1)(vi) are the full and sampled neighbor sets of node vi for (l − 1)-th GCN
layer respectively.

VR-GCN [3] is another neighbor sampling work. It proposed to utilize historical activations to reduce
the variance of the estimator under the same sample strategy as GraphSAGE. Though successfully
achieved comparable convergence rate, the memory complexity is higher and the time complexity
remains the same. Though NS scheme alleviates the memory bottleneck of GCN, there exists
redundant computation under NS since the embedding calculation for each node in the same layer is
independent, thus the complexity grows exponentially when the number of layers increases.

Layer-wise Importance Sampling Algorithms. FastGCN [4] proposed a more advanced layer-wise
importance sampling (IS) scheme aiming to solve the scalability issue as well as reducing the variance.
IS conducts sampling for each layer with a degree-based sampling probability. The approximation of
the i-th row of (PH(l−1)) with slayer samples vj1 , . . . , vjsl per layer can be estimated as:

(PH(l−1))i,∗ '
1

slayer

slayer∑
k=1,vjk∼q(v)

Pi,jkH
(l−1)
jk,∗ /q(vjk) (3)

where q(v) is the distribution over V , q(vj) = ‖P∗,j‖22/‖P‖2F is the probability assigned to node vj .

Though IS outperforms uniform sampling and the layer-wise sampling successfully reduced both time
and memory complexities, however, this sampling strategy has a major limitation: since the sampling
operation is conducted independently at each layer, FastGCN cannot guarantee connectivity between
sampled nodes at different layers, which incurs large variance of the approximate embeddings.

6For simplicity, when evaluating the variance we only consider two-layer GCN.
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2.2 Complexity and Variance Comparison

We compare each method’s memory, time complexity, and variance with that of our proposed LADIES
algorithm in Table 2.

Complexity. We now compare the complexity of the proposed LADIES algorithm and existing
sampling-based GCN training algorithms. The complexity for all methods are summarized in Table
2, detailed calculation could be found in Appendix A. Compare with full-batch GCN, the time and
memory complexities of LADIES do not depend on the total number of nodes and edges, thus our
algorithm does not have scalability issue on large and dense graphs. Unlike NS based methods
including GraphSAGE and VR-GCN, LADIES is not sensitive to the number of layers and will not
suffer exponential growth in complexity, therefore it can perform well when the neural network goes
deeper. Compared to layer-wise importance sampling proposed in FastGCN, it maintains the same
complexity while obtaining a better convergence guarantee as analyzed in the next paragraph. In fact,
in order to guarantee good performance, our method requires a much smaller sample size than that
of FastGCN, thus the time and memory burden is much lighter. Therefore, our proposed LADIES
algorithm can achieve the best time and memory complexities and is applicable to training very deep
and large graph convolution networks.

Variance. We compare the variance of our algorithm with existing sampling-based algorithms. To
simplify the analysis, when evaluating the variance we only consider two-layer GCN. The results are
summarized in Table 2. We defer the detailed calculation to Appendix B. Compared with FastGCN,
our variance result is strictly better since V̄ (b) ≤ |V|, where V̄ (b) denotes the number of nodes
which are connected to the nodes sampled in the training batch. Moreover, V̄ (b) scales with b, which
implies that our method can be even better when using a small batch size. Compared with node-wise
sampling, consider the same sample size, i.e., slayer = bsnode. Ignoring the same factors, the
variance of LADIES is in the order of O(V̄ (b)/b) and the variance of GraphSAGE is O(D), where
D denotes the average degree. Based on the definition of V̄ (b), we strictly have V̄ (b) ≤ O(bD) since
there is no redundant node been calculated in V̄ (b). Therefore our method is also strictly better than
GraphSAGE especially when the graph is dense, i.e., many neighbors can be shared. The variance of
VR-GCN resembles that of GraphSAGE but relies on the difference between the embedding and its
history, which is not directly comparable to our results.

3 LADIES: LAyer-Dependent ImportancE Sampling
We present our method, LADIES, in this section. As illustrated in previous sections, for node-wise
sampling methods [9, 3], one has to sample a certain number of nodes in the neighbor set of all
sampled nodes in the current layer, then the number of nodes that are selected to build the computation
graph is exponentially large with the number of hidden layers, which further slows down the training
process of GCNs. For the existing layer-wise sampling scheme [4], it is inefficient when the graph is
sparse, since some nodes may have no neighbor been sampled during the sampling process, which
results in meaningless zero activations [3].

To address the aforementioned drawbacks and weaknesses of existing sampling-based methods for
GCN training, we propose our training algorithms that can achieve good convergence performance as
well as reduce sampling complexity. In the following, we are going to illustrate our method in detail.

3.1 Revisiting Independent Layer-wise Sampling

We first revisit the independent layer-wise sampling scheme for building the computation graph
of GCN training. Recall in the forward process of GCN (1), the matrix production PH(l−1) can
be regarded as the embedding aggregation process. Then, the layer-wise sampling methods aim
to approximate the intermediate embedding matrix Z(l) by only sampling a subset of nodes at the
(l− 1)-th layer and aggregating their embeddings for approximately estimating the embeddings at the
l-th layer. Mathematically, similar to (3), let S(l−1) with |Sl−1| = sl−1 be the set of sampled nodes
at the (l − 1)-th layer, we can approximate PH(l−1) as

PH(l−1) ' 1

sl−1

∑
k∈S(l−1)

1

p
(l−1)
k

P∗,kH
(l−1)
k,∗ ,

where we adopt non-uniformly sampling scheme by assigning probabilities p(l−1)1 , . . . , p
(l−1)
|V| to

all nodes in V . Then the corresponding discount weights are {1/(sl−1p(l−1)i )}i=1,...,|V|. Then let
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{i(l−1)k }k∈Sl−1
be the indices of sampled nodes at the l − 1-th layer, the estimator of PH(l−1) can

be formulated as

PH(l−1) ' PS(l−1)H(l−1), (4)

where S(l−1) ∈ R|V|×|V| is a diagonal matrix with only nonzero diagnoal matrix, defined by

S(l−1)
s,s =


1

sl−1p
(l−1)

i
(l−1)
k

, s = i
(l−1)
k ;

0, otherwise.
(5)

It can be verified that ‖S(l−1)‖0 = sl−1 and E[S(l−1)] = I. Assuming at the l-th and l − 1-th layers
the sets of sampled nodes are determined. Then let {i(l)k }k∈Sl and {i(l−1)k }k∈Sl−1

denote the indices
of sampled nodes at these two layers, and define the row selection matrix Q(l) ∈ Rsl×|V| as:

Q
(l)
k,s =

{
1 (k, s) = (k, i

(l)
k );

0, otherwise,
(6)

the forward process of GCN with layer-wise sampling can be approximated by

Z̃(l) = P̃(l−1)H̃(l−1)W(l−1), H̃(l−1) = σ(Z̃(l−1)), (7)

where Z̃(l) ∈ Rsl×d denotes the approximated intermediate embeddings for sampled nodes at the l-th
layer and P̃(l−1) = Q(l)PS(l−1)Q(l−1)> ∈ Rsl×sl−1 serves as a modified Laplacian matrix, and
can be also regarded as a sampled bipartite graph after certain rescaling. Since typically we have
sl, sl−1 � |V|, the sampled graph is dramatically smaller than the entire one, thus the computation
cost can be significantly reduced.

3.2 Layer-dependent Importance Sampling

However, independently conducting layer-wise sampling at different layers is not efficient since the
sampled bipartite graph may still be sparse and even have all-zero rows. This further results in very
poor performance and require us to sample lots of nodes in order to guarantee convergence throughout
the GCN training. To alleviate this issue, we propose to apply neighbor-dependent sampling that can
leverage the dependency between layers which further leads to dense computation graph. Specifically,
our layer-dependent sampling mechanism is designed in a top-down manner, i.e., the sampled nodes
at the l-th layer are generated depending on the sampled nodes that have been generated in all upper
layers. Note that for each node we only need to aggregate the embeddings from its neighbor nodes in
the previous layer. Thus, at one particular layer, we only need to generate samples from the union of
neighbors of the nodes we have sampled in the upper layer, which is defined by

V(l−1) = ∪vi∈SlN (vi)

where Sl is the set of nodes we have sampled at the l-th layer and N (vi) denotes the neighbors
set of node vi. Therefore during the sampling process, we only assign probability to nodes in
V(l−1), denoted by {p(l−1)i }vi∈V(l−1) . Similar to FastGCN [4], we apply importance sampling to
reduce the variance. However, we have no information regarding the activation matrix H(l−1) when
characterizing the samples at the (l−1)-th layer. Therefore, we resort to a important sampling scheme
which only relies on the matrices Q(l) and P. Specifically, we define the importance probabilities as:

p
(l−1)
i =

‖Q(l)P∗,i‖22
‖Q(l)P‖2F

. (8)

Evidently, if vi /∈ V(l−1), we have ‖Q(l)P∗,i‖22 = 0, which implies that p(l−1)i = 0. Then, let
{i(l−1)k }vk∈Sl−1

be the indices of sampled nodes at the (l − 1)-th layer based on the importance
probabilities computed in (8), we can also define the random diagonal matrix S(l−1) according to (5),
and formulate the same forward process of GCN as in (7) but with a different modified Laplacian
matrix P̃(l−1) = Q(l)PS(l−1)Q(l−1)> ∈ Rsl×sl−1 . The computation of P̃(l−1) can be very efficient
since it only involves sparse matrix productions. Here the major difference between our sampling
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Algorithm 1 Sampling Procedure of LADIES
Require: Normalized Laplacian Matrix P; Batch Size b, Sample Number n;

1: Randomly sample a batch of b output nodes as QL

2: for l = L to 1 do
3: Get layer-dependent laplacian matrix Q(l)P. Calculate sampling probability for each node

using p(l−1)i ← ‖Q(l)P∗,i‖22
‖Q(l)P‖2F

, and organize them into a random diagonal matrix S(l−1).

4: Sample n nodes in l − 1 layer using p(l−1). The sampled nodes formulate Q(l−1)

5: Reconstruct sampled laplacian matrix between sampled nodes in layer l − 1 and l by
P̃(l−1) ← Q(l)PS(l−1)Q(l−1)>, then normalize it by P̃(l) ← D−1

P̃(l)
P̃(l).

6: end for
7: return Modified Laplacian Matrices {P̃(l)}l=1,...,L and Sampled Node at Input Layer Q0;

method and independent layer-wise sampling is the different constructions of matrix S(l−1). In our
sampling mechanism, we have E[S(l−1)] = L(l−1), where L(l−1) is a diagonal matrix with

L(l−1)
s,s =

{
1 s ∈ V(l−1)

0, otherwise. (9)

Since ‖L(l−1)‖0 = |V(l−1)| � |V|, applying independent sampling method results in the fact that
many nodes are in the set V/V(l−1), which has no contribution to the construction of computation
graph. In contrast, we only sample nodes from V(l−1) which can guarantee more connections between
the sampled nodes at l-th and (l−1)-th layers, and further leads to a dense computation graph between
these two layers.

3.3 Normalization

Note that for original GCN, the Laplacian matrix P is obtained by normalizing the matrix I + A.
Such normalization operation is crucial since it is able to maintain the scale of embeddings in the
forward process and avoid exploding/vanishing gradient. However, the modified Laplacian matrix
{P̃(l)}l=1,...,L may not be able to achieve this, especially when L is large, because its maximum
singular values can be very large without sufficient samples. Therefore, motivated by [12], we
propose to normalize P̃(l) such that the sum of all rows are 1, i.e., we have

P̃(l) ← D−1
P̃(l)

P̃(l),

where DP̃(l) ∈ Rsl+1×sl+1 is a diagonal matrix with each diagonal entry to be the sum of the
corresponding row in P̃(l). Now, we can leverage the modified Laplacian matrices {P̃}l=1,...,L to
build the whole computation graph. We formally summarize the proposed algorithm in Algorithm 1.

4 Experiments
In this section, we conduct experiments to evaluate LADIES for training deep GCNs on different
node classification datasets, including Cora, Citeseer, Pubmed [16] and Reddit [9].

4.1 Experiment Settings

We compare LADIES with the original GCN (full-batch) , GraphSage (neighborhood sampling) and
FastGCN (important sampling). We modified the PyTorch implementation of GCN 7 to add our
LADIES sampling mechanism. To make the fair comparison only on the sampling part, we also
choose the online PyTorch implementation of all these baselines released by their authors and use
the same training code for all the methods. By default, we train 5-layer GCNs with hidden state
dimension as 256, using the four methods. We choose 5 neighbors to be sampled for GraphSage, 64
and 512 nodes to be sampled for both FastGCN and LADIES per layer. We update the model with a
batch size of 512 and ADAM optimizer with a learning rate of 0.001.

For all the methods and datasets, we conduct training for 10 times and take the mean and variance of
the evaluation results. Each time we stop training when the validation accuracy doesn’t increase a
threshold (0.01) for 200 batches, and choose the model with the highest validation accuracy as the
convergence point. We use the following metrics to evaluate the effectiveness of sampling methods:

7https://github.com/tkipf/pygcn
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Table 3: Comparison of LADIES with original GCN (Full-Batch), GraphSage (Neighborhood
Sampling) and FastGCN (Important Sampling), in terms of accuracy, time, memory and convergence.
Training 5-layer GCNs on different node classification datasets (node number is below the dataset
name). Results show that LADIES can achieve the best accuracy with lower time and memory cost.

Dataset Sample Method F1-Score(%) Total Time(s) Mem(MB) Batch Time(ms) Batch Num

Cora
(2708)

Full-Batch 76.5± 1.4 1.19± 0.82 30.72 15.75± 0.52 80.8± 51.7
GraphSage (5) 75.2± 1.5 6.77± 4.94 471.39 78.42± 0.87 65.2 ± 52.1
FastGCN (64) 25.1± 8.4 0.55± 0.65 3.13 9.22± 0.20 63.2± 71.2
FastGCN (512) 78.0± 2.1 4.70± 1.35 7.33 10.08± 0.29 487± 147
LADIES (64) 77.6 ±1.4 4.19 ± 1.16 3.13 9.68 ± 0.48 436± 118.4

LADIES (512) 78.3 ±1.6 0.72 ± 0.39 7.35 9.77 ± 0.28 75.6± 37.0

Citeseer
(3327)

Full-Batch 62.3± 3.1 0.61± 0.70 68.13 15.77± 0.58 40.6± 22.8
GraphSage (5) 59.4± 0.9 4.51± 3.68 595.71 53.14± 1.90 57.2± 42.1
FastGCN (64) 19.2± 2.7 0.53± 0.48 5.89 8.88± 0.40 64.0± 57.0
FastGCN (512) 44.6± 10.8 4.34± 1.73 13.97 10.41± 0.51 386± 167

FastGCN (1024) 63.5± 1.8 2.24± 1.01 23.24 10.54± 0.27 223± 98.6
LADIES (64) 65.0 ± .1.4 2.17 ± 0.65 5.89 9.60 ± 0.39 232 ± 66.8

LADIES (512) 64.3 ± 2.4 0.41 ± 0.22 13.92 10.32 ± 0.23 37.6 ± 11.9

Pubmed
(19717)

Full-Batch 71.9± 1.9 4.80± 1.53 137.93 44.69± 0.57 102± 33.4
GraphSage (5) 70.1± 1.4 5.53± 2.57 453.58 44.73± 0.30 74.8± 31.7
FastGCN (64) 38.5± 6.9 0.40± 0.69 1.92 7.42± 0.16 58.8± 94.8
FastGCN (512) 39.3± 9.2 0.44 ± 0.61 4.53 10.06± 0.41 44.8± 55.0

FastGCN (8192) 74.4± 0.8 3.47± 1.16 49.41 17.84± 0.33 195± 56.9
LADIES (64) 76.8 ± 0.8 2.57± 0.72 1.92 9.43± 0.47 277± 82.2

LADIES (512) 75.9 ± 1.1 2.27± 1.17 4.39 10.43± 0.36 245± 84.5

Reddit
(232965)

Full-Batch 91.6± 1.6 474.3± 84.4 2370.48 1564± 3.41 179± 75.5
GraphSage (5) 92.1± 1.1 13.12± 2.84 1234.63 121.47± 0.72 81.5± 42.3
FastGCN (64) 27.8± 12.6 2.06 ± 1.29 3.75 7.85± 0.72 57.4± 43.7
FastGCN (512) 17.5± 16.7 0.31 ± 0.41 6.91 10.01± 0.31 32.1± 72.3

FastGCN (8192) 89.5± 1.2 5.63± 2.12 74.28 16.57± 0.58 278± 51.2
LADIES (64) 83.5 ± 0.9 5.62± 1.58 3.75 9.42± 0.48 453± 88.2

LADIES (512) 92.8 ± 1.6 6.87± 1.17 7.26 10.87± 0.63 393± 74.4

• Accuracy: The micro F1-score of the test data at the convergence point. We calculate it using the
full-batch version to get the most accurate inference (only care about training).

• Total Running Time (s): The total training time (exclude validation) before convergence point.

• Memory (MB): Total memory costs of model parameters and all hidden representations of a batch.

• Batch Time and Num: Time cost to run a batch and the total batch number before convergence.

4.2 Experiment Results

As is shown in Table 4, our proposed LADIES can achieve the highest accuracy score among all the
methods, using a small sampling number. One surprising thing is that the sampling-based method
can achieve higher accuracy than the Full-Batch version, and in some cases using a smaller sampling
number can lead to better accuracy (though it may take longer batches to converge). This is probably
because the graph data is incomplete and noisy, and the stochastic nature of the sampling method
can bring in regularization for training a more robust GCN with better generalization accuracy [10].
Another observation is that no matter the size of the graph, LADIES with a small sample number (64)
can still converge well, and sometimes even better than a larger sample number (512). This indicates
that LADIES is scalable to training very large and deep GCN while maintaining high accuracy.

As a comparison, FastGCN with 64 and 512 sampled nodes can lead to similar accuracy for small
graphs (Cora). But for bigger graphs as Citeseer, Pubmed, and Reddit, it cannot converge to a good
point, partly because of the computation graph sparsity issue. For a fair comparison, we choose a
higher sampling number for FastGCN on these big graphs. For example, in Reddit, we choose 8192
nodes to be sampled, and FastGCN in such cases can converge to a similar accurate result compared
with LADIES, but obviously taking more memory and time cost. GraphSage with 5 nodes to be
sampled takes far more memory and time cost because of the redundancy problem we’ve discussed,
and its uniform sampling makes it fail to converge well and fast compared to importance sampling.
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Figure 2: F1-score, total time and memory cost at convergence point for training PubMed, when we
choose different sampling numbers of our method. Results show that LADIES can achieve good
generalization accuracy (F1-score = 77.6) even with a small sampling number as 16, while FastGCN
cannot converge (only reach F1-score = 39.3) with a large sampling number as 512.
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(a) Training (60 data samples)

0 50 100 150 200 250 300
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1
-S

co
re

Full Batch
LADIES (64)

(b) Validation (500 data samples)
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(c) Testing (1000 data samples)

Figure 3: Experiments on the PubMed dataset. We plot the F1-score of both full-batch GCN and
LADIES every epoch on (a) Training dataset (b) Validation dataset and (c) Testing dataset.
In addition to the above comparison, we show that our proposed LADIES can converge pretty well
with a much fewer sampling number. As is shown in Figure 2, when we choose the sampling number
as small as 16, the algorithm can already converge to the best result, with low time and memory cost.
This implies that although in Table 4, we choose sample number as 64 and 512 for a fair comparison,
but actually, the performance of our method can be further enhanced with a smaller sampling number.

Furthermore, we show that the stochastic nature of LADIES can help to achieve better generalization
accuracy than original full-batch GCN. We plot the F1-score of both full-batch GCN and LADIES
on the PubMed dataset for 300 epochs without early stop in Figure 3. From Figure 3(a), we can see
that, full-batch GCN can achieve higher F1-Score than LADIES on the training set. Nevertheless,
on the validation and test datasets, we can see from Figures 3(b) and 3(c) that LADIES can achieve
significantly higher F1-Score than full-batch GCN. This suggests that LADIES has better generaliza-
tion performance than full-batch GCN. The reason is: real graphs are often noisy and incomplete.
Full-batch GCN uses the entire graph in the training phase, which can cause overfitting to the noise.
In sharp contrast, LADIES employs stochastic sampling to use partial information of the graph and
therefore can mitigate the noise of the graph and avoid overfitting to the training data. At a high-level,
the sampling scheme adopted in LADIES shares a similar spirit as bagging and bootstrap [1], which
is known to improve the generalization performance of machine learning predictors.

5 Conclusions

We propose a new algorithm namely LADIES for training deep and large GCNs. The crucial
ingredient of our algorithm is layer-dependent importance sampling, which can both ensure dense
computation graph as well as avoid drastic expansion of receptive field. Theoretically, we show that
LADIES enjoys significantly lower memory cost, time complexity and estimation variance, compared
with existing GCN training methods including GraphSAGE and FastGCN. Experimental results
demonstrate that LADIES can achieve the best test accuracy with much lower computational time
and memory cost on benchmark datasets.
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A Complexity comparison between different algorithms
We illustrate how to compute memory and time complexity in this part. The notations remains the
same as in table 1 and 2.

The memory requirement for all the mentioned methods consists of two parts, including for storing the
intermediate embedding matrices and weight matrices. The first part varies for different algorithms,
but the second part is alwaysO(LK2) since it has to store L weight matrices with dimension K ×K.

For computation cost, it mainly consists of two steps, including the feature propagation and feature
transformation. Feature propagation corresponds to the neighbors’ embeddings aggregation operation
while updating the activations, and the feature transformation corresponds to the linear transformation
associated with learnable weight matrix W(l).

For full-batch GCN, it stores the intermediate embedding matrices for all layers, since it has L layers,
each layer has |V| nodes with dimension of K, thus its memory complexity for embedding matrices
storage is O(L|V|K), combining with weight matrices’ memory requirement O(LK2), the memory
complexity for full-batch GCN is O(L|V|K + LK2) in total. For its time complexity, the feature
propagation operation corresponds to sparse-dense matrix multiplication U = PH(l−1), which leads
to time complexity O(‖A‖0K). The feature transformation operation corresponds to dense-dense
matrix multiplication UWl−1, which leads to time complexity O(|V|K2). Thus, the per-batch time
complexity for a L-layer network is O(L‖A‖0K + L|V|K2) in total.

Now we analyze the complexity of node-wise sampling methods. For GraphSAGE, with batch-size b,
memory requirement for storing the intermediate embedding matrices is O(bKsL−1node), since it has
O(bsL−1node) K-dimension embedding aggregation operation. This leads to total memory complexity
O(bKsL−1node + LK2). For time complexity, for each batch of b nodes, we need to update O(sL−1node)
activations for one node. Each new activation needs to aggregate snode embeddings in previous
layers, so for one batch, the computation cost for feature propagation is O(bKsLnode). For feature
transformation, since each new activation has a vector-matrix multiplication operation after the
aggregation, thus the computation cost would be O(bK2sL−1node) for this part. Therefore, we know the
total per-batch time complexity for GraphSAGE is O(bKsLnode + bK2sL−1node).

For another node-wise sampling strategy VR-GCN, it needs to store all historical activations, so its
storage requirement for embedding matrices isO(L|V|K), therefore the total memory isO(L|V|K +

LK2). The time complexity is the same as GraphSAGE, which is O(bDKsL−1node + bK2sL−1node).

For layer-wise sampling method FastGCN, for embedding matrices storage, it only has to store b
embedding vectors in the last layer, and (L − 1)slayer embedding vectors in the previous L − 1
layers, so the total memory complexity for this part is O(bK + (L− 1)Kslayer)). Also, it is easy
to see that time complexity would be O(bKslayer + (L− 1)Ks2layer) for feature propagation, and
O((b+(L−1)slayer)K2) for feature transformation. Usually, we have b < slayer, so after discarding
relatively small terms, the memory complexity in total would be O(LKslayer + LK2), and time
complexity in total is O(LKs2layer + LK2slayer).

Then, for our proposed LADIES algorithm, since its also a layer-wise sampling method, its mem-
ory complexity and time complexity are O(LKslayer + LK2) and O(LKs2layer + LK2slayer)
respectively, which is same as FastGCN.

B Variance comparison between different algorithms
We first provide the following lemma which is useful in our computation of variance.

Lemma 1 Given two matrices A ∈ Rn×m and B ∈ Rm×d, for any i ∈ [m] define the probability
pk = ‖A∗,k‖22/‖A‖2F , and generate random sketching matrix S accordingly, it holds that

ES[‖ASB−AB‖2F ] =
1

s

(
‖A‖2F ‖B‖2F − ‖AB‖2F

)
,

where s is the number of samples.
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Proof By definition we have

ES[‖ASB−AB‖2F ] =
1

s

(
Ek

[∥∥A∗,kBk,∗/pk
∥∥2
F

]
− ‖AB‖2F

)
=

1

s

( m∑
k=1

pk ·
∥∥A∗,kBk,∗/pk

∥∥2
F
− ‖AB‖2F

)

=
1

s

( m∑
k=1

1

pk
·
∥∥A∗,k‖22‖Bk,∗‖22 − ‖AB‖2F

)
. (10)

Note that pk = ‖A∗,k‖22/‖A‖2F , we have

ES[‖ASB−AB‖2F ] =
1

s

( m∑
k=1

‖A‖2F ‖Bk,∗
∥∥2
2
− ‖AB‖2F

)
=

1

s

(
‖A‖2F ‖B‖2F − ‖AB‖2F

)
.

This completes the proof.

Before computing the variance for each algorithm in detail, we first lay out several definitions. Our
goal is to compute the average variance of the approximate embedding for the sampled nodes at
the output layer. Specifically, let S with |S| = b denote the set of sampled nodes at the output
layer, and Q ∈ Rb×|V| denotes the corresponding row selection matrix that extracts the embedding
from the entire embedding matrix. Then the average variance can be defined as E[‖Z̃−QZ‖F ]/b,
where Z̃ ∈ Rb×d denotes the approximated intermediate embedding by sampling algorithms and
Z = PHW denotes the true intermediate embedding. For layer-wise sampling-based methods
including FastGCN and LADIES, we sample bs nodes at the hidden layer. For node-wise sampling-
based methods including GraphSAGE and VR-GCN, we sample m neighbors for each node.

In order to explicitly compare the variance of different algorithms, we made the following assumptions
on the Laplacian matrix P.

Assumption 1 We assume there exist absolute constants C1 and C2 such that the following holds
for all i ∈ [|V|],

‖Pi,∗‖0 ≤
C1

|V|

|V|∑
i=1

‖Pi,∗‖0 and ‖Pi,∗‖22 ≤
C2

|V|

n∑
i=1

‖Pi,∗‖2F .

Then we make the following assumption on the matrix product HW.

Assumption 2 We assume that the `2-norm of each row of HW is upper bounded by a constant, i.e.,
there exists a constant φ such that ‖Hi,∗W‖2 ≤ φ for all i ∈ [|V|].

Variance of FastGCN. Note that FastGCN does not apply layer-dependent sampling and focus on
the variance E[‖PSHW−Z‖2F ], where S is generated according to (5). By applying the importance
probabilities configured in [4], i.e., pi = ‖P∗,i‖2/‖P‖F , it can be derived that

E[‖Z̃−QZ‖2F ] =
b

|V|
E[‖PSHW − Z‖2F ]

=
b

|V|s

( |V|∑
k=1

1

pk
·
∥∥P∗,k‖22‖Hk,∗W‖22 − ‖Z‖2F

)

=
b
(
‖P‖2F ‖HW‖2F − ‖Z‖2F

)
|V|s

.
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where the first equation holds due to the fact that E[Q] = bI/|V| and Q and S are independent, and
the second equality is by Lemma 1. Then under Assumption 2, we have ‖HW‖2F ≤ |V|φ, which
further implies that

E[‖Z̃−QZ‖2F ]/b ≤ φ‖P‖2F
s

.

Variance of GraphSAGE. We assume for each node, GraphSAGE randomly sample m nodes
from its neighbors to estimate the embedding. Also, the randomness of sampling at the hidden layer
is independent of that at the output layer. Therefore, it is clearly that

E[‖Z̃−QZ‖2F ] =
b

|V|
·
|V|∑
i=1

E[‖Z̃i,∗ − Zi,∗‖22]

=
b

|V|
·
|V|∑
i=1

‖Pi,∗‖0
m

( |V|∑
j=1

‖Pi,jHj,∗W‖22 − ‖Pi,∗HW‖2F
)

=
b

m|V|

|V|∑
i=1

‖Pi,∗‖0
( |V|∑

j=1

‖Pi,jHj,∗W‖22 −
b

m|V|
‖PHW‖2F

)
. (11)

Under Assumption 2 it is clear that

E[‖Z̃−QZ‖2F ]/b ≤ 1

m|V|

|V|∑
i=1

‖Pi,∗‖0
|V|∑
j=1

‖Pi,jHj,∗W‖22

≤ C1D

m|V|

|V|∑
i=1

|V|∑
j=1

‖Pi,jHj,∗W‖22

≤ C1Dφ‖P‖2F
m|V|

,

where the second inequality is by Assumption 1 and the definition of D, and the second inequality is
by Assumption 2.

Variance of VR-GCN. Assuming we have history activation matrix H̄, VR-GCN turns the estima-
tion of Pi,∗HW to that of Pi,∗(H− H̄)W. Thus, we can simply derive the variance of VR-GCN
by replacing H in (11) with H− H̄. Therefore, the variance of VR-GCN is

E[‖Z̃−QZ‖2F ] =
b

m|V|

|V|∑
i=1

‖Pi,∗‖0
( |V|∑

j=1

‖Pi,j

(
Hj,∗ − H̄j,∗

)
W‖22 −

b

m|V|
‖P(H− H̄)W‖2F

)
.

The variance of VR-GCN no longer depends on the norm of ‖Hj,∗W‖22 but ‖(Hj,∗ − H̄j,∗)W‖22.
We define ∆φ = maxj ‖(Hj,∗ − H̄j,∗)W‖22 and thus

E[‖Z̃−QZ‖2F ]/b ≤ D∆φ‖P‖2F
m|V|

.

Variance of LADIES. Different from other algorithms, the random samples at the output layer and
hidden layer are not independent. We first define V(S) by the union of neighbors of nodes in S (i.e.,
nodes sampled in the upper layer). Then we have

E[‖Z̃−QZ‖2F ] = E
[
E[‖Z̃−QZ‖2F |Q]

]
= E

[
ES[‖QPSLHW −QPLHW‖2F ]|Q

]
=

1

s
E
[
‖QP‖2F ‖LHW‖2F − ‖QZ‖2F

]
,

where L is a diagonal matrix with Li,j = 1 if i = j, i ∈ V(S) and Li,j = 0 otherwise, and the
second equation is by Lemma 1 and our choice of importance probabilities.
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(a) Sample Number=1 (b) Sample Number=2 (c) Sample Number=8

(d) Sample Number=32 (e) Sample Number=128 (f) Sample Number=512

Figure 4: Training Curve of Pubmed with different sampling numbers.

Figure 5: Convergence Curve of Pubmed with different sampling methods.

Note that by Assumption 1, we have

‖QP‖2F =
∑
i∈S
‖Pi,∗‖22 ≤

C2b‖P‖2F
|V|

.

Then under Assumption 2, we have

E[‖Z̃−QZ‖2F ]/b ≤ 1

sb
E[‖QP‖2F · ‖LHW‖2F ] ≤ C2φ‖P‖2F

|V|s
E[|V(S)|] =

C2φ‖P‖2F
|V|s

V̄ (b).

where V̄ (b) denotes the average number of nodes that are connected to the nodes sampled in the
training batch.

C Convergence Curves
Figure 4 shows the training curve of LADIES on Pubmed, with different sampling number. We can
see that even with a very small sampling number (i.e., 8), it’s already converged pretty well. On
the contrary, our previous experiments show that FastGCN with a huge sampling number (i.e., 512)
cannot even converge. Figure 5 shows that our method can achieve better and robust convergence
performance than FastGCN with smaller sampling number and fewer time.
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D Differences with FastGCN
Since our proposed LADIES also uses Layer-wise Importance Sampling, here we emphasize the key
differences in the following aspects: (1) our algorithm restricts the candidate nodes in the union of
the neighborhoods of the sampled nodes in the upper layer, which can lead to a much denser sampled
adjacency matrix compared with FastGCN; (2) our sampling method is layer-dependent, and the
importance sampling probabilities are novelly derived from optimizing on the theoretical derivation
of the modified Laplacian matrix (see formula (8)), which leads to smaller estimation variance than
FastGCN, as shown in Table 2; and (3) our algorithm uses normalization to the modified Laplacian
matrix in each layer, which further stabilizes the forward process and avoids exploding/vanishing
gradient. Because of the above innovative and principled algorithmic designs, our algorithm enjoys
lower time and memory complexities, as well as better predictive performance than FastGCN in both
theory and practice.
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