
A Omitted Proofs

A.1 Proof of Theorem 1

First we note that W pX,T qY ´ ∞
t ⇡tpXqY ptqs “ ∞

tpW pX, tq�Tt ´ ⇡tpXqqY ptq. Then analyzing
each summand separately, we can obtain:

ErW pX, tq�TtY ptq ´ ⇡tpXqY ptqs
“ ErErW pX, tq�TtY ptq ´ ⇡tpXqY ptq | Xss
“ ErW pX, tqEr�TtY ptq | Xs ´ ⇡tpXqErY ptq | Xss
“ ErW pX, tqErEr�TtY ptq | X,T s | Xs ´ ⇡tpXqErErY ptq | X,Zs | Xss
“ ErW pX, tqEr�TtErY ptq | X,T “ ts | Xs ´ ⇡tpXqErµtpZq | Xss
“ ErW pX, tqEr�Tt | XsErµtpZq | X,T “ ts ´ ⇡tpXqErµtpZq | Xss
“ ErW pX, tq⌘tpXqErµtpZq | X,T “ ts ´ ⇡tpXqErµtpZq | Xss

“ E
«
W pX, tq⌘tpXq⌫tpX, tq ´ ⇡tpXq

ÿ

t1
⌘t1 pXq⌫tpX, t

1q
�

Therefore the solution to the equation ErW pX, tq�TtY ptq ´ ⇡tpXqY ptqs “ 0 is given by:

W pX, tq⌘tpXq⌫tpX, tq ´ ⇡tpXq
ÿ

t1
⌘t1 pXq⌫tpX, t

1q “ ⌦tpXq

where ⌦tpXq is any arbitrary function of X with mean zero. Solving this for W gives

W pX, tq “ ⇡tpXq ∞
t1 ⌘t1 pXq⌫tpX, t

1q ` ⌦tpXq
⌘tpXq⌫tpX, tq ,

and finally replacing X with x gives the required solution.

A.2 Proof of Theorem 2

Define
⌧
⇡
SAPE “ 1

n

ÿ

i

ÿ

t

⇡tpXiqµtpZiq.

Using px ` yq2 § 2x2 ` 2y2, we have

Erp⌧̂⇡W ´ ⌧
⇡q2 | X1:n, T1:ns § 2Erp⌧̂⇡W ´ ⌧

⇡
SAPEq2 | X1:n, T1:ns ` 2Erp⌧⇡SAPE ´ ⌧

⇡q2 | X1:n, T1:ns.
Noting that ⌧⇡ “ Er⌧⇡SAPEs, Assumption 3 implies that Erp⌧⇡SAPE ´ ⌧

⇡q2s “ Op1{nq. Markov’s
inequality yields Erp⌧⇡SAPE ´ ⌧

⇡q2 | X1:n, T1:ns “ Opp1{nq.

Let CMSEpW,µq “ Erp⌧̂⇡W ´ ⌧
⇡
SAPEq2 | X1:n, T1:ns. We proceed to bound CMSE. By iterating

expectations we can obtain:

CMSEpW,µq “ Erp⌧̂⇡W ´ ⌧
⇡
SAPEq2 | X,T s

“ ErErp⌧̂⇡W ´ ⌧
⇡
SAPEq2 | X,T, Z | X,T s

“ ErEr⌧̂⇡W ´ ⌧
⇡
SAPE | X,T, Zs2 | X,T s ` ErVr⌧̂⇡W ´ ⌧

⇡
SAPE | X,T, Zs | X,T s

“ Erp 1
n

ÿ

i,t

fitµtpZiqq2 | X,T s ` ErVr 1
n

ÿ

i

WiY pTiq | X,T, Zs | X,T s

§ Erp 1
n

ÿ

i,t

fitµtpZiqq2 | X,T s ` �
2

n2
}W }22

where � is the bound defined in Assumption 3.

Next observe that for any (possibly correlated) random variables A1, . . . , An and numbers
p1, . . . , pn P Rn such that

∞
i pi “ 1, we have Vr∞i piAis § maxi VrAis. Given this, we can
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simplify the first term above further, as follows:

Erp 1
n

ÿ

i,t

fitµtpZiqq2 | X,T s “ p 1
n

ÿ

i,t

fitErµtpZiq | Xi, Tisq2 ` Vr 1
n

ÿ

i,t

fitµtpZiq | X,T s

“ p 1
n

ÿ

i,t

fit⌫tpXi, Tiqq2 ` 1

n2

ÿ

i

Vr
ÿ

t

fitµtpZiq | X,T s

§ p 1
n

ÿ

i,t

fit⌫tpXi, Tiqq2 ` 1

n2

ÿ

i

max
t

f
2
itVrµtpZiq | X,T s

§ p 1
n

ÿ

i,t

fit⌫tpXi, Tiqq2 ` 2�2

n2

ÿ

i

max
t

W
2
i �Tit ` ⇡tpXiq2

§ p 1
n

ÿ

i,t

fit⌫tpXi, Tiqq2 ` 2�2

n2

ÿ

i

pW 2
i ` 1q

“ p 1
n

ÿ

i,t

fit⌫tpXi, Tiqq2 ` 2�2

n2
}W }22 ` 2�2

n

where for the second inequality we used the fact that px ` yq2 § 2x2 ` 2y2. This
gives us CMSEpW,µq § J

˚pW,µq ` Opp1{nq, and combining this with the above gives
Erp⌧̂⇡W ´ ⌧

⇡q2 | X1:N , T1:N s § 2J˚pW,µq ` Opp1{nq as required.

A.3 Proof of Lemma 2

First, we will use the notation fpz;x, tq for the conditional measure of Z given X “ x and T “ t,
and observe that according to Bayes rule we have:

fpz;x, t2q
fpz;x, t1q “ et2 pzq

et1 pzq
⌘t1 pxq
⌘t2 pxq

Define Ext and Pxt as shorthand for expectation and probability given X “ x, T “ t respectively.
Then given the above, for any M ° 0 we can bound

⌫tpx, t2q “ ⌘t2 pxq
⌘t1 pxq ErµtpZq | X “ x, T “ t

2s

“
ª

Z
fpz;x, t2qµtpzqdz

“ ⌘t2 pxq
⌘t1 pxq

ª

Z

et2 pzq
et1 pzq

⌘t1 pxq
⌘t2 pxqfpz;x, t1qµtpzqdz

“ ⌘t1 pxq
⌘t2 pxq

ª

Z

et2 pzq
et1 pzq fpz;x, t1qµtpzqdz

§ ⌘t1 pxq
⌘t2 pxq

ˆ
MExt1 r tet2 pzq

et1 pzq § MuµtpZqs ` Ext1 r tet2 pzq
et1 pzq ° Muet2 pzq

et1 pzq µtpZqs
˙

Now we can use the fact that µt is b-bounded to bound the first term by

MExt1 r tet2 pzq
et1 pzq § MuµtpZqs “ M⌫tpx, t1q ´ MExt1 r tet2 pzq

et1 pzq ° MuµtpZqs

§ M⌫tpx, t1q ` MbPxt1 ret2 pzq
et1 pzq ° M s,
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and in addition applying Cauchy Schwartz we can bound the second term by

Ext1 r tet2 pzq
et1 pzq ° Muet2 pzq

et1 pzq µtpZqs §
d

Ext1 r tet2 pzq
et1 pzq ° MuµtpZq2sExt1 r

ˆ
et2 pzq
et1 pzq

˙2

s

§
d

b2Pxt1 ret2 pzq
et1 pzq ° M sExt1 r

ˆ
et2 pzq
et1 pzq

˙2

s

§ b

d

Pxt1 r 1

et1 pzq ° M sExt1 r
ˆ

1

et1 pzq

˙2

s.

Now define gpx, tq “ Extr
´

1
etpzq

¯2
s. By Assumption 2 we know gpx, tq is finite for every x and t.

Also by Markov’s inequality we know that Pxtr 1
etpzq ° M s § gpx,tq

M2 . Therefore putting all of the
above together we can obtain

⌫tpx, t2q § ⌘t1 pxq
⌘t2 pxq

ˆ
M⌫tpx, t1q ` 2bgpx, t1q

M

˙

§ ⌘t1 pxq
⌘t2 pxq

ˆ
M |⌫tpx, t1q| ` 2bgpx, t1q

M

˙

This inequality is valid every M , so we can pick M to make it as tight as possible. Choosing
M “

b
2bgpx,t1q
⌫tpx,t1q gives us:

⌫tpx, t2q § ⌘t1 pxq
⌘t2 pxq

a
8bgpx, t1q|⌫tpx, t1q|

Finally note that, since by symmetry ErµpZq | X,T s “ ´Er´µpZq | X,T s, we can strengthen this
inequality to the following

|⌫tpx, t2q| § ⌘t1 pxq
⌘t2 pxq

a
8bgpx, t1q|⌫tpx, t1q|,

and noting that gpx, t1q “ Ere´2
t pZq | X “ x, T “ t

1s gives us our final result.

A.4 Proof of Lemma 3

First note that by Assumption 6 F is compact. Also JpW, ¨q is continuous for every W , since by
Assumption 7 we know that the norm on each Ft dominates the norm on L

2pZq and this continuity
result would be trivial if Ft “ L

2pZq. This means that by the Extreme Value theorem we can replace
the supremum over µ with a maximum over µ in the quantity we are bounding. Given this, we will
proceed by bounding minW maxµPF BpW,µq using von Neumann’s minimax theorem to swap the
minimum and the maximum, and then use this to establish the overall bound for JpW,µq.

Next we can observe that BpW,µq is linear, and therefore both convex and concave, for each of W
and µ. Next, by Assumption 6 F is convex and compact, and following the same argument as above
BpW, ¨q is continuous for every W . In addition, BpW,µq is also clearly continuous in W for fixed µ,
and the set tW : }W }2 § Mu is obviously compact and convex for any constant M . Thus by von
Neumann’s minimax theorem we have the following for every finite M :

min
}W }2§M

max
µPF

BpW,µq “ max
µPF

min
}W }2§M

BpW,µq (8)
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Given this, we can bound minW maxµPF ĴpW,µq as follows, which is valid for any M :

min
W

max
µPF

ĴpW,µq § min
W

max
µPF

BpW,µq2 ` 1

n2
W

T⌃W

§ min
W

max
µPF

BpW,µq2 ` �
2

n2
}W }22

§ min
}W }2§M

max
µPF

BpW,µq2 ` �
2

n2
}W }22

§ p min
}W }2§M

max
µPF

BpW,µqq2 ` �
2

n2
M

2

“ pmax
µPF

min
}W }2§M

BpW,µqq2 ` �
2

n2
M

2

“ max
µPF

min
}W }2§M

BpW,µq2 ` �
2

n2
M

2

In these inequalities we use the fact that minW maxµ BpW,µq2 “ pminW maxµ BpW,µqq2 and
maxµ minW BpW,µq2 “ pmaxµ minW BpW,µqq2 due to the symmetry of µ in F implied by
Assumption 5.

A.5 Proof of Lemma 4

Let
±

denote Cartesian product. First we note that without loss of generality we can prove this
lemma in the case that F “ ±

t Ft, since in general F Ñ ±
t Ft so supµPF infW JpW,µq §

supµP±
t Ft

infW JpW,µq, and it is easy to verify that all of our assumptions would still hold on the
larger set

±
t Ft.

Now define the set H0 “ tµ P ±
t L

2pZq : Er⌫T pX,T q2s “ 0u. Each coordinate H
0
t of H0 is a

subspace of L2pZq, so we can also define its orthogonal complement H`
t . Also, we have separability

since from Section 2.1 we know that Z Ñ Rq , so any function f P L
2pZq can be uniquely represented

as f “ f
0 ` f

` where f
0 P H

0
t and f

` P H
`
t . This means that for each µt P Ft, we can similarly

uniquely represent µt “ µ
0
t ` µ

`
t , and we can easily extend this to a unique representation of the

vector µ “ µ
0 `µ

`. Now in the case that Er⌫T pX,T q2s “ 0 we have ⌫TipXi, Tiq “ 0 almost surely
for all i, and it follows from Lemma 2 that ⌫TipXi, tq “ 0 almost surely also for all i and t. Therefore
any component of µ in H

0 has no effect on the function JpW,µq which we are bounding, so without
loss of generality we can restrict our attention to the following space:

F
` “

π

t

pH`
t X Ftq.

By construction the only function in F
` such that Er⌫T pX,T q2s “ 0u is the zero function, which

we can also ignore in our bounds below, since when µ “ 0 we can easily obtain JpW,µq “ 0 by
choosing W “ 0. Furthermore, by Assumption 7 we know that for each t the Ft norm dominates the
L
2pZq norm, so it must be the case that that each space F

`
t is closed, since H

`
t is a closed subspace

of L2pZq due to it being an orthogonal complement. Thus it follows easily from Assumption 4 that
F

` is closed, given that its norm is an Rm norm on top of the corresponding F
`
t norms and m is

finite.

Now, based on Lemma 3, it is sufficient to pick weights in response to µ that control for a single mean
outcome function. Instead of actually constructing a particular set of weights, we take the approach
of viewing this as a convex optimization problem. Specifically, given µ, we calculate the minimum
euclidean norm of all weights that set the bias term BpW,µq to zero exactly. This can be formulated
as the following convex optimization program

min
W

ÿ

i

W
2
i

s.t.
ÿ

i

Wi⌫TipXi, Tiq “
ÿ

i,t

⇡tpXiq⌫tpXi, Tiq.
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Given the program only has linear constraints with equality, it satisfies Slater’s condition, and
therefore satisfies strong duality, which we will use to find the optimal value of this program. First
we calculate the Lagrangian as

LnpW,�q “
ÿ

i

W
2
i ` �

˜
ÿ

i

Wi⌫TipXi, Tiq ´
ÿ

i,t

⇡tpXiq⌫tpXi, Tiq
¸
.

It can easily be verified by taking derivatives that for any � P R this function is minimized by setting
Wi “ ´�

2 ⌫TipXi, Tiq, and plugging this value in gives the dual formulation of the program as

max
�

´�
2

4

ÿ

i

⌫TipXi, Tiq2 ´ �

ÿ

i,t

⇡tpXiq⌫tpXi, Tiq,

which is unconstrained. Again by taking derivatives we can maximize this function, and we find the
maximum value is given by

� “ ´2

∞
i ⇡tpXiq⌫tpXi, Tiq∞

i ⌫TipXi, Tiq2
,

and finally plugging this value into the dual objective function we see that the euclidean norm of the
weights W˚ solving the convex program above is given by

}W˚}22 “ p∞
i ⇡tpXiq⌫tpXi, Tiqq2∞

i ⌫TipXi, Tiq2
.

Now define En as the mean with respect to the empirical distribution of the logged data. Then this
objective value can be reformulated as

}W˚}22 “ nEnr∞t ⌫tpX,T qs2
Enr⌫T pX,T q2s .

Therefore choosing M “ }W˚}, combining this result with Lemma 3 gives us

min
W

sup
µPF`

JpW,µq § sup
µPF`

1

n

ˆ
�
2Enr∞t ⌫tpX,T qs2
Enr⌫T pX,T q2s

˙

“ sup
µPF`

1

n

ˆ
�
2Enr∞t ⌫tpX,T qs2

Er⌫T pX,T q2s ` pEnr⌫T pX,T q2s ´ Er⌫T pX,T q2sq

˙
.

Given this we will proceed by arguing that we can bound the denominator away from zero. We can
note that µ appears in both the numerator and denominator on the same scale, so without loss of
generality we can further restrict our attention to µ with fixed norm. By Assumption 8 we know that
we can rescale every µ P F to have norm � for some � ° 0. Given this we will restrict ourselves to
the set F`

� “ tµ P F
` : }µ} “ �u. Since F

`
� is the intersection of two closed sets it must be closed.

Furthermore by Assumption 6 it is also compact, so it satisfies the conditions for the extreme value
theorem. By construction Er⌫T pX,T q2s ° 0 for every µ P F

`
� , so putting the above together we

have infµPF`
�
Er⌫T pX,T q2s ° 0. We will define this value to be ↵.

Now the numerator in the above bound is clearly bounded above by some � ° 0 uniformly over
µ P F , since by Assumption 9 we know that every µt P Ft is uniformly bounded by some global
constant, and therefore all ⌫ terms are bounded by some constant b. Given this all that remains to be
shown is that supµPF |Enr⌫T pX,T q2s ´ Er⌫T pX,T q2s| converges in probability to zero. In order to
show this we will define the following terms:

Dn “ Enr⌫T pX,T q2s
En “ sup

µPF
|Dn ´ ErDns|

We need to show that En converges uniformly to zero. Define D
1
n as an arbitrary recalculation of

Dn replacing pX1:n, T1:nq with pX 1
1:n, T

1
1:nq, which differ from the originals at most in a single
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coordinate i, and define E
1
n “ supµPF |D1

n ´ ErD1
ns|. Furthermore as argued above all ⌫ terms are

bounded above by some constant b, so each ⌫TipXi, Tiq2 is bounded by b
2. Given this we can obtain

|En ´ E
1
n| “ | sup

µPF
|Dn ´ ErDns| ´ sup

µPF
|D1

n ´ ErD1
ns||

§ sup
µPF

|pDn ´ ErDnsq ´ pD1
n ´ ErD1

nsq|

“ sup
µPF

|Dn ´ D
1
n|

“ 1

n
sup
µPF

|⌫TipXi, Tiq2 ´ ⌫T 1
i
pX 1

i, T
1
i q2|

§ 2b2

n

Given this we can apply McDiarmid’s inequality to obtain the following bound:

P p|En ´ ErEns| § ✏q § 2 exp

ˆ
´n✏

2

2b4

˙

This implies that En ´ ErEns “ opp1q. Next we show that ErEns “ opp1q also. We do this using
a symmetrization argument as follows, where D

1
n is defined identically to Dn using iid shadow

variables pX 1
i, T

1
i q in place of pXi, Tiq for each i, and ✏i are iid Rademacher random variables:

ErEns “ E
„
sup
µPF

|Dn ´ ErDns|
⇢

“ E
«
sup
µPF

ˇ̌
ˇ̌
ˇ
1

n

ÿ

i

⌫TipXi, Tiq ´ Er⌫T 1
i
pX 1

i, T
1
i qs

ˇ̌
ˇ̌
ˇ

�

§ 2E
«
sup
µPF

ˇ̌
ˇ̌
ˇ
1

n

ÿ

i

✏i⌫TipXi, Tiq
ˇ̌
ˇ̌
ˇ

�

§ 2
ÿ

t

E
«
sup
µPF

ˇ̌
ˇ̌
ˇ
1

n

ÿ

i

✏i�Tit⌫tpXi, Tiq
ˇ̌
ˇ̌
ˇ

�

§ 4
ÿ

t

E
«
sup
µPF

ˇ̌
ˇ̌
ˇ
1

n

ÿ

i

✏i⌫tpXi, Tiq
ˇ̌
ˇ̌
ˇ

�

§ 4
ÿ

t

E
«
sup
µPF

ˇ̌
ˇ̌
ˇ
1

n

ÿ

i

✏iµtpZiq
ˇ̌
ˇ̌
ˇ

�

§ 4
ÿ

t

RnpFtq

where in the third inequality we appeal to the Rademacher comparison lemma [28, Thm. 4.12]. Thus
since from Assumption 10 we know that the Rademacher complexity of each set RnpFnq vanishes,
it follows that ErEns “ opp1q. Putting everything from above together we get

min
W

sup
µPF

JpW,µq § 1

n

�

↵ ` opp1q ,

so we have minW supµPF JpW,µq § Opp1{nq as required.

A.6 Proof of Theorem 4

First, Assumption 4 follows trivially from the definition of F
K . Next, Assumption 5 and

Assumption 8 follow from the fact that FK consists of all functions in spanpFtq with norm
at most 1, as does the fact that it is a closed space. Given that K is a Mercer kernel, balls in the
corresponding RKHS have finite covering number [44], and it follows easily from this that FK has
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finite covering numbers, as its covering number must be bounded above by the sum of the covering
numbers of the spaces F

K
t . So F

K is closed and totally bounded with respect to its norm, and
therefore compact, which gives us Assumption 6. Clearly each Ft is contained in L

2pZq since
RKHSs are square integrable, and the fact that the K norm dominates the L

2 follows from Mercer’s
Theorem, which implies that }f}2K “ ∞8

i“1 f
2
i {�i, where fi is the ith eigenvalue of f for some

orthonormal basis of L2pZq, and �i • 0 converges to zero. This gives us Assumption 7. Next, by
construction each F

K
t consists of all functions in the RKHS up to norm 1. Therefore assuming the

kernel K is bounded, it is trivial to verify that function application must be globally bounded, since
for any function f P F

K
t we have fpxq §† f,Kx °§ }f}

a
Kpx, xq §

a
Kpx, xq, which gives us

Assumption 9. Finally, given this characterization of FK
t as the 1-ball of the RKHS, it has vanishing

Rademacher complexity [33, Thm. 2.1], so we have Assumption 10.

A.7 Proof of Theorem 5

First we will find a closed form expression for supµPFK p 1
n

∞
i,t fit⌫tpXi, Tiqq2, where ⌫t is defined in

terms of the approximate posterior '̂. In this derivation we will use the shorthand'i for the conditional
density of Zi given Xi and Ti under '̂, and TK for the kernel intergral operator defined according to
TKf “ ≥

Z Kp¨, zqfpzqdz. In this derivation we will make use of the fact that hf, giL2 “ hf, TKgiK
for any square integrable f and g. Given all this we can obtain:

sup
µPFK

˜
1

n

ÿ

i,t

fit⌫tpXi, Tiq
¸2

“
ÿ

t

sup
µtPFK

t

˜
1

n

ÿ

i

fit hµt,'iiL2

¸2

“
ÿ

t

sup
µtPFK

t

*
µt,

1

n

ÿ

i

fit'i

+2

L2

“
ÿ

t

sup
µtPFK

t

*
µt, TK

1

n

ÿ

i

fit'i

+2

K

“
ÿ

t

⌦
TK

1
n

∞
i fit'i, TK

1
n

∞
i fit'i

↵2
K

}TK
1
n

∞
i fit'i}K

“
ÿ

t

*
TK

1

n

ÿ

i

fit'i, TK
1

n

ÿ

i

fit'i

+

K

“
ÿ

t

*
1

n

ÿ

i

fit'i, TK
1

n

ÿ

i

fit'i

+

L2

“ 1

n2

ÿ

i,j,t

fitfjt h'i, TK'jiL2

“ 1

n2

ÿ

i,j,t

fitfjt

ª

Z
'ipzqp

ª

Z1
Kpz, z1q'jpz1qdz1qdz

“ 1

n2

ÿ

i,j,t

fitfjt

ª

Z

ª

Z1
'ipzq'jpz1qKpz, z1qdz1

dz

“ 1

n2

ÿ

i,j,t

fitfjtErKpZi, Z
1
jqs,

where the expectation in the last term is implicitly defined in terms of the approximate posterior '̂
and conditional on the observed data.
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Given this, and recalling that fit “ Wi�Tit´⇡tpXiq we can derive a closed form for our minimization
objective, as follows:

sup
µPFK

JpW,µq “ 1

n2

ÿ

i,j,t

fitfjtQij ` 1

n2

ÿ

i,j

WiWj�ij

“ 1

n2

ÿ

i,j,t

QijpWiWj�Tit�Tjt ´ 2Wj�Tjt⇡tpXiq ` ⇡tpXiq⇡tpXjqq

` 1

n2

ÿ

i,j

WiWj�ij

“ 1

n2

ÿ

i,j

WiWjpQij�TiTj ` �ijq ´ 2

n2

ÿ

j

Wjp
ÿ

i

Qij⇡Tj pXiqq

` 1

n2

ÿ

i,j,t

Qij⇡tpXiq⇡tpXjq

Finally we can conclude by noting that this corresponds to the quadratic program formulation given
in the question with c “ 1

n2

∞
i,j,t Qij⇡tpXiq⇡tpXjq.

B Additional Experimentation Details

B.1 Experiment Scenario

All our experiments were conducted using the setup described in Section 5.1. We used the following
parameter values for our data-generating distribution:

↵ “ r1.0,´2.0,´1.0, 2.0, 4.0, 0.0,´2.0,´1.0,´3.0, 1.0s
↵0 “ 0

�X “ 4.0

� “ r0.5,´0.5s
�0 “ 0

⇣p0q “ 1.0

⇣p0q0 “ 0

⇣p1q “ ´0.5

⇣p1q0 “ 0

�Y “ 0.01

In addiiton, the policy ⇡ we are evaluating takes the form as described in Section 5.1, and we used
the following parameter values for this policy:

 0 “ r´0.1, 0.2, 0.2,´0.1,´0.1,´0.1, 0.1, 0.1, 0.1,´0.1s
 1 “ ´ 0

B.2 Method Implementation Details

In all methods where we sampled from the posterior '̂p¨;x, tq, this sampling was done using STAN
[7], solving QPs and LCQPs was done using the Python package quadprog,3 all stochastic gradient
descent (SGD) learning was performed using the Adam [25] optimizer with a learning rate of 0.001.

OptZ We ran Algorithm 1 with B “ 50.

IPS Since the propensity scores ⌘tpxq are not not tractable to compute analytically, we trained
a neural network ⌘̂ to estimate this function. This was done by sampling batches of pZ,Xq pairs

3https://pypi.org/project/quadprog/
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from the data model, and training the network using SGD to predict the vector of probabilities
PT “ �

T
Z `�0 from X , using cross-entropy loss. We used a neural network with two hidden layers

of size 200 for ⌘̂, and trained for 2000 iterations with a batch size of 32. We found in practice this
training was very stable and gave accurate results.

DirX For each t we trained a neural network ⇢̂t to predict ⌫tpx, tq by taking the set of pX,T, Y q
triplets in our training data where T “ t, and training the network using SGD to predict Y from X

using MSE loss. Based on pilot experiments we used a network architecture with a single hidden
layer of size 100, and trained using a batch size of 128. We used 80% of our data for training, and
used the remaining 20% for the purpose of early stopping. We trained for a maximum of 500 epochs,
or until we made no progress on development data for 20 epochs.

DirZ For each t we trained a neural network µ̂t to predict µt. This was done by taking the set of
pX,T, Y q triplets in our training data, and for each sampling 200 Z values from the posterior using
our identified model given X and T . This gives us a set of pZ, T, Y q triplets 200 times as large as our
original training set. We then trained each µ̂t network by taking the set of these triplets where T “ t,
and optimized the network using SGD on this data predicting Y from Z. We used the same settings
for this optimization as with the direct-naive method, except we allowed up to 1000 epochs. Note
that for both training and inference we limited ourselves to sampling 200 Z values per data point due
to computational limitations.

C Additional Experiment Results

C.1 Results with Alternative Link Functions and Constraints

We present here our additional experiment results. In these results SimplexOptZ refers to our method
using the simplex constraints discussed in Section 4.2.
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .39 ˘ .07 .24 ˘ .02 .36 ˘ .02 .81 ˘ .02
500 .19 ˘ .02 .18 ˘ .02 .23 ˘ .02 .49 ˘ .02

1000 .11 ˘ .01 .11 ˘ .01 .13 ˘ .01 .27 ˘ .01
2000 .08 ˘ .01 .08 ˘ .01 .09 ˘ .01 .17 ˘ .01

Table 5: Convergence of RMSE for weighted estimator using our weights, with step link

n DirX:OptZ0.001 DirX:OptZ0.2 DirX:OptZ1.0 DirX:OptZ5.0

200 .57 ˘ .06 .42 ˘ .03 .39 ˘ .03 .43 ˘ .03
500 .55 ˘ .02 .46 ˘ .02 .39 ˘ .02 .37 ˘ .02

1000 .49 ˘ .02 .45 ˘ .01 .39 ˘ .01 .32 ˘ .01
2000 .48 ˘ .01 .47 ˘ .01 .42 ˘ .01 .34 ˘ .01

Table 6: Convergence of RMSE for doubly robust estimator using our weights and DirX, with step
link

n DirZ:OptZ0.001 DirZ:OptZ0.2 DirZ:OptZ1.0 DirZ:OptZ5.0

200 .41 ˘ .07 .29 ˘ .02 .50 ˘ .02 1.1 ˘ .03
500 .20 ˘ .02 .21 ˘ .02 .31 ˘ .02 .70 ˘ .02

1000 .11 ˘ .01 .13 ˘ .01 .18 ˘ .01 .42 ˘ .01
2000 .08 ˘ .01 .09 ˘ .01 .13 ˘ .01 .26 ˘ .01

Table 7: Convergence of RMSE for doubly robust estimator using our weights and DirZ, with step
link

n SimplexOptZ0.001 SimplexOptZ0.2 SimplexOptZ1.0 SimplexOptZ5.0

200 .30 ˘ .02 .25 ˘ .02 .38 ˘ .02 .91 ˘ .02
500 .18 ˘ .02 .19 ˘ .02 .24 ˘ .02 .54 ˘ .02
1000 .12 ˘ .01 .11 ˘ .01 .13 ˘ .01 .29 ˘ .01
2000 .07 ˘ .01 .08 ˘ .01 .10 ˘ .01 .18 ˘ .01

Table 8: Convergence of RMSE for weighted estimator using our weights and constraining W P n�n,
with step link

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .47 ˘ .03 2.0 ˘ .03 2.1 ˘ .03 2.3 ˘ .02 2.5 ˘ .02 .52 ˘ .02 2.6 ˘ .02
500 .48 ˘ .03 2.0 ˘ .02 2.1 ˘ .02 2.3 ˘ .02 2.6 ˘ .02 .48 ˘ .02 2.6 ˘ .01
1000 .39 ˘ .02 2.0 ˘ .01 2.1 ˘ .01 2.3 ˘ .01 2.5 ˘ .01 .48 ˘ .02 2.6 ˘ .01
2000 .40 ˘ .01 2.0 ˘ .01 2.1 ˘ .01 2.3 ˘ .01 2.5 ˘ .01 .45 ˘ .02 2.6 ˘ .01

Table 9: Convergence of RMSE for benchmark methods, with step link
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .03 ˘ .39 .11 ˘ .21 .29 ˘ .21 .78 ˘ .18
500 .09 ˘ .17 .10 ˘ .15 .17 ˘ .16 .47 ˘ .15

1000 .02 ˘ .11 .05 ˘ .09 .08 ˘ .09 .25 ˘ .09
2000 .03 ˘ .07 .05 ˘ .06 .07 ˘ .07 .16 ˘ .07

Table 10: Convergence of bias for weighted estimator using our weights, with step link

n DirX:OptZ0.001 DirX:OptZ0.2 DirX:OptZ1.0 DirX:OptZ5.0

200 .43 ˘ .38 .35 ˘ .24 .31 ˘ .24 .37 ˘ .22
500 .51 ˘ .19 .42 ˘ .18 .35 ˘ .18 .33 ˘ .17

1000 .47 ˘ .13 .44 ˘ .11 .37 ˘ .10 .30 ˘ .11
2000 .47 ˘ .09 .46 ˘ .08 .41 ˘ .08 .33 ˘ .08

Table 11: Convergence of bias for doubly robust estimator using our weights and DirX, with step
link

n DirZ:OptZ0.001 DirZ:OptZ0.2 DirZ:OptZ1.0 DirZ:OptZ5.0

200 .05 ˘ .40 .19 ˘ .22 .45 ˘ .22 1.1 ˘ .21
500 .10 ˘ .18 .14 ˘ .16 .26 ˘ .16 .68 ˘ .17

1000 .04 ˘ .11 .09 ˘ .10 .15 ˘ .10 .41 ˘ .10
2000 .03 ˘ .07 .06 ˘ .07 .10 ˘ .07 .25 ˘ .07

Table 12: Convergence of bias for doubly robust estimator using our weights and DirZ, with step
link

n SimplexOptZ0.001 SimplexOptZ0.2 SimplexOptZ1.0 SimplexOptZ5.0

200 .04 ˘ .30 .12 ˘ .21 .31 ˘ .21 .89 ˘ .20
500 .08 ˘ .15 .10 ˘ .15 .18 ˘ .16 .51 ˘ .16
1000 .01 ˘ .12 .06 ˘ .09 .09 ˘ .09 .27 ˘ .10
2000 .03 ˘ .07 .05 ˘ .06 .07 ˘ .07 .17 ˘ .07

Table 13: Convergence of bias for weighted estimator using our weights and constraining W P n�n,
with step link

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .40 ˘ .25 1.9 ˘ .21 2.1 ˘ .20 2.3 ˘ .19 2.5 ˘ .18 .49 ˘ .18 2.6 ˘ .14
500 .43 ˘ .21 2.0 ˘ .16 2.1 ˘ .15 2.3 ˘ .14 2.6 ˘ .13 .45 ˘ .16 2.6 ˘ .12
1000 .37 ˘ .12 2.0 ˘ .10 2.1 ˘ .09 2.3 ˘ .09 2.5 ˘ .08 .46 ˘ .15 2.6 ˘ .11
2000 .39 ˘ .10 2.0 ˘ .08 2.1 ˘ .07 2.3 ˘ .07 2.5 ˘ .07 .42 ˘ .17 2.6 ˘ .11

Table 14: Convergence of bias for benchmark methods, with step link
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .07 ˘ .01 .04 ˘ .00 .04 ˘ .00 .07 ˘ .00
500 .04 ˘ .00 .03 ˘ .00 .03 ˘ .00 .04 ˘ .00

1000 .02 ˘ .00 .02 ˘ .00 .02 ˘ .00 .02 ˘ .00
2000 .01 ˘ .00 .01 ˘ .00 .01 ˘ .00 .01 ˘ .00

Table 15: Convergence of RMSE for weighted estimator using our weights, with exp link

n DirX:OptZ0.001 DirX:OptZ0.2 DirX:OptZ1.0 DirX:OptZ5.0

200 .13 ˘ .01 .10 ˘ .01 .12 ˘ .01 .11 ˘ .01
500 .10 ˘ .01 .09 ˘ .01 .10 ˘ .01 .12 ˘ .01

1000 .08 ˘ .00 .08 ˘ .00 .08 ˘ .00 .10 ˘ .00
2000 .07 ˘ .00 .07 ˘ .00 .08 ˘ .00 .09 ˘ .00

Table 16: Convergence of RMSE for doubly robust estimator using our weights and DirX, with exp
link

n DirZ:OptZ0.001 DirZ:OptZ0.2 DirZ:OptZ1.0 DirZ:OptZ5.0

200 .15 ˘ .02 .15 ˘ .01 .25 ˘ .01 .44 ˘ .01
500 .10 ˘ .01 .11 ˘ .01 .18 ˘ .01 .32 ˘ .01

1000 .07 ˘ .01 .08 ˘ .01 .12 ˘ .01 .23 ˘ .01
2000 .04 ˘ .00 .05 ˘ .00 .08 ˘ .00 .16 ˘ .00

Table 17: Convergence of RMSE for doubly robust estimator using our weights and DirZ, with exp
link

n SimplexOptZ0.001 SimplexOptZ0.2 SimplexOptZ1.0 SimplexOptZ5.0

200 .05 ˘ .00 .11 ˘ .01 .22 ˘ .01 .39 ˘ .02
500 .04 ˘ .00 .08 ˘ .01 .15 ˘ .01 .28 ˘ .01
1000 .02 ˘ .00 .05 ˘ .00 .09 ˘ .00 .19 ˘ .00
2000 .02 ˘ .00 .03 ˘ .00 .07 ˘ .00 .14 ˘ .00

Table 18: Convergence of RMSE for weighted estimator using our weights and constraining W P
n�n, with exp link

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .12 ˘ .01 .76 ˘ .02 .81 ˘ .02 .92 ˘ .02 1.0 ˘ .02 .10 ˘ .01 1.0 ˘ .01
500 .11 ˘ .00 .76 ˘ .01 .82 ˘ .01 .92 ˘ .01 1.0 ˘ .01 .10 ˘ .01 1.0 ˘ .01

1000 .10 ˘ .00 .74 ˘ .01 .79 ˘ .01 .90 ˘ .01 1.0 ˘ .01 .09 ˘ .01 1.1 ˘ .01
2000 .10 ˘ .00 .73 ˘ .00 .78 ˘ .00 .88 ˘ .00 .99 ˘ .01 .10 ˘ .01 1.0 ˘ .01

Table 19: Convergence of RMSE for benchmark methods, with exp link
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .01 ˘ .06 .00 ˘ .04 ´0.00 ˘ .04 ´0.05 ˘ .04
500 .01 ˘ .04 .01 ˘ .03 .00 ˘ .03 ´0.03 ˘ .03
1000 .00 ˘ .02 .01 ˘ .02 ´0.00 ˘ .02 ´0.01 ˘ .02
2000 .01 ˘ .01 .01 ˘ .01 .00 ˘ .01 .00 ˘ .01

Table 20: Convergence of bias for weighted estimator using our weights, with exp link

n DirX:OptZ0.001 DirX:OptZ0.2 DirX:OptZ1.0 DirX:OptZ5.0

200 .07 ˘ .10 .08 ˘ .06 .10 ˘ .05 .11 ˘ .04
500 .07 ˘ .07 .07 ˘ .05 .09 ˘ .05 .11 ˘ .04

1000 .06 ˘ .05 .07 ˘ .03 .07 ˘ .03 .09 ˘ .02
2000 .06 ˘ .04 .06 ˘ .03 .07 ˘ .03 .09 ˘ .03

Table 21: Convergence of bias for doubly robust estimator using our weights and DirX, with exp link

n DirZ:OptZ0.001 DirZ:OptZ0.2 DirZ:OptZ1.0 DirZ:OptZ5.0

200 .05 ˘ .14 .12 ˘ .10 .23 ˘ .09 .43 ˘ .09
500 .03 ˘ .10 .09 ˘ .07 .16 ˘ .07 .32 ˘ .07

1000 .02 ˘ .06 .06 ˘ .05 .10 ˘ .05 .23 ˘ .06
2000 .01 ˘ .04 .03 ˘ .03 .07 ˘ .03 .16 ˘ .04

Table 22: Convergence of bias for doubly robust estimator using our weights and DirZ, with exp link

n SimplexOptZ0.001 SimplexOptZ0.2 SimplexOptZ1.0 SimplexOptZ5.0

200 .02 ˘ .05 .10 ˘ .06 .20 ˘ .08 .38 ˘ .11
500 .02 ˘ .04 .07 ˘ .04 .14 ˘ .05 .27 ˘ .06
1000 .01 ˘ .02 .04 ˘ .02 .08 ˘ .03 .19 ˘ .04
2000 .01 ˘ .01 .03 ˘ .02 .06 ˘ .02 .14 ˘ .02

Table 23: Convergence of bias for weighted estimator using our weights and constraining W P n�n,
with exp link

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .10 ˘ .06 .74 ˘ .13 .80 ˘ .13 .91 ˘ .15 1.0 ˘ .16 .07 ˘ .07 1.0 ˘ .08
500 .11 ˘ .03 .76 ˘ .07 .81 ˘ .08 .92 ˘ .09 1.0 ˘ .10 .07 ˘ .08 1.0 ˘ .09

1000 .10 ˘ .03 .74 ˘ .05 .79 ˘ .05 .90 ˘ .06 1.0 ˘ .06 .06 ˘ .07 1.0 ˘ .10
2000 .10 ˘ .02 .73 ˘ .03 .78 ˘ .03 .88 ˘ .04 .99 ˘ .04 .07 ˘ .07 1.0 ˘ .09

Table 24: Convergence of bias for benchmark methods, with exp link
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .47 ˘ .04 .35 ˘ .02 .39 ˘ .02 .48 ˘ .02
500 .36 ˘ .05 .27 ˘ .02 .30 ˘ .02 .40 ˘ .02

1000 .25 ˘ .02 .22 ˘ .01 .25 ˘ .01 .37 ˘ .01
2000 .14 ˘ .01 .14 ˘ .01 .17 ˘ .01 .27 ˘ .01

Table 25: Convergence of RMSE for weighted estimator using our weights, with cubic link

n DirX:OptZ0.001 DirX:OptZ0.2 DirX:OptZ1.0 DirX:OptZ5.0

200 .58 ˘ .07 .41 ˘ .03 .42 ˘ .02 .38 ˘ .02
500 .37 ˘ .04 .33 ˘ .02 .35 ˘ .02 .37 ˘ .02

1000 .31 ˘ .02 .31 ˘ .02 .33 ˘ .02 .39 ˘ .01
2000 .21 ˘ .02 .23 ˘ .02 .26 ˘ .01 .32 ˘ .01

Table 26: Convergence of RMSE for doubly robust estimator using our weights and DirX, with cubic
link

n DirZ:OptZ0.001 DirZ:OptZ0.2 DirZ:OptZ1.0 DirZ:OptZ5.0

200 .49 ˘ .04 .42 ˘ .03 .54 ˘ .03 .76 ˘ .02
500 .38 ˘ .05 .30 ˘ .02 .38 ˘ .02 .59 ˘ .02

1000 .27 ˘ .02 .25 ˘ .02 .32 ˘ .02 .52 ˘ .02
2000 .16 ˘ .01 .16 ˘ .01 .22 ˘ .01 .39 ˘ .01

Table 27: Convergence of RMSE for doubly robust estimator using our weights and DirZ, with cubic
link

n SimplexOptZ0.001 SimplexOptZ0.2 SimplexOptZ1.0 SimplexOptZ5.0

200 .45 ˘ .04 .41 ˘ .03 .52 ˘ .03 .70 ˘ .03
500 .37 ˘ .05 .30 ˘ .02 .37 ˘ .02 .55 ˘ .02
1000 .26 ˘ .02 .24 ˘ .02 .31 ˘ .02 .50 ˘ .02
2000 .14 ˘ .01 .15 ˘ .01 .20 ˘ .01 .35 ˘ .01

Table 28: Convergence of RMSE for weighted estimator using our weights and constraining W P
n�n, with cubic link

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .46 ˘ .04 1.1 ˘ .02 1.1 ˘ .03 1.3 ˘ .03 1.4 ˘ .03 .36 ˘ .02 1.4 ˘ .01
500 .38 ˘ .02 1.1 ˘ .01 1.2 ˘ .01 1.3 ˘ .01 1.4 ˘ .01 .34 ˘ .02 1.4 ˘ .01
1000 .39 ˘ .01 1.1 ˘ .01 1.2 ˘ .01 1.3 ˘ .01 1.4 ˘ .01 .35 ˘ .02 1.4 ˘ .01
2000 .35 ˘ .01 1.1 ˘ .01 1.2 ˘ .01 1.3 ˘ .01 1.4 ˘ .01 .39 ˘ .02 1.4 ˘ .01

Table 29: Convergence of RMSE for benchmark methods, with cubic link
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .01 ˘ .47 .16 ˘ .31 .29 ˘ .27 .45 ˘ .16
500 ´0.01 ˘ .36 .12 ˘ .24 .22 ˘ .21 .37 ˘ .15
1000 .03 ˘ .25 .12 ˘ .18 .20 ˘ .15 .35 ˘ .12
2000 .02 ˘ .14 .07 ˘ .12 .13 ˘ .11 .26 ˘ .08

Table 30: Convergence of bias for weighted estimator using our weights, with cubic link

n DirX:OptZ0.001 DirX:OptZ0.2 DirX:OptZ1.0 DirX:OptZ5.0

200 .13 ˘ .57 .26 ˘ .32 .33 ˘ .27 .34 ˘ .17
500 .12 ˘ .35 .22 ˘ .25 .28 ˘ .21 .34 ˘ .15

1000 .18 ˘ .26 .24 ˘ .19 .29 ˘ .15 .37 ˘ .11
2000 .14 ˘ .16 .18 ˘ .14 .22 ˘ .12 .31 ˘ .09

Table 31: Convergence of bias for doubly robust estimator using our weights and DirX, with cubic
link

n DirZ:OptZ0.001 DirZ:OptZ0.2 DirZ:OptZ1.0 DirZ:OptZ5.0

200 .04 ˘ .49 .25 ˘ .34 .45 ˘ .29 .74 ˘ .20
500 .03 ˘ .38 .17 ˘ .25 .32 ˘ .21 .57 ˘ .16

1000 .04 ˘ .26 .16 ˘ .19 .28 ˘ .16 .50 ˘ .13
2000 .03 ˘ .16 .10 ˘ .13 .19 ˘ .12 .37 ˘ .10

Table 32: Convergence of bias for doubly robust estimator using our weights and DirZ, with cubic
link

n SimplexOptZ0.001 SimplexOptZ0.2 SimplexOptZ1.0 SimplexOptZ5.0

200 .02 ˘ .45 .22 ˘ .35 .40 ˘ .34 .65 ˘ .28
500 .01 ˘ .37 .15 ˘ .26 .29 ˘ .23 .52 ˘ .18
1000 .04 ˘ .25 .15 ˘ .19 .27 ˘ .17 .47 ˘ .14
2000 .02 ˘ .14 .08 ˘ .13 .17 ˘ .11 .34 ˘ .09

Table 33: Convergence of bias for weighted estimator using our weights and constraining W P n�n,
with cubic link

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .26 ˘ .38 1.1 ˘ .20 1.1 ˘ .20 1.2 ˘ .21 1.4 ˘ .22 .32 ˘ .16 1.4 ˘ .12
500 .31 ˘ .22 1.1 ˘ .10 1.2 ˘ .10 1.3 ˘ .10 1.4 ˘ .11 .29 ˘ .18 1.4 ˘ .10
1000 .37 ˘ .14 1.1 ˘ .07 1.2 ˘ .07 1.3 ˘ .08 1.4 ˘ .08 .32 ˘ .16 1.4 ˘ .10
2000 .34 ˘ .09 1.1 ˘ .05 1.2 ˘ .06 1.3 ˘ .06 1.4 ˘ .06 .34 ˘ .18 1.4 ˘ .11

Table 34: Convergence of bias for benchmark methods, with cubic link
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .09 ˘ .01 .08 ˘ .01 .13 ˘ .01 .23 ˘ .01
500 .06 ˘ .01 .06 ˘ .00 .09 ˘ .00 .16 ˘ .00

1000 .04 ˘ .01 .04 ˘ .00 .06 ˘ .00 .12 ˘ .00
2000 .02 ˘ .00 .03 ˘ .00 .04 ˘ .00 .08 ˘ .00

Table 35: Convergence of RMSE for weighted estimator using our weights, with linear link

n DirX:OptZ0.001 DirX:OptZ0.2 DirX:OptZ1.0 DirX:OptZ5.0

200 .15 ˘ .01 .13 ˘ .01 .13 ˘ .01 .13 ˘ .01
500 .14 ˘ .01 .13 ˘ .01 .13 ˘ .01 .13 ˘ .00

1000 .13 ˘ .01 .13 ˘ .00 .13 ˘ .00 .13 ˘ .00
2000 .12 ˘ .00 .12 ˘ .00 .12 ˘ .00 .12 ˘ .00

Table 36: Convergence of RMSE for doubly robust estimator using our weights and DirX, with
linear link

n DirZ:OptZ0.001 DirZ:OptZ0.2 DirZ:OptZ1.0 DirZ:OptZ5.0

200 .11 ˘ .01 .11 ˘ .01 .18 ˘ .01 .35 ˘ .01
500 .06 ˘ .01 .08 ˘ .01 .13 ˘ .01 .24 ˘ .01

1000 .05 ˘ .01 .06 ˘ .00 .09 ˘ .00 .18 ˘ .00
2000 .03 ˘ .00 .04 ˘ .00 .06 ˘ .00 .12 ˘ .00

Table 37: Convergence of RMSE for doubly robust estimator using our weights and DirZ, with
linear link

n SimplexOptZ0.001 SimplexOptZ0.2 SimplexOptZ1.0 SimplexOptZ5.0

200 .09 ˘ .01 .09 ˘ .01 .15 ˘ .01 .29 ˘ .01
500 .06 ˘ .01 .07 ˘ .01 .10 ˘ .01 .19 ˘ .01
1000 .04 ˘ .01 .04 ˘ .00 .07 ˘ .00 .14 ˘ .00
2000 .02 ˘ .00 .03 ˘ .00 .05 ˘ .00 .09 ˘ .00

Table 38: Convergence of RMSE for weighted estimator using our weights and constraining W P
n�n, with linear link

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .15 ˘ .01 .57 ˘ .01 .60 ˘ .01 .66 ˘ .01 .72 ˘ .01 .13 ˘ .00 .76 ˘ .00
500 .15 ˘ .01 .57 ˘ .00 .60 ˘ .00 .66 ˘ .00 .72 ˘ .00 .13 ˘ .00 .76 ˘ .00

1000 .14 ˘ .00 .57 ˘ .00 .60 ˘ .00 .66 ˘ .00 .72 ˘ .00 .13 ˘ .00 .76 ˘ .00
2000 .14 ˘ .00 .57 ˘ .00 .60 ˘ .00 .66 ˘ .00 .72 ˘ .00 .13 ˘ .00 .76 ˘ .00

Table 39: Convergence of RMSE for benchmark methods, with linear link

27



n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .03 ˘ .09 .06 ˘ .06 .11 ˘ .05 .23 ˘ .04
500 .02 ˘ .05 .04 ˘ .05 .08 ˘ .04 .15 ˘ .04

1000 .01 ˘ .04 .03 ˘ .03 .05 ˘ .03 .11 ˘ .03
2000 .01 ˘ .02 .02 ˘ .02 .04 ˘ .02 .08 ˘ .02

Table 40: Convergence of bias for weighted estimator using our weights, with linear link

n DirX:OptZ0.001 DirX:OptZ0.2 DirX:OptZ1.0 DirX:OptZ5.0

200 .12 ˘ .09 .12 ˘ .06 .12 ˘ .05 .13 ˘ .04
500 .13 ˘ .06 .12 ˘ .05 .12 ˘ .04 .12 ˘ .04

1000 .12 ˘ .04 .12 ˘ .03 .12 ˘ .03 .12 ˘ .03
2000 .12 ˘ .03 .12 ˘ .03 .12 ˘ .02 .12 ˘ .02

Table 41: Convergence of bias for doubly robust estimator using our weights and DirX, with linear
link

n DirZ:OptZ0.001 DirZ:OptZ0.2 DirZ:OptZ1.0 DirZ:OptZ5.0

200 .04 ˘ .10 .09 ˘ .07 .17 ˘ .06 .34 ˘ .05
500 .02 ˘ .06 .06 ˘ .05 .12 ˘ .05 .24 ˘ .05

1000 .02 ˘ .04 .05 ˘ .04 .08 ˘ .04 .18 ˘ .04
2000 .01 ˘ .03 .03 ˘ .03 .06 ˘ .03 .12 ˘ .02

Table 42: Convergence of bias for doubly robust estimator using our weights and DirZ, with linear
link

n SimplexOptZ0.001 SimplexOptZ0.2 SimplexOptZ1.0 SimplexOptZ5.0

200 .02 ˘ .08 .07 ˘ .06 .14 ˘ .06 .29 ˘ .06
500 .02 ˘ .05 .05 ˘ .05 .09 ˘ .05 .19 ˘ .04
1000 .01 ˘ .04 .03 ˘ .03 .06 ˘ .03 .14 ˘ .03
2000 .01 ˘ .02 .02 ˘ .02 .04 ˘ .02 .09 ˘ .02

Table 43: Convergence of bias for weighted estimator using our weights and constraining W P n�n,
with linear link

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .13 ˘ .08 .57 ˘ .05 .60 ˘ .05 .66 ˘ .05 .72 ˘ .05 .13 ˘ .04 .76 ˘ .04
500 .14 ˘ .05 .57 ˘ .04 .60 ˘ .03 .66 ˘ .03 .72 ˘ .03 .12 ˘ .04 .76 ˘ .02

1000 .14 ˘ .04 .57 ˘ .02 .60 ˘ .02 .66 ˘ .02 .72 ˘ .02 .13 ˘ .03 .76 ˘ .03
2000 .13 ˘ .03 .57 ˘ .02 .60 ˘ .02 .66 ˘ .02 .72 ˘ .02 .13 ˘ .03 .76 ˘ .02

Table 44: Convergence of bias for benchmark methods, with linear link
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .94 ˘ .21 .31 ˘ .04 .52 ˘ .04 1.1 ˘ .04
500 .32 ˘ .07 .21 ˘ .03 .33 ˘ .03 .76 ˘ .03

1000 .23 ˘ .04 .13 ˘ .02 .18 ˘ .01 .48 ˘ .01
2000 .10 ˘ .01 .09 ˘ .01 .11 ˘ .01 .28 ˘ .01

Table 45: Convergence of RMSE for weighted estimator using our weights, with step link and
dimz “ 2

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .50 ˘ .05 2.2 ˘ .04 2.3 ˘ .04 2.5 ˘ .04 2.7 ˘ .03 .91 ˘ .07 2.8 ˘ .04
500 .50 ˘ .03 2.3 ˘ .03 2.4 ˘ .03 2.6 ˘ .02 2.8 ˘ .02 .57 ˘ .04 2.8 ˘ .03
1000 .47 ˘ .02 2.3 ˘ .01 2.4 ˘ .01 2.6 ˘ .01 2.8 ˘ .01 .50 ˘ .04 2.9 ˘ .02
2000 .42 ˘ .02 2.2 ˘ .01 2.3 ˘ .01 2.5 ˘ .01 2.8 ˘ .01 .40 ˘ .02 2.9 ˘ .01

Table 46: Convergence of RMSE for benchmark methods, with step link and dimz “ 2

n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .30 ˘ .89 .17 ˘ .25 .46 ˘ .23 1.1 ˘ .20
500 .10 ˘ .31 .13 ˘ .16 .29 ˘ .16 .74 ˘ .15
1000 .02 ˘ .22 .07 ˘ .11 .15 ˘ .10 .47 ˘ .09
2000 ´0.01 ˘ .10 .05 ˘ .07 .08 ˘ .07 .27 ˘ .07

Table 47: Convergence of bias for weighted estimator using our weights, with step link and dimz “ 2

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .39 ˘ .31 2.2 ˘ .25 2.3 ˘ .24 2.5 ˘ .22 2.7 ˘ .20 .83 ˘ .38 2.8 ˘ .26
500 .46 ˘ .20 2.2 ˘ .16 2.3 ˘ .15 2.6 ˘ .14 2.8 ˘ .13 .53 ˘ .21 2.8 ˘ .18
1000 .45 ˘ .11 2.3 ˘ .08 2.4 ˘ .07 2.6 ˘ .07 2.8 ˘ .06 .45 ˘ .21 2.9 ˘ .12
2000 .40 ˘ .11 2.2 ˘ .08 2.3 ˘ .08 2.5 ˘ .07 2.7 ˘ .07 .38 ˘ .11 2.9 ˘ .05

Table 48: Convergence of bias for benchmark methods, with step link and dimz “ 2

C.2 Results with Varying Dimensionality of Hidden Confounders

We present some additional results here experimenting with varying the dimensionality of the hidden
confounder Z. We experimented with increasing the dimensionality of Z to either 2 or 5, while
keeping the dimensionalities of all other components equal. We extended the data generating process
components described in Appendix B.1 as follows:

• The i
1
th row of ↵ is defined by cyclically rotating the elements of the ↵ defined in Ap-

pendix B.1 by i ´ 1 places clockwise.
• The i

1
th row of � is defined as r0.5 ´ 0.05pi ´ 1q, 0.5 ` 0.05pi ´ 1qs.

• The i
1
th row of ⇣p0q is defined as 1.0 ´ 0.3pi ´ 1q.

• The i
1
th row of ⇣p1q is defined as ´0.5 ` 0.3pi ´ 1q.

• The extra rows of all other matrices that need to be extended to accommodate higher
dimensional Z are simply duplicated.

We present results below for our method and benchmarks, for the step link function. We can observe
that the same overall pattern of behavior occurs, with our methods still appearing to be consistent,
though with slower convergence as the dimensionality of Z increases.
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .72 ˘ .07 .42 ˘ .05 .64 ˘ .04 .92 ˘ .02
500 .47 ˘ .07 .31 ˘ .03 .47 ˘ .03 .79 ˘ .02

1000 .35 ˘ .04 .22 ˘ .02 .36 ˘ .02 .64 ˘ .01
2000 .31 ˘ .05 .17 ˘ .01 .26 ˘ .01 .47 ˘ .01

Table 49: Convergence of RMSE for weighted estimator using our weights, with step link and
dimz “ 5

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .40 ˘ .06 1.1 ˘ .05 1.2 ˘ .04 1.3 ˘ .04 1.4 ˘ .04 .44 ˘ .04 1.5 ˘ .05
500 .33 ˘ .03 1.1 ˘ .03 1.2 ˘ .03 1.4 ˘ .03 1.5 ˘ .03 .40 ˘ .04 1.5 ˘ .04
1000 .29 ˘ .02 1.1 ˘ .02 1.2 ˘ .02 1.3 ˘ .02 1.5 ˘ .02 .35 ˘ .03 1.6 ˘ .02
2000 .26 ˘ .02 1.1 ˘ .01 1.1 ˘ .01 1.3 ˘ .01 1.4 ˘ .01 .31 ˘ .02 1.5 ˘ .01

Table 50: Convergence of RMSE for benchmark methods, with step link and dimz “ 5

n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .03 ˘ .72 .32 ˘ .27 .61 ˘ .22 .91 ˘ .13
500 .01 ˘ .47 .23 ˘ .21 .44 ˘ .16 .78 ˘ .11
1000 ´0.01 ˘ .35 .18 ˘ .13 .34 ˘ .11 .64 ˘ .08
2000 .03 ˘ .31 .13 ˘ .11 .24 ˘ .09 .47 ˘ .07

Table 51: Convergence of bias for weighted estimator using our weights, with step link and dimz “ 5

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .23 ˘ .33 1.1 ˘ .25 1.1 ˘ .23 1.3 ˘ .21 1.4 ˘ .20 .36 ˘ .25 1.5 ˘ .29
500 .24 ˘ .23 1.1 ˘ .16 1.2 ˘ .16 1.4 ˘ .15 1.5 ˘ .15 .32 ˘ .23 1.5 ˘ .21
1000 .25 ˘ .15 1.1 ˘ .11 1.2 ˘ .11 1.3 ˘ .11 1.5 ˘ .10 .31 ˘ .16 1.6 ˘ .10
2000 .24 ˘ .12 1.1 ˘ .06 1.1 ˘ .06 1.3 ˘ .06 1.4 ˘ .06 .29 ˘ .12 1.5 ˘ .07

Table 52: Convergence of bias for benchmark methods, with step link and dimz “ 5
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .35 ˘ .05 .20 ˘ .03 .26 ˘ .02 .70 ˘ .03
500 .21 ˘ .02 .12 ˘ .01 .18 ˘ .01 .38 ˘ .01

1000 .13 ˘ .02 .05 ˘ .01 .11 ˘ .01 .22 ˘ .01
2000 .07 ˘ .01 .03 ˘ .00 .07 ˘ .01 .16 ˘ .01

Table 53: Convergence of RMSE for weighted estimator using our weights, with step link and
�x “ 0.1

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .18 ˘ .02 .33 ˘ .03 .44 ˘ .03 .76 ˘ .03 1.6 ˘ .04 .34 ˘ .06 3.2 ˘ .05
500 .07 ˘ .01 .18 ˘ .01 .25 ˘ .01 .45 ˘ .01 1.0 ˘ .02 .08 ˘ .02 3.2 ˘ .04

1000 .06 ˘ .01 .09 ˘ .01 .13 ˘ .01 .26 ˘ .01 .68 ˘ .01 .04 ˘ .01 3.3 ˘ .02
2000 .04 ˘ .00 .05 ˘ .00 .08 ˘ .00 .16 ˘ .00 .44 ˘ .01 .04 ˘ .00 3.3 ˘ .01

Table 54: Convergence of RMSE for benchmark methods, with step link and �x “ 0.1

n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 ´0.12 ˘ .32 .13 ˘ .15 .23 ˘ .13 .67 ˘ .17
500 .11 ˘ .18 .11 ˘ .06 .17 ˘ .06 .37 ˘ .06
1000 .03 ˘ .13 .02 ˘ .04 .09 ˘ .05 .21 ˘ .05
2000 ´0.03 ˘ .06 .01 ˘ .03 .06 ˘ .03 .15 ˘ .03

Table 55: Convergence of bias for weighted estimator using our weights, with step link and �x “ 0.1

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 ´0.01 ˘ .18 .29 ˘ .16 .41 ˘ .16 .74 ˘ .18 1.6 ˘ .22 .17 ˘ .30 3.2 ˘ .29
500 .01 ˘ .07 .17 ˘ .07 .24 ˘ .07 .45 ˘ .07 1.0 ˘ .09 .03 ˘ .07 3.2 ˘ .22

1000 ´0.02 ˘ .06 .08 ˘ .04 .12 ˘ .04 .26 ˘ .05 .67 ˘ .07 ´0.01 ˘ .04 3.3 ˘ .10
2000 .00 ˘ .04 .05 ˘ .02 .08 ˘ .03 .16 ˘ .03 .43 ˘ .03 .00 ˘ .04 3.3 ˘ .08

Table 56: Convergence of bias for benchmark methods, with step link and �x “ 0.1

C.3 Results with varying confounder stength

We present some additional results here experimenting with varying the strength of relationship
between X and Z. We do this by varying the �X parameter in the data generating process described
in Appendix B.1. Lower values of �X mean that more of the variance of X is explained by Z,
corresponding to less confounding, whereas higher values of �X indicate that less of the variance of
X is explained by Z, corresponding to more confounding.

We experimented with �X values in the range r0.1, 1.0, 4.0, 10.0s, noting that �X “ 4.0 is what was
used in prior experiments, and we again used the step link function in this experiment. Our results
are presented below. As expected as the level of confounding increases, the performance of the
benchmark methods strongly decrease. However, our methods appear to be robust to the increasing
level of confounding, maintaining close to zero bias with sufficiently low levels of regularization.
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .33 ˘ .05 .23 ˘ .02 .30 ˘ .03 .74 ˘ .03
500 .13 ˘ .01 .12 ˘ .01 .16 ˘ .01 .37 ˘ .02

1000 .13 ˘ .02 .06 ˘ .01 .11 ˘ .01 .24 ˘ .01
2000 .06 ˘ .01 .04 ˘ .00 .09 ˘ .01 .16 ˘ .01

Table 57: Convergence of RMSE for weighted estimator using our weights, with step link and
�x “ 1.0

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .20 ˘ .03 2.2 ˘ .04 2.4 ˘ .04 2.7 ˘ .04 3.1 ˘ .04 .41 ˘ .05 3.1 ˘ .05
500 .12 ˘ .01 2.1 ˘ .03 2.3 ˘ .03 2.6 ˘ .03 3.0 ˘ .03 .22 ˘ .02 3.1 ˘ .03
1000 .08 ˘ .01 2.0 ˘ .02 2.1 ˘ .02 2.5 ˘ .01 3.0 ˘ .01 .09 ˘ .01 3.2 ˘ .02
2000 .05 ˘ .01 1.7 ˘ .01 1.9 ˘ .01 2.3 ˘ .01 2.8 ˘ .01 .06 ˘ .01 3.2 ˘ .01

Table 58: Convergence of RMSE for benchmark methods, with step link and �x “ 1.0

n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 ´0.15 ˘ .29 .17 ˘ .15 .26 ˘ .15 .72 ˘ .16
500 .07 ˘ .11 .08 ˘ .09 .14 ˘ .08 .36 ˘ .09
1000 .07 ˘ .10 .04 ˘ .05 .10 ˘ .05 .23 ˘ .04
2000 .02 ˘ .05 .02 ˘ .04 .08 ˘ .04 .16 ˘ .03

Table 59: Convergence of bias for weighted estimator using our weights, with step link and �x “ 1.0

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .07 ˘ .18 2.2 ˘ .24 2.4 ˘ .23 2.7 ˘ .22 3.1 ˘ .21 .21 ˘ .35 3.1 ˘ .30
500 .04 ˘ .11 2.1 ˘ .18 2.3 ˘ .18 2.6 ˘ .17 3.0 ˘ .16 .09 ˘ .20 3.1 ˘ .19
1000 .04 ˘ .07 1.9 ˘ .09 2.1 ˘ .08 2.5 ˘ .08 3.0 ˘ .07 .04 ˘ .08 3.2 ˘ .10
2000 .03 ˘ .05 1.7 ˘ .08 1.9 ˘ .07 2.3 ˘ .07 2.8 ˘ .07 .05 ˘ .04 3.2 ˘ .06

Table 60: Convergence of bias for benchmark methods, with step link and �x “ 1.0
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .39 ˘ .07 .24 ˘ .02 .36 ˘ .02 .81 ˘ .02
500 .19 ˘ .02 .18 ˘ .02 .23 ˘ .02 .49 ˘ .02

1000 .11 ˘ .01 .11 ˘ .01 .13 ˘ .01 .27 ˘ .01
2000 .08 ˘ .01 .08 ˘ .01 .09 ˘ .01 .17 ˘ .01

Table 61: Convergence of RMSE for weighted estimator using our weights, with step link and
�x “ 4.0

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .47 ˘ .03 2.0 ˘ .03 2.1 ˘ .03 2.3 ˘ .02 2.5 ˘ .02 .52 ˘ .02 2.6 ˘ .02
500 .48 ˘ .03 2.0 ˘ .02 2.1 ˘ .02 2.3 ˘ .02 2.6 ˘ .02 .48 ˘ .02 2.6 ˘ .01
1000 .39 ˘ .02 2.0 ˘ .01 2.1 ˘ .01 2.3 ˘ .01 2.5 ˘ .01 .48 ˘ .02 2.6 ˘ .01
2000 .40 ˘ .01 2.0 ˘ .01 2.1 ˘ .01 2.3 ˘ .01 2.5 ˘ .01 .45 ˘ .02 2.6 ˘ .01

Table 62: Convergence of RMSE for benchmark methods, with step link and �x “ 4.0

n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .03 ˘ .39 .11 ˘ .21 .29 ˘ .21 .78 ˘ .18
500 .09 ˘ .17 .10 ˘ .15 .17 ˘ .16 .47 ˘ .15

1000 .02 ˘ .11 .05 ˘ .09 .08 ˘ .09 .25 ˘ .09
2000 .03 ˘ .07 .05 ˘ .06 .07 ˘ .07 .16 ˘ .07

Table 63: Convergence of bias for weighted estimator using our weights, with step link and �x “ 4.0

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .40 ˘ .25 1.9 ˘ .21 2.1 ˘ .20 2.3 ˘ .19 2.5 ˘ .18 .49 ˘ .18 2.6 ˘ .14
500 .43 ˘ .21 2.0 ˘ .16 2.1 ˘ .15 2.3 ˘ .14 2.6 ˘ .13 .45 ˘ .16 2.6 ˘ .12
1000 .37 ˘ .12 2.0 ˘ .10 2.1 ˘ .09 2.3 ˘ .09 2.5 ˘ .08 .46 ˘ .15 2.6 ˘ .11
2000 .39 ˘ .10 2.0 ˘ .08 2.1 ˘ .07 2.3 ˘ .07 2.5 ˘ .07 .42 ˘ .17 2.6 ˘ .11

Table 64: Convergence of bias for benchmark methods, with step link and �x “ 4.0
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .60 ˘ .07 .37 ˘ .04 .53 ˘ .04 .97 ˘ .03
500 .42 ˘ .05 .32 ˘ .04 .39 ˘ .03 .69 ˘ .03

1000 .27 ˘ .03 .27 ˘ .03 .32 ˘ .03 .52 ˘ .02
2000 .20 ˘ .03 .18 ˘ .02 .24 ˘ .02 .40 ˘ .02

Table 65: Convergence of RMSE for weighted estimator using our weights, with step link and
�x “ 10.0

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .95 ˘ .05 1.6 ˘ .04 1.6 ˘ .04 1.7 ˘ .04 1.8 ˘ .04 1.2 ˘ .06 1.8 ˘ .04
500 .91 ˘ .03 1.6 ˘ .02 1.6 ˘ .02 1.7 ˘ .02 1.9 ˘ .02 .96 ˘ .05 1.8 ˘ .03
1000 .91 ˘ .02 1.6 ˘ .02 1.6 ˘ .01 1.7 ˘ .01 1.9 ˘ .01 .92 ˘ .03 1.9 ˘ .02
2000 .92 ˘ .02 1.6 ˘ .02 1.6 ˘ .01 1.7 ˘ .01 1.9 ˘ .01 .92 ˘ .02 1.9 ˘ .02

Table 66: Convergence of RMSE for benchmark methods, with step link and �x “ 10.0

n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .01 ˘ .60 .23 ˘ .29 .48 ˘ .23 .95 ˘ .18
500 .01 ˘ .42 .19 ˘ .26 .34 ˘ .20 .68 ˘ .14

1000 .06 ˘ .27 .13 ˘ .24 .25 ˘ .21 .50 ˘ .15
2000 .03 ˘ .20 .10 ˘ .15 .19 ˘ .14 .38 ˘ .13

Table 67: Convergence of bias for weighted estimator using our weights, with step link and �x “ 10.0

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .92 ˘ .26 1.5 ˘ .23 1.6 ˘ .22 1.7 ˘ .22 1.8 ˘ .21 1.1 ˘ .35 1.8 ˘ .24
500 .89 ˘ .19 1.6 ˘ .13 1.6 ˘ .13 1.7 ˘ .12 1.9 ˘ .12 .92 ˘ .26 1.8 ˘ .19
1000 .91 ˘ .12 1.6 ˘ .08 1.6 ˘ .08 1.7 ˘ .08 1.9 ˘ .08 .91 ˘ .18 1.9 ˘ .12
2000 .92 ˘ .11 1.6 ˘ .08 1.6 ˘ .08 1.7 ˘ .08 1.9 ˘ .08 .91 ˘ .11 1.9 ˘ .11

Table 68: Convergence of bias for benchmark methods, with step link and �x “ 10.0
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