Appendix A

Curvature dependent approximation bound of Submodular maximization in Eq.

The combinatorial optimization problem in Eq. is a submodular maximization with monotone
non-decreasing submodular objective and a rank constraint. Simple vanilla greedy algorithm can
yield an approximation factor of o = 1 — e ™. This result can be further improved when the objective
F(A) is close to modular, e.g., when ) is sufficiently large. We therefore have the following Lemma:

Lemma 1. Let F(A) = AFy(A) + Fs(A) where Fg(-) is a monotone non-decreasing submodular
Sunction with curvature kg, Fy(+) is a non-negative modular function, both defined on ground set V,
and A > 0. Then kp < 5557 where 8 = minjev Far(§)/Fs(j)-

Proof. We have
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