
The Parameterized Complexity of
Cascading Portfolio Scheduling

(Full Version)

Anonymous Author(s)
Affiliation
Address
email

Abstract

Cascading portfolio scheduling is a static algorithm selection strategy which uses a1

sample of test instances to compute an optimal ordering (a cascading schedule) of2

a portfolio of available algorithms. The algorithms are then applied to each future3

instance according to this cascading schedule, until some algorithm in the schedule4

succeeds. Cascading scheduling has proven to be effective in several applications,5

including QBF solving and generation of ImageNet classification models.6

It is known that the computation of an optimal cascading schedule in the offline7

phase is NP-hard. In this paper we study the parameterized complexity of this8

problem and establish its fixed-parameter tractability by utilizing structural prop-9

erties of the success relation between algorithms and test instances. Our findings10

are significant as they reveal that in spite of the intractability of the problem in its11

general form, one can indeed exploit sparseness or density of the success relation12

to obtain non-trivial runtime guarantees for finding an optimal cascading schedule.13

1 Introduction14

When dealing with hard computational problems, one often has access to a portfolio of different15

algorithms that can be applied to solve the given problem, with each of the algorithms having16

complementary strengths. There are various ways of how this performance complementarity can be17

exploited. Algorithm selection, a line of research initiated by Rice [21], studies various approaches18

one can use to select algorithms from the portfolio. Algorithm selection has proven to be an extremely19

powerful tool with many success stories in Propositional Satisfiability, Constraint Satisfaction,20

Planning, QBF Solving, Machine Learning and other domains [13, 14, 15, 22]. A common approach21

to algorithm selection is per-instance-based algorithm selection, where an algorithm is chosen for22

each instance independently, based on some features of the instance (see, e.g., [16, 11]). However,23

sometimes information about the individual instances is not available or difficult to use. Then, one24

can instead make use of information about the distribution of the set of instances, e.g., in terms of25

a representative sample of instances which can be used as a training set. In such cases, one can26

compute in an offline phase a suitable linear ordering of the algorithms, optimizing the ordering for27

the training set of instances. This ordering is then applied uniformly to any given problem instance in28

an online fashion—in particular, if the first algorithm in our ordering fails to solve a given instance29

(due to timeout, memory overflow, or due to not reaching a desired accuracy), then the second30

algorithm is called, and this continues until we solve the instance. Such a static algorithm selection,31

“cascading portfolio scheduling”, is simpler to implement than per-instance selection methods and32

can be very effective [24]. One prominent recent application of cascading portfolio scheduling lies in33

state-of-the-art ImageNet classification models, where it resulted in a significant speedup by reducing34

the number of floating-point operations [25]. Cascading portfolio scheduling is also related to online35

portfolio scheduling [12, 17].36

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

In this paper we address the fundamental problem of finding an optimal cascading schedule for a37

given portfolio A of algorithms with respect to a given training set T of instances. In particular,38

for the problem CASCADING PORTFOLIO SCHEDULING (or CPS for short) that we consider, we39

are given m algorithms, n test instances, and a cost mapping cost, where cost(α, t) denotes the cost40

of running algorithm α on test instance t, and a success relation S where (α, t) ∈ S means that41

algorithm α succeeds on test instance t. As the cost mapping and the success relation are defined42

independently, this setting is very general and entails different scenarios.43

Scenario 1 Each algorithm is run until a globally set timeout C is reached. If the algorithm α solves44

test instance t in time c ≤ C then cost(α, t) = c and (α, t) ∈ S; otherwise we have cost(α, t) = C45

and (α, t) /∈ S.46

Scenario 2 Algorithm α solves a test instance t in time c and outputs an accuracy estimate r for its47

solution. r is then compared with a globally set accuracy threshold R. If r ≥ R then (α, t) ∈ S,48

otherwise (α, t) /∈ S; in any case cost(α, t) = c. Such a strategy has been used for prediction49

model generation [25].50

Scenario 3 All the algorithms are first run with a short timeout and if the test instance has not been51

solved after this, algorithms are run again without a timeout (a similar strategy has been used for52

QBF solving [19]). Such a strategy can be instantiated to our setting by adding two copies of each53

algorithm to the portfolio, one with a short timeout and one without a timeout.54

Contribution. We establish the fixed-parameter tractability1 of computing an optimal cascading55

schedule by utilizing structural properties of the success relation. We look at the success relation in56

terms of a Boolean matrix, the evaluation matrix, where each row corresponds to a test instance and57

each column corresponds to an algorithm. A cell contains the entry 1 iff the corresponding algorithm58

succeeds on the corresponding test. We show that if this matrix is either very sparse or very dense,59

then the computation of an optimal schedule is tractable. More specifically, we establish the following60

results, which we describe by writing CPS[parm] for CASCADING PORTFOLIO SCHEDULING61

parameterized by parameter parm.62

First we consider the algorithm failure degree which is the largest number of tests a single algorithm63

fails on, and the test failure degree which is the largest number of algorithms that fail on a single64

test (these two parameters can also be seen as the largest number of 0’s that appear in a row and the65

largest number of 0’s that appear in a column of the matrix, respectively).66

(1) CPS[algorithm failure degree] and CPS[test failure degree] are fixed-parameter tractable67

(Theorems 4 and 5).68

It is natural to consider also the dual parameters algorithm success degree and test success degree.69

However, it follows from known results that CPS is already NP-hard if both of these parameters70

are bounded by a constant (Proposition 6). Hence, our results exhibit a certain asymmetry between71

failure and success degrees.72

We then consider more sophisticated parameters that capture the sparsity or density of the evaluation73

matrix. The failure cover number is the smallest number of rows and columns in the evaluation74

matrix needed to cover all the 0’s in the matrix; similarly, the success cover number is the smallest75

number of rows and columns needed to cover all the 1’s. In fact, both parameters can be computed in76

polynomial time using bipartite vertex cover algorithms [8].77

(2) CPS[failure cover number] and CPS[success cover number] are fixed-parameter tractable78

(Corollary 8 and Theorem 19).79

These results are significant as they indicate that CASCADING PORTFOLIO SCHEDULING can be80

solved efficiently as long as the evaluation matrix is sufficiently sparse or dense. Our result for81

CPS[failure cover number] in fact also shows fixed-parameter tractability of the problem for an even82

more general parameter than success cover number: the treewidth [23] of the bipartite graph between83

the algorithms and tests, where edges join success pairs. This is our most technical contribution and84

reveals how a fundamental graphical parameter [see, e.g., 9] can be utilized for algorithm scheduling.85

1Fixed-parameter tractability is a relaxation of polynomial tractability; definitions are provided in Section 2.

2

Another natural variant of the problem, CPSopt[length], arises by adding an upper bound ` on the86

length, i.e., cardinality, of the computed schedule, and asking for a schedule of length≤ ` of minimum87

cost. We obtain a complexity classification of the problem under this parameterization as well.88

(3) CPS[length] can be solved in polynomial time for each fixed bound `, but is not fixed-89

parameter tractable parameterized by ` subject to established complexity assumptions.90

2 Preliminaries91

Problem Definition. An instance of the CASCADING PORTFOLIO SCHEDULING problem is a92

tuple (A, T, cost, S) comprising:93

• a set A of m algorithms,94

• a set T of n tests,95

• a cost mapping cost : (A× T)→ N, and96

• a success relation S ⊆ A× T .97

Let τ be a totally ordered subset of A; we call such a set a schedule. The length of a schedule is98

its cardinality. We say that τ is valid if for each test t there exists an algorithm α ∈ τ such that99

(α, t) ∈ S. Throughout the paper, we will assume that there exists a valid schedule for our considered100

instances—or, equivalently, that each test is solved by at least one algorithm.101

The processing cost of a test t for a valid schedule τ = (α1, . . . , αq) is defined as
∑j
i=1 cost(αi, t),102

where j is the first algorithm in τ such that (αj , t) ∈ S. The cost of a valid schedule τ , denoted103

cost(τ), is the sum of the processing costs of all tests in T for τ . The aim in CASCADING PORTFOLIO104

SCHEDULING is to find a valid schedule τ of minimum cost.105

Parameterized Complexity. In parameterized algorithmics [7, 5, 4, 10] the complexity of a prob-106

lem is studied not only with respect to the input size n but also a parameter k ∈ N. The most favorable107

complexity class in this setting is FPT (fixed-parameter tractable) which contains all problems that108

can be solved by an algorithm running in time f(k) · nO(1), where f is a computable function.109

Algorithms running in this time are called fixed-parameter algorithms. We will also make use of the110

complexity classes W[2] and XP, where W[2] ⊆ XP. Problems complete for W[2] are are widely111

believed to not be in FPT. The class XP contains problems that are solvable in time O(nf(k)), where112

f is a computable function; in other words, problems in XP are polynomial-time solvable when the113

parameter is bounded by a constant. To obtain our lower bound results, we will need the notion of114

a parameterized reduction, referred to as FPT-reduction, which is in many ways analogous to the115

standard polynomial-time reductions; the distinction is that a parameterized reduction runs in time116

f(k) · nO(1) for some computable function f , and provides upper bounds on the parameter size in117

the resulting instance [5, 4, 7, 18].118

We write O∗(f(k)) to denote a function of the form f(k) · nO(1), where n is the input length and k119

is the parameter.120

Problem Parameters. CASCADING PORTFOLIO SCHEDULING is known to be NP-hard [25], and121

our aim in this paper will be to circumvent this by obtaining parameters that exploit the fine-grained122

structure in relevant problem instances. We note that we explicitly aim for results which allow for123

arbitrary cost mappings, since these are expected to consist of large (and often disorderly) numbers in124

real-life settings. Instead, we will consider parameters that restrict structural properties of the “binary”125

success relation. To visualize this success relation, it will be useful to view an instance I as an m×n126

matrix MI where MI [i, j] = 1 if (αi, tj) ∈ S (i.e. if the j-th test succeeds on the i-th algorithm, for127

some fixed ordering of algorithms and tests), and MI [i, j] = 0 otherwise.128

The two most natural parameters to consider arem and n, and these correspond to the number of rows129

and columns in MI , respectively. Unfortunately, these two parameters are also fairly restrictive—it130

is unlikely that instances of interest will have a very small number of algorithms or test instances.131

Another option would be to use the maximum number of times an algorithm (or test) can fail (or132

succeed) as a parameter. In particular, the algorithm success (or failure) degree is the maximum133

number of 1’s (or 0’s, respectively) occurring in any row in MI . Similarly, we let the test success (or134

failure) degree be the maximum number of 1’s (or 0’s, respectively) occurring in any column in MI .135

Instances where these parameters are small correspond to cases where “almost everything” either136

fails or succeeds.137

3



1 1 1 0 1

0 0 1 0 1

0 1 0 1 0

1 1 1 0 1



t1 t2 t3 t4 t5
α1

α2

α3

α4



1 5 2 7 3

7 7 3 7 5

7 1 7 6 7

2 5 3 7 4


MI CI

Figure 1: An instance with 4 algorithms and 5 tests in the setting
where (exact) algorithms are executed with a global timeout of 7, as
discussed in Scenario 1. On the left is the matrix MI representing
the success relation. The failure covering number is 3, as witnessed
by the highlighted two rows and one column. The matrix CI on the
right represents the cost relation, with CI [i, j] = cost[αi, tj]. The
instance I depicted here has a single solution, notably (α1, α3).

A more advanced parameter that can be extracted from MI is the covering number, which intuitively138

captures the minimum number of rows and columns that are needed to “cover” all successes (or139

failures) in the matrix. More formally, we say that an entry MI [i, j] is covered by row i and by140

column j. Then the success (or failure) covering number is the minimum value of r + c such that141

there exist r rows and c columns inMI with the property that each occurrence of 1 (or 0, respectively)142

in MI is covered by one of these rows or columns. Intuitively, an instance has success covering143

number s if there exist r algorithms and s − r tests such that these have a non-empty intersection144

with every relation in S—see Figure 2 for an example. We note that the covering number has been145

used as a structural parameter of matrices, notably in previous work on the MATRIX COMPLETION146

problem [8], and that it is possible to compute r algorithms and c tests achieving a minimum covering147

number in polynomial time [8, Proposition 1]. We will denote the success covering number by covs148

and the failure covering number by covf .149

3 Results for Basic Parameters150

In this section we consider the CASCADING PORTFOLIO SCHEDULING problem parameterized by151

the number of algorithms (i.e., by m = |A|), by the number of tests (i.e., by n = |T |), and by the152

length of the computed schedule.153

We begin mapping the complexity of our problem with two initial propositions. Note that both154

propositions can also be obtained as corollaries of the more general Theorem 19, presented later. Still,155

we consider it useful to present the proof of Proposition 1, since it nicely introduces the combinatorial156

techniques that will later be extended in the proof of Theorem 1.157

Proposition 1. CPS[number of algorithms] is in FPT.158

Proof. We reduce the problem to that of finding a minimum-weight path in a directed acyclic graph159

(DAG) D. We construct D as follows. We create a single source vertex s, and a single destination160

vertex t inD. We define L0 = {s}, Lm+1 = {t}, and apart from t,D containsm layers, L0, . . . , Lm,161

of vertices, where layer Li, for i ∈ {0, . . . ,m}, contains a vertex for each subset ofA of cardinality i,162

with vertex s corresponding to the empty set. We connect each vertex that corresponds to a subset of163

A which is a valid portfolio to t. For each vertex u in layer Li, i ∈ {0, . . . ,m−1}, corresponding to a164

subset Su ⊂ A, and each vertex v ∈ Li+1 corresponding to a subset Sv ⊆ A, where Sv = Su ∪ {α},165

for α ∈ A, we add an edge (u, v) if there exists a test t ∈ T such that (1) (α, t) ∈ S and (2)166

there does not exist β ∈ Su such that (β, t) ∈ S; in such case the weight of (u, v), wt(u, v), is167

defined as follows. Let Tα ⊆ T be the set of tests that cannot be solved by any algorithm in Su.168

Then wt(u, v) =
∑
t∈Tα cost(α, t). Informally speaking, the weight of (u, v) is the additional cost169

incurred by appending algorithm α to any (partial) portfolio consisting of the algorithms in Su. This170

completes the construction of D.171

It is not difficult to see that an optimal portfolio for A corresponds to a minimum-weight path from s172

to t. More specifically, if P = (v0 = s, v1, . . . , vr, t) is a minimum-weight s-t path in D, then the173

schedule (α1, . . . , αr), where {αi} = Svi \ Svi−1
(Svi is the subset of algorithms corresponding to174

vi and Svi−1 that corresponding to vi−1), for i ∈ [r], is an optimal schedule for T . The number of175

vertices in D is 2m + 1, the number of edges O(2mm2), and computing a minimum-weight path in176

D can be done in linear time in the size of D [3], which is O∗(2m). It follows that the problem can177

be solved in time O∗(2m).178

Proposition 2. CPS[number of tests] is in FPT.179

To formally capture the parameterization of the problem by the length ` of the computed schedule,180

we need to slightly adjust its formal definition. Let CPSval[length] and CPSopt[length] denote the181

variants of CASCADING PORTFOLIO SCHEDULING where for each problem instance we are also182

given an integer ` > 0 and only schedules up to length ` are considered (` being the parameter).183

CPSval[length] is the decision problem that asks whether there exists a valid schedule of length ≤ `,184

4

and CPSopt[length] asks to compute a valid schedule of length ≤ ` of smallest cost or decide that no185

valid schedule of length ≤ ` exists. Both problems are parameterized by the length `.186

Proposition 3. CPSopt[length] is in XP, but is unlikely to be in FPT since already CPSval[length] is187

W[2]-complete.188

Proof. Membership of CPSopt[length] in XP is easy: We enumerate every ordered selection of at189

most ` algorithms from A (there are at most O(`!m`) many) and if valid, we compute its cost, and190

keep track of a valid selection (if any) of minimum cost over all enumerations.191

To prove the W[2]-completeness of CPSval[length], we give FPT-reductions from and to the W[2]-192

complete problem SET COVER [5]. The reduction to SET COVER (showing membership in W[2]) is193

straightforward: The set of tests T is the ground set U of the constructed instance of SET COVER, and194

for each algorithm α ∈ A, we add to the family of subsets of U , F , a set Fα = {t ∈ T | (α, t) ∈ S}.195

It is clear that the resulting instance of SET COVER has a cover of size at most ` iff there a valid196

cascading portfolio scheduling of length at most `, and hence the above reduction is an FPT-reduction197

to SET COVER.198

Next, we give an FPT-reduction from SET COVER to our problem. Given an instance ((U,F), k)199

of SET COVER, where U is a ground set of elements, F is a family of subsets for U , and k ∈ N is200

the parameter, we create an instance of CASCADING PORTFOLIO SCHEDULING as follows. We set201

T = U , and for each F ∈ F , we create an algorithm αF ∈ A and add (αF , t) to S, for every t ∈ F .202

Finally, we set ` = k. The function cost can be defined arbitrarily. The above reduction is clearly a203

(polynomial-time) FPT-reduction, and it is straightforward to verify that ((U,F), k) is a yes-instance204

of SET COVER if and only if the constructed instance of CASCADING PORTFOLIO SCHEDULING205

has a valid portfolio of size at most `.206

4 Results for Degree Parameters207

This section presents a classification of the complexity of CASCADING PORTFOLIO SCHEDULING208

parameterized by the considered (success and failure) degree parameters.209

Proposition 4. CPS[algorithm failure degree] is in FPT.210

Proof. Denote by degAf the algorithm failure degree, and let I = (A, T, cost, S) be an instance of211

CASCADING PORTFOLIO SCHEDULING. Consider an algorithm which loops over each algorithm212

α ∈ A and proceeds under the assumption that α is the first algorithm in an optimal valid portfolio.213

For each such α, the number of tests in T that cannot be evaluated by α is at most degAf . Removing214

α from A and the subset of tests {t | (α, t) ∈ S} from T results in an instance I− of CASCADING215

PORTFOLIO SCHEDULING with at most degAf tests, which, by Proposition 2, can be solved in time216

O∗((degAf)degAf) to obtain an optimal solution for I−. Prefixing α to the optimal solution obtained217

for I− (assuming a solution exists) results in an optimal solution Sα for I under the constraint218

that algorithm α is the first algorithm. Enumeration every algorithm α ∈ A as the first algorithm,219

computing Sα, and keeping track of the solution of minimum cost over all enumerations, results in220

an optimal solution for I. The running time of the above algorithm is O∗((degAf)degAf).221

Proposition 5. CPS[test failure degree] is in FPT.222

Proof Sketch. Denote by degTf the test failure degree, and let I = (A, T, cost, S) be an instance of223

CASCADING PORTFOLIO SCHEDULING. Consider an algorithm which (1) loops over each algorithm224

α ∈ A and proceeds under the assumption that α is the last algorithm in an optimal valid portfolio τ ,225

and then (2) loops over every test t in our instance and proceed under the assumption that t is a test226

that is solved only by α in τ . For each such choice of t and α, it follows that the algorithms preceding227

α in τ do not solve t, and hence there are at most degTf many such algorithms. Therefore, we can228

check the validity and compute the cost of every possible ordered selection of a subset from these229

algorithms that precede α in τ . After we finish looping over all choices of α and t, we output a valid230

portfolio of minimum cost.231

There are |A| choices for a last algorithm α and |T | choices for a desired test t. For each fixed α and232

t, there are at most O∗((degTf)!) many ordered selections of a subset of algorithms preceding α in τ .233

It follows that the problem can be solved in time O∗((degTf)!).234

5

Proposition 6. CPS[algorithm success degree], CPS[test success degree], and even CPS[algorithm235

success degree + test success degree] are NP-hard already if the algorithm success degree is at most236

3 and test success degree is at most 2.237

Proof. We reduce from the problem 3-MIN SUM VERTEX COVER, where we are given a graph238

H = (V,E) with maximum degree 3, and the task is to find a bijection σ : V → {1,V } that239

minimizes
∑
e∈E fσ(e), where fσ(e) = minv∈e σ(v). Feige et al. [6] showed that there exists240

ε > 0 such that it is NP-hard to approximate 3-MIN SUM VERTEX COVER within a ratio better241

than 1 + ε. Given an instance of this problem, we construct an instance of (A, T, cost, S) of242

CASCADING PORTFOLIO SCHEDULING by letting A = V , adding for each edge e ∈ E a test te to243

T , setting S = { (α, te) ∈ A× T : α ∈ e }, and setting cost(α, t) = 1 for all α ∈ A and t ∈ T . It is244

easy to verify that bijections σ that minimize
∑
e∈E fσ(e) are exactly those that give an ordering τ245

of A of minimal cost. It remains to observe that the the algorithm success degree is 3 and the test246

success degree is 2.247

5 Results for Cover Numbers248

In this section we show that CPS[failure cover number] and CPS[success cover number] are both249

fixed-parameter tractable.250

5.1 Using the Failure Cover Number251

The first of the two results follows from an even more general result, the fixed-parameter tractability252

of CPS[failure treewidth], where as the parameter we take the treewidth of the failure graph GI253

defined as follows.254

The failure graph GI is a bipartite graph whose vertices consist of A ∪ T and where there is an edge255

between α ∈ A and t ∈ T iff t fails onA. We note that the algorithm (or test) failure degree naturally256

corresponds to the maximum degree in the respective bipartition of GI , and that the failure covering257

number is actually the size of a minimum vertex cover in GI .258

Treewidth [23, 9, 1] is a well-established graph parameter that measures the “tree-likeness” of259

instances. Aside from treewidth, we will also need the notion of balanced separators in graphs. We260

introduce these technical notions below.261

Treewidth and Separators. Let G = (V,E) be a graph. A tree decomposition of G is a pair262

(V, T) where V is a collection of subsets of V such that
⋃
Xi∈V = V , and T is a rooted tree whose263

node set is V , such that:264

1. For every edge {u, v} ∈ E, there is an Xi ∈ V , such that {u, v} ⊆ Xi; and265

2. for all Xi, Xj , Xk ∈ V , if the node Xj lies on the path between the nodes Xi and Xk in the266

tree T , then Xi ∩Xk ⊆ Xj .267

The width of the tree decomposition (V, T) is defined to be max{|Xi| | Xi ∈ V} − 1. The treewidth268

of the graph G, denoted tw(G), is the minimum width over all tree decompositions of G. A tree269

decomposition (V, T) is nice if it satisfies the following conditions:270

1. Each node in the tree T has at most two children.271

2. If a node Xi has two children Xj and Xk in the tree T , then Xi = Xj = Xk; in this case272

node Xi is called a join node.273

3. If a node Xi has only one child Xj in the tree T , then either |Xi| = |Xj |+ 1 and Xj ⊂ Xi,274

and in this case Xi is called an insert node; or |Xi| = |Xj | − 1 and Xi ⊂ Xj , and in this275

case Xi is called a forget node.276

4. If Xi is a leaf node or the root, then Xi = ∅.277

A pair of vertex subsets (A,B) is a separation in graph G if A ∪ B = V (G) and there is no edge278

between A \B and B \ A. The separator of this separation is A ∩B, and the order of separation279

(A,B) is equal to |A ∩ B|. We say that a separation (A,B) of G is an α-balanced separation if280

|A \B| ≤ α|V (G)| and |B \A| ≤ α|V (G)|.281

6

Proof Strategy. Our main aim in this section will be to prove the following theorem:282

Theorem 7. CPS[failure treewidth] is in FPT.283

It is easy to see that failure treewidth is at most the failure cover number plus 1 (consider, e.g., a tree284

decomposition of the failure graph consisting of a sequence of bags, each containing the algorithms285

and tests forming the cover and one additional test or algorithm). Hence, once we establish Theorem 7286

we obtain the following as an immediate corollary:287

Corollary 8. CPS[failure cover number] is in FPT.288

The proof of Theorem 7 is broken into two main steps, and we provide a high-level overview of these289

below.290

In the first step, we show that there exists an optimal solution of size at mostO(tw(GI)·log (m+ n)).291

To argue this property, we consider a balanced separator B of GI of size tw(GI) + 1, and assume292

w.l.o.g. that, in an optimal solution, an algorithm on the left side of B occurs before an algorithm on293

the right side of B. It can be shown that there exists an optimal solution which behaves as follows:294

the first algorithm located on the right side of B is followed by at most tw(GI) + 1 other algorithms.295

With this insight, we can show that tw(GI) + 3 many algorithms solve at least a constant fraction of296

all tests in the instance. Applying this argument recursively allows us to obtain the desired bound on297

the size of the optimal solution.298

In the second step, we solve the problem using dynamic programming on a tree decomposition of299

GI , by utilizing the upper bound on the solution length derived in the first step. The running time is300

O∗(4` · `tw(GI) · tw(GI)!). To make the dynamic programming approach work, for a current bag in301

the tree decomposition, and for each position in the schedule, we remember whether this position will302

be filled by an algorithm from the “future” (i.e., has not been seen yet), whether it was already filled303

in the “past”, or whether it will be filled by an algorithm from the current bag. We also remember304

specifically which algorithm is the “first” from the future, which is the “first” from the past, and what305

are the positions of the algorithms in the bag. Moreover, for each test in the bag, we remember the306

position of the algorithm that solves the test.307

The Proof. We start with the following lemma:308

Lemma 9. There exists a minimum cost schedule for CASCADING PORTFOLIO SCHEDULING with309

length at most (2tw(GI) + 5) · log(m+ n).310

Proof. As our starting point, we establish the following claim concerning proper valid schedules,311

which are schedules where each algorithm solves at least one test that has not been solved by previous312

algorithms.313

Claim 10. Let (A,B) be a separation in GI with separator X = A∩B. Then in every proper valid314

schedule, either all the algorithms from A \X or all the algorithms from B \X are among the last315

|X ∩ T |+ 1 scheduled algorithms.316

Proof of Claim. Let τ be such a valid schedule. Assume, w.l.o.g., that an algorithm αA ∈ A \X is317

scheduled before any algorithm from B \X , and let αB ∈ B \X be the first algorithm from B \X318

in τ . Since (A,B) is a separation in the failure graph with separator X , every algorithm in A \X319

solves every test in B \X and vice versa. Hence, it is easy to see that the only tests that may not320

have been solved when τ passes αB are tests in X . Since in τ every algorithm solves at least one321

new test, there are at most |X ∩ T | algorithms scheduled after αB , and the claim follows.322

Let I = (A, T, cost, S) be an instance of CASCADING PORTFOLIO SCHEDULING. We will prove323

the lemma by induction on |A|+ |T | and by restricting our attention to proper valid schedules only;324

the latter is justified by the fact that every valid schedule can be turned into a proper valid schedule325

without increasing its cost. Clearly, if |A|+ |T | ≤ 2 then the lemma holds.326

Now let us assume inductively, for every instance I ′ = (A′, T ′, cost′, S′) with |A′|+|T ′| < |A|+|T |,327

that every proper valid schedule has length at most (2tw(GI′ + 5) · log(|A′|+ |T ′|). Let τ be such a328

valid schedule for I, and let (A,B) be a 2
3 -balanced separation in GI with separator X of size at329

most tw(GI) + 1, it is well known that such separation always exists (see, e.g., [4, Lemma 7.20]).330

If the length of τ is at most 2|X| + 3, then we are done. Otherwise, the sets A,B,X satisfy the331

conditions of Claim 10, and hence all the algorithms from one of the parts, say B \X , are among the332

last |X ∩ T |+ 1 scheduled algorithms. Moreover, since τ contains more than 2|X|+ 3 algorithms,333

there is an algorithm αA that is the first algorithm from A \X in τ . Now let I ′ = (A′, T ′, cost′, S′)334

be the instance obtained from I by removing:335

7

• αA and all tests solved by αA,336

• all tests and algorithms in B \X , and337

• all tests solved in τ by some algorithm in B \ X and no algorithm before them in the338

schedule.339

Note that |A′|+ |T ′| ≤ 2
3 (|A|+ |T |). Now let τ ′ be the schedule obtained from τ by removing αA,340

all algorithms from B, and all algorithms from X that appear before αA and only succeed on tests in341

B. Note that we removed at most 1+ |X∩T |+1+ |X∩A| = |X|+2 algorithms from τ . Now, since342

after αA all the tests in B \X were solved and every algorithm in τ solves at least one new test (i.e.,343

a test not solved by previous algorithms), it follows that every algorithm in τ ′ solves at least one new344

test. Moreover, we removed from T ′ all the tests that were solved in τ by αA or an algorithm inB and345

hence τ ′ is a valid schedule for I ′. Finally, note that tw(GI′) < tw(GI). Hence by our assumption346

the length of τ ′ is at most (2tw(GI) + 5) log(|A′|+ |T ′|) ≤ (2tw(GI) + 5) log(2
3 (|A|+ |T |)) =347

(2tw(GI) + 5) log(|A| + |T |) − (2tw(GI) + 5) log(3
2). The lemma then follows by the fact that348

tw(GI) + 3 < (2tw(GI) + 5) log(3
2) for tw(GI) ≥ 1.349

This concludes the first step towards the proof of Theorem 7. For the second step, we need to show350

the following lemma:351

Lemma 11. A minimum cost schedule for CASCADING PORTFOLIO SCHEDULING among the352

schedules of length exactly ` can be computed in time O∗(4` · `tw · tw!).353

Proof Sketch. As with virtually all fixed-parameter algorithms parameterized by treewidth, we use354

leaf-to-root dynamic programming along a nicetree decomposition (in this case of the failure graph355

GI)—see for instance the numerous examples presented in the literature [5, 4]. However, due to356

the specific nature of our problem, the records dynamically computed by the program are far from357

standard. This can already be seen by considering the size of our records: while most such dynamic358

programming algorithms only store records that have size bounded by a function of the treewidth, in359

our case the records will also have a polynomial dependence on m.360

As a starting point, we will use the known algorithm of Bodlaender et al. [2] to compute a nicetree-361

decomposition of width at most 5 · tw(GI). We proceed by formalizing the used records. Let Xi be362

a bag in the tree decomposition. A configuration w.r.t. Xi is a tuple (αpast, αfuture, σ, δ), where363

• αpast is an algorithm that has been forgotten in a descendant of Xi,364

• αfuture is an algorithm that has not been introduced yet in Xi,365

• σ : [`]→ {“past”, “future”} ∪ (A ∩Xi), and366

• δ : T ∩Xi → [`].367

The interpretation of the configuration is that σ[j] tells us whether the j-th algorithm in the final368

schedule has been already introduced and forgotten (“past”), it is a specific algorithm in the bag Xi,369

or it has not been introduced yet (“future”). The function δ, for a test t, tells us that t is solved by the370

δ[t]-th algorithm and not solved by any algorithm before. The entries αpast and αfuture represent the371

specific algorithms with the lowest indices j, j′ with σ[j] = “past” and σ[j′] = “future”, respectively.372

We will refer to the index j such that σ[j] = “past” for all j′ < j is σ[j′] 6= “past” as the index373

of the first “past” and, similarly, to the index j such that σ[j] = “future” and for all j′ < j is374

σ[j′] 6= “future” as the index of the first “future”. Note that the indices of the first “past” and the first375

“future”, respectively, are interpreted as precisely the positions of αpast and αfuture in the schedule.376

We say that a configuration C = (αpast, αfuture, σ, δ) w.r.t. Xi is admissible if377

• for each algorithm α ∈ A ∩Xi, there exists precisely one index j such that σ[j] = α;378

• if δ[t] = j, then for every j′ < j:379

– if σ[j′] ∈ A ∩Xi then σ[j′] does not solve t, and380

– if σ[j′] = “past” (resp. σ[j′] = “future”), then αpast (resp. αfuture) does not solve t; and381

• if δ[t] = j and the j-th algorithm is determined from C (that is σ[j] ∈ A ∩Xi or σ[j] is382

the index of the first “past” or “future”, respectively), then the j-th algorithm defined by C383

solves t.384

Note that if we take any valid schedule, we can project it w.r.t. a bag Xi and obtain a configuration385

(αpast, αfuture, σ, δ). Such a configuration will always be admissible and so we can restrict our attention386

to admissible configurations only.387

To simplify the notation we let Γi[C] =∞ if C is not an admissible configuration w.r.t. Xi.388

Claim 12. There are at most 2` · `|Xi| · |Xi|! ·m2 admissible configurations.389

8

Proof of Claim. First, there are at most m2 possibilities for the algorithms αpast and αfuture. Now,390

let a, b ∈ N be such that a = |Xi ∩ A| and b = |Xi ∩ T |. Note that a + b = |Xi|. There391

are
(
`
a

)
≤ `a possible position for the algorithms of Xi in σ and for each of these we have |Xi|!392

possibilities for the specific algorithm to be at the given position. Then we have 2`−a possibilities for393

the remaining entries of σ. Finally, there are `b functions from Xi ∩ T to [`]. Hence there are at most394

m2 · `a · a! · 2`−a · `b ≤ 2` · `|Xi| · |Xi|! ·m2 admissible configurations.395

Now for each Xi, we will compute a table Γi that contains an entry for each admissible configuration396

C such that Γi[C] ∈ N is the best cost, w.r.t. configuration C, of the already introduced tests restricted397

to the already introduced algorithms and the algorithm αfuture.398

Clearly, the minimum cost schedule of the instance gives rise to some admissible configuration C399

w.r.t. the root node Xr of the tree decomposition. Hence Γr[C] contains the minimum cost of a400

schedule of length `. In the remainder of the proof, we show how to update the respective nodes of401

tree decomposition depending on their children.402

Claim 13. If Xi is a leaf node, then Γi can be computed in O(|Γi|) time.403

Proof of Claim. Note that Xi = ∅ and that none of the algorithms has been introduced in any leave404

node. Let σfuture denote the function σfuture[i] = “future” for all i ∈ [`]. Then the only admissible405

configuration looks like (∅, α, σfuture, ∅), where α ∈ A. Moreover, since no tests or algorithms were406

introduced at that point, the cost of all of these configurations is zero.407

Claim 14. If Xi is an introduce node for a test with the only child Xj , then Γi can be computed in408

O(|Γi|) time.409

Proof of Claim. Let t be the newly introduced test and let C = (αpast, αfuture, σ, δ) be an admissible410

configuration w.r.t. Xi. Note that since, Xj is a separator between the forgotten algorithms and t, it411

follows that αpast solves t and hence, becauseC is admissible, the index δ[t] of the algorithm that solve412

the test t has to be smaller or equal to the index of the first “past” in σ. Hence, it is simple to compute413

the cost ct of t w.r.t. all already introduced algorithms and αfuture. Moreover, this cost is unique and414

does not depend on forgotten algorithms other than αpast. Now, let C ′ = (αpast, αfuture, σ, δ
′) be the415

configuration w.r.t. Xj , where δ′ is the restriction of δ missing the entry for t. Since Γj [C
′] contains416

the best cost w.r.t. C ′ and the difference between C ′ and C and between Xj and Xi respectively is417

only the test t, it is easy to observe that Γi[C] = Γj [C
′] + ct.418

Claim 15. If Xi is an introduce node for an algorithm with the only child Xj , then Γi can be419

computed in O(|Γi|) time.420

Proof of Claim. Let C = (αpast, αfuture, σ, δ) be an admissible configuration w.r.t. Xi and let α be421

the newly introduced algorithm. We compute Γi[C] as follows. Let σ′ : [`]→ {“past”, “future”} ∪422

(A ∩Xi be the function such that σ′[k] = σ′[k] if σ[k] 6= α and σ′[k] = “future” if σ[k] = α.423

We distinguish two cases depending on the position of α in σ.424

First, σ[k] = α and there exists k′ ∈ N such that k′ < k and σ[k′] = “future”. Let C ′ denote425

configuration (αpast, αfuture, σ
′, δ). Clearly, σ′ is admissible w.r.t. Xj . Furthermore, all already426

forgotten tests are solved by αfuture, which is before α in σ and hence their costs is already accounted427

for in Γj [C
′]. Therefore, we only need to account for the tests in Xi which are solved either by α or428

later. Let k ∈ N be such that σ[k] = α. We let Γi[C] = Γj [C
′] +

∑
t∈{t′| δ[t′]≤k} cost(α, t).429

Second, σ[k] = α and there does not exist k′ ∈ N such that k′ < k and σ[k′] = “future”. We let C ′430

denote configuration (αpast, α, σ
′, δ). Clearly, σ′ is admissible w.r.t. Xj . All already forgotten tests431

are solved latest by α and their costs is already accounted for in Γj [C
′]. However, we added new432

αfuture in this case and we have to add the cost of running αfuture for the tests in Xi that are solved after433

the first “future” in σ. Let k ∈ N be such that σ[k] = “future” and for all k′ < k is σ[k] 6= future.434

We let Γi[C] = Γj [C
′] +

∑
t∈{t′| δ[t′]≤k} cost(αfuture, t).435

Claim 16. If Xi is a forget node, which forgets a test t, with the only child Xj , then Γi can be436

computed in O(`|Γi|) time.437

Proof of Claim. Let C = (αpast, αfuture, σ, δ) be an admissible configuration w.r.t. Xi. Forgetting a438

test does not change the costs of introduced tests w.r.t. introduced algorithms. Hence, we only need439

to find a configuration w.r.t. Xj of the lowest cost that after removing t from δ results in C. For440

k ∈ [`] let Ck be a configuration (αpast, αfuture, σ, δk) such that δk[t′] = δ[t′] for t ∈ (Xi ∩ T) and441

δk[t′] = k. We let Γi[C] = mink∈[`] Γj [Ck].442

9

Claim 17. If Xi is a forget node, which forgets an algorithm α, with the only child Xj , then Γi can443

be computed in O((`+m)|Γi|) time.444

Proof of Claim. Let C = (αpast, αfuture, σ, δ) be an admissible configuration w.r.t. Xi. Clearly, when445

we forget an algorithm, the cost of schedule given by σ w.r.t already introduced algorithms and tests446

does not change. Hence, we just need to choose the best configuration of Xj that can result in C.447

Let k be the lowest index such that σ[k] = “past”. We distinguish two cases depending on whether448

αpast = α or not.449

First, if αpast = α, then for an already forgotten algorithm α′ let us denote by Cα′ the configuration450

(α′, αfuture, σ
′, δ) such that σ′[k] = α and for all k′ 6= k σ′[k] = σ[k]. In this case we let Γi[C] =451

minα′ Γj [Cα′].452

If αpast 6= α, then for all k′ > k such that σ[k′] = “past” we let Ck′ be the configura-453

tion (αpast, αfuture, σk′ , δ) such that σ′[k′] = α and σ′[k′′] = σ[k′′] for k′′ 6= k′. We let454

Γi[C] = mink′ Γj [Ck′].455

Claim 18. If Xi is a join node with children Xj1 and Xj2 , then Γi can be computed from Γj1 and456

Γj2 in O(2`m|Γi|) time.457

Proof of Claim. Let C = (αpast, αfuture, σ, δ) be an admissible configuration w.r.t. Xi. In this case,458

we need to go through all the possibilities how C can decompose into two admissible configurations459

Cj1 = (α1
past, α

1
future, σ

1, δ1) and Cj2 = (α2
past, α

2
future, σ

2, δ2) w.r.t. Xj1 and Xj2 , respectively. We460

first enumerate the necessary conditions for such two configurations.461

1. δ = δ1 = δ2,462

2. σ, σ1, and σ2 agree on the position of the algorithms in Xi,463

3. if σ[k] = “future”, then necessarily σ1[k] = σ2[k] = “future”,464

4. if σ[k] = “past” then either σ1[k] = “past” and σ2[k] = “future” or σ1[k] = “future” and465

σ2[k] = “past”,466

5. αpast has to be equal to either α1
past or α2

past, and467

6. α1
future is either αfuture or α2

past and α2
future is either αfuture or α1

past.468

It is straightforward to see that there are at most 2` + 2 ·m such (Cj1 , Cj2) pairs. Having such a pair469

and costs Γj1 [Cj1], Γj2 [Cj2], we show how to compute the cost of C if it rises from the combination470

of Cj1 and Cj2 . Afterwards, we just need to go through all the combinations and pick the one that471

gives the lowest possible cost.472

First note that the sets of tests that are forgotten in Xj1 and Xj2 are disjoin,t and the cost of these473

tests is included in Γj1 [Cj1] and Γj2 [Cj2] respectively and this cost will not change after joining474

these to configurations. This is true since the only not introduced algorithms, in the respective bags,475

that will run on these tests are α1
future and α2

future, respectively, and their costs are already included476

in Γj1 [Cj1] and Γj2 [Cj2]. Hence, if Xi does not contain any test, then the cost of combining these477

two configurations is precisely Γj1 [Cj1] + Γj2 [Cj2]. Similarly, for a test t ∈ Xi and a forgotten478

algorithm other than α1
past or α2

past (which could be α2
future or α1

future, respectively) the cost of running479

this algorithm is already counted in precisely one of Γj1 [Cj1] and Γj2 [Cj2]. Hence, the only thing480

that can be counted twice in Γj1 [Cj1] + Γj2 [Cj2] is the cost of running a test in Xi w.r.t. algorithm in481

Xi ∪ {αfuture, α
1
future, α

2
future}, which can be easily checked, computed from σ’s and δ, and afterwards482

subtracted from Γj1 [Cj1] + Γj2 [Cj2]. Finally, if none of α1
future and α2

future is equal to αfuture, we need483

to add to the final cost the cost of running αfuture on tests that are in Xi and are solved at least at the484

position of the first “future” in σ or later (e.g., δ[t] ≥ k, where k is the position of the first “future”485

in σ). This conclude the computation of the costs of combining two configurations from children in486

join node and by taking the minimum among all such combinations also the proof of the claim.487

To conclude, the last four claims show that it is possible to dynamically compute our records from the488

leaves of a nice tree decomposition to its root; once the records are known for the root, the algorithm489

has all the information it needs to output with the solution.490

Since, by Lemma 9 the length of a minimum cost schedule is at most (2tw(GI) + 5) · log(n+m),491

by applying the above algorithm for each length between 1 and (2tw(GI) + 5) · log(n + m) we492

get a runtime of O∗(4(2tw(GI)+5)·log(n+m) · ((2tw(GI) + 5) · log(n + m))tw(GI) · tw(GI)!) =493

O∗(42tw(GI)+5 · (2tw(GI) + 5)tw · log(n + m)tw(GI) · tw(GI)!). It is well known [20] that, for494

10

a parameter k and input size N , a running time of the form O∗((log(N))k) is FPT. It follows that495

CPS[failure treewidth] is fixed-parameter tractable, and the proof of Theorem 7 is complete.496

5.2 Using the Success Cover Number497

The aim of this section is to establish the fixed-parameter tractability of CPS[success cover number],498

which can be viewed as a dual result to Corollary 8. The techniques used to obtain this result are499

entirely different from those used in the previous subsection; in particular, the proof is based on a500

significant extension of the ideas introduced in the proof of Proposition 1.501

Theorem 19. CPS[success cover number] is in FPT.502

Proof. Let I be an instance of CPS[covs]. Our first step is to compute a witness for the success503

cover number covs, i.e., a set of algorithms A′ and tests T ′ such that |A′ ∪ T ′| = covs and each504

pair in S has a non-empty intersection with A′ ∪ T ′; as discussed in Subsection 2, this can be done505

in polynomial time [8, Proposition 1]. Let V = 2A
′∪T ′ be the set of all subsets of covs. We will506

construct a directed arc-weighted graph D with vertex set V ∪ {x}, and with the property that each507

shortest path from ∅ to x precisely corresponds to a minimum-cost schedule for the input instance I.508

Intuitively, reaching a vertex v in D which corresponds to a certain set of algorithms A0 and tests T0509

means that the schedule currently contains the algorithms in A0 plus an optimal choice of algorithms510

which can process the remaining tests in T0; information about the ordering inside the schedule is not511

encoded by the vertex v itself, but rather by the path from ∅ to v.512

In order to implement this idea, we will add the following arcs to D. To simplify the description, let513

A∗ be an arbitrary subset ofA′ and T ∗ be an arbitrary subset of T ′. First of all, for eachA∗ such that514

for every test t ∈ T \ T ′ there is some α ∈ A∗ satisfying (α, t) ∈ S, we add the arc (A∗ ∪ T ′, x)515

and assign it a weight of 0. This is done to indicate that A∗ ∪ T ′ corresponds to a valid schedule.516

Second, for each A∗ that is a proper subset of A′, α0 ∈ A′ \ A∗, and T ∗, we add the arc e from517

A∗ ∪ T ∗ to A∗ ∪ {α0} ∪ T ∗ ∪ T0, where T0 contains every test t0 ∈ T ′ such that (α0, t0) ∈ S. In518

order to compute the weight of this arc e, we first compute the set Te of all tests outside of T ∗ where519

α0 will be queried (assuming α0 is added to the schedule at this point); formally, t ∈ Te if t 6∈ T ∗520

and for each α′ ∈ A∗ it holds that (α′, t) 6∈ S. For clarity, observe that T0 ⊆ Te. Now, we set the521

weight of e to
∑
t∈Te cost(α0, t).522

To add our third and final set of edges, we first pre-compute for each Tλ ⊆ T ′ \ T ∗ an algorithm523

αλ ∈ A \ A′ such that:524

1. for each tλ 6∈ T ∗, (αλ, tλ) ∈ S iff tλ ∈ Tλ (i.e., αλ successfully solves exactly Tλ), and525

2. among all possible algorithms satisfying the above condition, αλ achieves the minimum526

cost for all as-of-yet-unprocessed tests. Formally, αλ minimizes the term price(αλ) =527 (∑
t∈(T ′\T∗) cost(αλ, t)

)
+
(∑

t 6∈T ′:∀α∈A∗:(α,t)6∈S cost(αλ, t)
)
.528

Now, we add an arc e from each A∗ ∪ T ∗ to each A∗ ∪ T ∗ ∪ Tλ, where Tλ is defined as above and529

associated with the test αλ. The weight of e is precisely the value price(αλ).530

Note that since the graph D has 2cov
s + 1 many vertices, a shortest path P from ∅ to x in D can be531

computed in time 2O(covs). Moreover, it is easy to verify that D can be constructed from an instance532

I in time at most 2O(covs) · |I|2. At this point, it remains to verify that a shortest ∅-x path P in D533

can be used to obtain a solution for I.534

Consider such a path P , and let Q be the schedule constructed iteratively as follows. At the beginning535

we set Q = ∅. We will follow the path P from ∅ to x and add an algorithm to Q whenever P traverses536

an arc with non-zero weight. In particular, whenever P uses an arc from some A∗ ∪ T ∗ to some537

A∗ ∪ {α0} ∪ T ∗ ∪ T0 where α0 ∈ A′ (i.e., an arc from our second group of created edges), we add538

α0 to the end of Q. Similarly, whenever P uses an arc from someA∗∪T ∗ to someA∗∪T ∗∪Tλ, we539

add the algorithm αλ to the end ofQ. It is easy to verify that at each point of our iterative construction540

of Q, the cost of an arc used by P is precisely the same as the processing cost the algorithm that was541

last added to Q spends on all tests which remain unsolved at this point. Moreover, by the construction542

of our first group of arcs, once P reaches x we end up with a valid schedule Q. It follows that Q is a543

valid schedule with cost equal to the weight of P .544

To conclude the proof, among all valid schedules of minimum cost, let Q′ be one such schedule with545

the minimum weight. It now suffices to show that there exists a path P ′ with the same weight as546

11

the cost of Q′. To find this path P ′, we will be essentially be reversing the arguments made in the547

previous paragraph. Notably, we will find P ′ by choosing the i-th arc to follow based on the i-th548

algorithm in Q′. As our inductive assumption, we will moreover claim that:549

1. if the i-th node we reach in P ′ is A∗ ∪ T ∗, then the first i algorithms in Q′ contain A∗ and550

that the algorithms in Q′ solve precisely those tests in T ′ which lie in T ∗; and551

2. the weight of P ′ up to the i-th node is precisely equal to the cost of processing all tests by552

the first i algorithms in Q′.553

This inductive assumption is clearly true at position i = 0, since P ′ starts at ∅. So, assume the554

inductive assumption holds at some position i, the vertex reached by P ′ after taking the i-th arc is555

some A∗ ∪ T ∗, and the (i+ 1)-st algorithm in Q′ is some αj .556

If αj ∈ A′, then we make our path P ′ follow the arc to A∗ ∪ {αj} ∪ T ∗ ∪ T0, where T0 contains557

every test t0 ∈ T ′ such that (αj , t0) ∈ S; such an arc can be found among the arcs created in our558

second group, the set T0 is constructed in a way which preserves our first inductive assumption, and559

the cost of this arc will precisely match the cost of processing all remaining tests by αj . Hence, both560

inductive assumptions will remain satisfied.561

On the other hand, if αj 6∈ A′, then due to the optimality of Q′ we can assume that there exists562

some non-empty set Tλ ⊆ T ′ \ T ∗ of tests solved by αj , i.e., t ∈ Tλ iff (αj , t) ∈ S. To be more563

precise, observe that an αj outside of A′ can only successfully process tests in T ′, and if such αj564

does not succeed on any as-of-yet remaining test we may simply remove αj from Q′, contradicting565

our assumption about the (length) minimality of Q′. Moreover, among all algorithms which succeed566

precisely on T0, we note that αj must run with the minimum cost for all test instances that remain567

unsolved as of this point—in other words, αj must be an algorithm with minimum price, as defined568

when constructing our third set of edges. Indeed, if this were not the case, we could replace αj with569

the algorithm αλ pre-computed for Tλ, leading to a schedule Q′ of strictly smaller cost. But since570

αj is an algorithm with minimum price, there must exist an arc from A∗ ∪ T ∗ to A∗ ∪ T ∗ ∪ Tλ of571

cost precisely price(αj), and by having P ′ use this arc we ensure that both inductive assumptions572

remain valid (the first assumption follows from the definition of Tλ, and the second follows from the573

optimality of the price of αj).574

To summarize, we have shown that for each valid optimal schedule Q′ as defined above, there is a575

corresponding ∅-x path P ′ in our graph D, and that for each ∅-x path P in D there is a corresponding576

valid schedule. These two facts together establish the correctness of our algorithm.577

6 Conclusion578

We studied the parameterized complexity of the CASCADING PORTFOLIO SCHEDULING problem579

under various parameters. We identified several settings where the NP-hardness of the problem can580

be circumvented via exact fixed-parameter algorithms, including cases where (i) the algorithms have581

a small failure degree, (ii) the tests have a small failure degree, (iii) the evaluation matrix has a small582

failure cover, and (iv) the evaluation matrix has a small success cover. The first three cases can be583

seen as settings in which most algorithms succeed on most of the tests, whereas case (iv) can be seen584

as a setting where most algorithms fail.585

We have complemented our algorithmic results with hardness results which allowed us to draw a586

detailed complexity landscape of the problem. We would like to point out that all our hardness results587

hold even when all costs are unit costs. This finding is significant, as it reveals that the complexity of588

the problem mainly depends on the success relation and not on the cost mapping.589

For future work, it would be interesting to extend our study to the more complex setting where up to590

p algorithms from the portfolio can be run in parallel. Here, the number p could be seen as a natural591

additional parameter.592

References593

[1] H. L. Bodlaender. Discovering treewidth. In Proceedings of the 31st Conference on Current594

Trends in Theory and Practice of Computer Science (SOFSEM’05), volume 3381 of Lecture595

Notes in Computer Science, pages 1–16. Springer Verlag, 2005.596

[2] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,597

and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.,598

12

45(2):317–378, 2016.599

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,600

3rd edition, 2009.601

[4] M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and602

S. Saurabh. Parameterized Algorithms. Springer, 2015.603

[5] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts604

in Computer Science. Springer, 2013.605

[6] Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover. Algorithmica,606

40(4):219–234, 2004.607

[7] Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in608

Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.609

[8] Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. Parameterized algorithms610

for the matrix completion problem. In Proceeding of ICML, the Thirty-fifth International611

Conference on Machine Learning, Stockholm, July 10–15, 2018, pages 1642–1651. JMLR.org,612

2018. ISSN: 1938-7228.613

[9] Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a key to tractability of614

knowledge representation and reasoning. Artificial Intelligence, 174(1):105–132, 2010.615

[10] Georg Gottlob and Stefan Szeider. Fixed-parameter algorithms for artificial intelligence,616

constraint satisfaction, and database problems. The Computer Journal, 51(3):303–325, 2006.617

Survey paper.618

[11] Holger H. Hoos, Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Portfolio-based algorithm619

selection for circuit QBFs. In John N. Hooker, editor, Proceedings of CP 2018, the 24rd620

International Conference on Principles and Practice of Constraint Programming, volume621

11008 of Lecture Notes in Computer Science, pages 195–209. Springer Verlag, 2018.622

[12] Shinji Ito, Daisuke Hatano, Hanna Sumita, Akihiro Yabe, Takuro Fukunaga, Naonori Kakimura,623

and Ken-ichi Kawarabayashi. Regret bounds for online portfolio selection with a cardinality624

constraint. In Advances in Neural Information Processing Systems 31: Annual Conference on625

Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,626

Canada., pages 10611–10620, 2018.627

[13] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm628

selection: Survey and perspectives. Evolutionary Computation, pages 1–47, 2018.629

[14] Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI Magazine,630

35(3):48–60, 2014.631

[15] Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown. Selection and configu-632

ration of parallel portfolios. In Handbook of Parallel Constraint Reasoning., pages 583–615.633

2018.634

[16] Marius Lindauer, Frank Hutter, Holger H. Hoos, and Torsten Schaub. Autofolio: An automati-635

cally configured algorithm selector (extended abstract). In Carles Sierra, editor, Proceedings636

of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Mel-637

bourne, Australia, August 19-25, 2017, pages 5025–5029. ijcai.org, 2017.638

[17] Haipeng Luo, Chen-Yu Wei, and Kai Zheng. Efficient online portfolio with logarithmic regret.639

In Advances in Neural Information Processing Systems 31: Annual Conference on Neural640

Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada.,641

pages 8245–8255, 2018.642

[18] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathe-643

matics and its Applications. Oxford University Press, Oxford, 2006.644

[19] Luca Pulina and Armando Tacchella. A self-adaptive multi-engine solver for quantified boolean645

formulas. Constraints, 14(1):80–116, 2009.646

13

[20] V. Raman, S. Saurabh, and C. R. Subramanian. Faster fixed parameter tractable algorithms647

for undirected feedback vertex set. In Proceedings of the 13th International Symposium on648

Algorithms and Computation, volume 2518 of Lecture Notes in Computer Science, pages649

241–248. Springer, 2002.650

[21] John R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.651

[22] Mattia Rizzini, Chris Fawcett, Mauro Vallati, Alfonso Emilio Gerevini, and Holger H. Hoos.652

Static and dynamic portfolio methods for optimal planning: An empirical analysis. International653

Journal on Artificial Intelligence Tools, 26(1):1–27, 2017.654

[23] Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width. J. Comb. Theory,655

Ser. B, 36(1):49–64, 1984.656

[24] Olivier Roussel. Description of ppfolio 2012. In et al. A. Balint, editor, Proceedings of SAT657

Challenge 2012, page 47. University of Helsinki, 2012.658

[25] Matthew Streeter. Approximation algorithms for cascading prediction models. In Jennifer G.659

Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine660

Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of661

JMLR Workshop and Conference Proceedings, pages 4759–4767. JMLR.org, 2018.662

14

	Introduction
	Preliminaries
	Results for Basic Parameters
	Results for Degree Parameters
	Results for Cover Numbers
	Using the Failure Cover Number
	Using the Success Cover Number

	Conclusion

