
A Proofs of results in the Riemannian information geometry section

Proof of Proposition 1. By Eq. (14), we have that G(ŵ) = Covŵ [f ], and so

Eπ̂

( N∑
n=1

(1− wn)gn

)2
 = Eπ̂

[(
(1− w)T (f − Eπ̂ [f ])

)2]
(25)

= (1− w)TEπ̂
[
(f − Eπ̂ [f ]) (f − Eπ̂ [f ])T

]
(1− w) (26)

= (1− w)TG(ŵ)(1− w) (27)

= ((1− ŵ)− (w − ŵ))TG(ŵ)((1− ŵ)− (w − ŵ)) (28)

= (ξŵ→1 − ξŵ→w)TG(ŵ)(ξŵ→1 − ξŵ→w), (29)

yielding the first result. Next, note that

‖ξw→1 − ξw→w+tn1n‖w = t2n1TnG(w)1n − 2tn1TnG(w)(1− w) + (1− w)TG(w)(1− w), (30)

and minimizing over tn yields

t?n =
1TnG(w)(1− w)

1TnG(w)1n
or t?n = max

{
0,

1TnG(w)(1− w)

1TnG(w)1n

}
(31)

if tn is unconstrained or positive-constrained, respectively. Substituting back into the norm and using the
definition of norms and inner products via the Riemannian metric G(w),

‖. . . ‖w =


‖1− w‖2w

(
1−

(〈
1n
‖1n‖w ,

1−w
‖1−w‖w

〉
w

)2)
tn ∈ R

‖1− w‖2w
(

1−
(

max
{

0,
〈

1n
‖1n‖w ,

1−w
‖1−w‖w

〉
w

})2)
tn > 0

(32)

Finally, expressing the inner product explicitly,〈
1n
‖1n‖w

,
1− w
‖1− w‖w

〉
w

=
Ew
[
(fn − Ewfn) (f − Ewf)T (1− w)

]
√

Ew
[
(fn − Ewfn)2

]
Ew
[(

(f − Ewf)T (1− w)
)2] (33)

= Corrw
[
fn, (1− w)T f

]
, (34)

yielding the second result.

Lemma 3. Define the path γ(t) = (1− t)w + t1. Then

DKL (πw||π) = 2(1− w)TE [G(γ(T ))] (1− w) T ∼ Beta(1, 2) (35)

DKL (π||πw) = 2(1− w)TE [G(γ(S))] (1− w) S ∼ Beta(2, 1) (36)

DKL (πw||π) + DKL (π||πw) = (1− w)TE [G(γ(U))] (1− w) U ∼ Unif[0, 1]. (37)

Proof. Here we use prime notation for univariate differentiation. For any twice differentiable function h :
[0, 1]→ R, the Taylor remainder theorem states that

h(1) = h(0) + h′(0) +

∫ 1

0

h′′(t)(1− t)dt. (38)

Let γ : [0, 1]→ RN≥0 be any twice-differentiable path satisfying γ(0) = w, γ(1) = 1, γ′(0) = γ′(1) = 1− w.
Then if the log partition logZ(w) is also twice differentiable, setting h(t) = logZ(γ(t)) shows that

logZ(1) = logZ(w) + (1− w)T∇ logZ(w)+∫ 1

0

(1− t)
(
γ′(t)T∇2 logZ(γ(t))γ′(t) + γ′′(t)T∇ logZ(γ(t))

)
dt. (39)

Substituting into Eq. (8) yields

DKL (πw||π) =

∫ 1

0

(1− t)
(
γ′(t)T∇2 logZ(γ(t))γ′(t) + γ′′(t)T∇ logZ(γ(t))

)
dt. (40)

13



The same logic follows with DKL (π||πw), using a path ζ from 1 to w with ζ′(0) = ζ′(1) = w−1. So selecting
the path ζ(t) = γ(1− t) and using the transformation of variables t→ 1− s,

DKL (π||πw) =

∫ 1

0

t
(
γ′(t)T∇2 logZ(γ(t))γ′(t) + γ′′(t)T∇ logZ(γ(t))

)
dt. (41)

Adding the two expressions together makes the t and 1− t terms cancel, and noting that the densities ∝ t and
∝ 1− t are beta densities yields the stated result.

Proof of Proposition 2. By Lemma 3 we have that

DKL (π||πw) + DKL (πw||π) ≤ (1− w)T
∫ 1

0

G(γ(t))dt(1− w). (42)

Multiplying and dividing by Jπ̂(w) = (1 − w)T∇2 logZ(ŵ)(1 − w) from Eq. (29), defining v :=
∇2 logZ(ŵ)1/2(1−w)

‖∇2 logZ(ŵ)1/2(1−w)‖ , and defining G̃(t) = G(ŵ)−1/2G(γ(t))G(ŵ)−1/2 yields

DKL (πw||π) = Jπ̂(w)

(∫ 1

0

(1− t)vT G̃(t)vdt

)
≤ Jπ̂(w)

(∫ 1

0

(1− t)λmax

(
G̃(t)

)
dt

)
. (43)

Likewise,

DKL (π||πw) ≤ Jπ̂(w)

(∫ 1

0

tvT G̃(t)vdt

)
≤ Jπ̂(w)

(∫ 1

0

tλmax

(
G̃(t)

)
dt

)
. (44)

Adding these equations yields the stated result.

B Weighted posterior and sufficient statistic covariance derivations

B.1 Simple Gaussian inference

The log likelihood for datapoint xn is (dropping normalization constants)

fn(θ) = −1

2
(xn − θ)T Σ−1 (xn − θ) , (45)

so the w-weighted log-posterior is (again, up to normalization constants)

θT
(

Σ−1
0 µ0 + Σ−1

N∑
n=1

wnxn

)
− 1

2
θT
(

Σ−1
0 +

N∑
n=1

wnΣ−1

)
θ. (46)

Completing the square yields Eq. (20). The first moment of the log-likelihood under the coreset posterior
θ ∼ N (µw,Σw) is:

Ew [fn(θ)] = −1

2
Ew
[
(xn − θ)T Σ−1 (xn − θ)

]
(47)

= −1

2
tr Σ−1Σw −

1

2
(µw − xn)T Σ−1 (µw − xn) (48)

= −1

2
tr Ψ− 1

2
‖νn‖2, (49)

where Ψ = Q−1ΣwQ
−T , νn = Q−1(xn − µw), and Q is the Cholesky decomposition of Σ, i.e., Σ = QQT .

Defining z ∼ N (0,Ψ), its second moment is

Ew [fn(θ)fm(θ)] =
1

4
Ew
[
(xn − θ)T Σ−1 (xn − θ) (xm − θ)T Σ−1 (xm − θ)

]
(50)

=
1

4
Ew
[
(z − νn)T (z − νn)(z − νm)T (z − νm)

]
(51)

and by expanding and ignoring odd-order terms (which have 0 expectation),

=
1

4
Ew
[
zT zzT z + zT zνTmνm + 4zT νnz

T νm + νTn νnz
T z + νTn νnν

T
mνm

]
(52)

=
1

4

(
(tr Ψ)2 + 2 tr ΨTΨ + ‖νm‖2‖νn‖2 +

(
‖νm‖2 + ‖νn‖2

)
tr Ψ + 4νTmΨνn

)
. (53)

So therefore,

Covw [fn, fm] = Ew [fn(θ)fm(θ)]− Ew [fn(θ)]Ew [fm(θ)] (54)

= νTmΨνn +
1

2
tr ΨTΨ. (55)

14



B.2 Bayesian radial basis regression

The log likelihood for datapoint n is (dropping normalization constants)

fn(α) = − 1

2σ2

(
yn − αT bn

)2
, (56)

so the w-weighted log-posterior is (again, up to normalization constants)

αT
(
σ−2
0 µ0 + σ−2

N∑
n=1

wnynbn

)
− 1

2
αT
(
σ−2
0 I + σ−2

N∑
n=1

wnbnb
T
n

)
α. (57)

Completing the square yields Eq. (24). The first moment of the log-likelihood under the coreset posterior
α ∼ N (µw,Σw) is:

Ew [fn(α)] = − 1

2σ2
E
[(
yn − µTwbn

)2
+ (µw − α)T bnb

T
n (µw − α)

]
(58)

= − 1

2σ2

(
ν2n + tr bnb

T
nE
[
(µw − α) (µw − α)T

])
(59)

= − 1

2σ2

(
ν2n + ‖βn‖2

)
. (60)

where νn := (yn − µTwbn), Σw = LLT , and βn = LT bn. Defining Z = L−1 (α− µw) ∼ N (0, I), the
second moment is

Ew [fn(α)fm(α)] =
1

4σ4
Ew
[(
yn − αT bn

)2 (
ym − αT bm

)2]
(61)

=
1

4σ4
Ew
[(
νn − ZTβn

)2 (
νm − ZTβm

)2]
. (62)

Expanding and ignoring odd-order terms which have expectation 0,

=
1

4σ4

(
ν2nν

2
m + ν2n‖βm‖2 + 4νnνmβ

T
n βm + ν2m‖βn‖2 +

∑
i,j

β2
niβ

2
mj + 2βniβmiβnjβmj

)
(63)

=
1

4σ4

(
ν2nν

2
m + ν2n‖βm‖2 + 4νnνmβ

T
n βm + ν2m‖βn‖2 + ‖βn‖2‖βm‖2 + 2(βTn βm)2

)
. (64)

Therefore, the covariance is

Covw [fn, fm] = Ew [fn(α)fm(α)]− Ew [fn(α)]Ew [fm(α)] (65)

=
1

σ4

(
νnνmβ

T
n βm +

1

2
(βTn βm)2

)
. (66)

C Details of the Logistic / Poisson regression experiment

In logistic regression, we are given a set of data points (xn, yn)Nn=1 each consisting of a feature xn ∈ RD and
a label yn ∈ {−1, 1}. The goal is to infer the posterior distribution of the latent parameter θ ∈ RD+1 in the
following model:

yn |xn, θ
indep∼ Bern

(
1

1 + e−z
T
n θ

)
zn :=

[
xn
1

]
. (67)

We used three datasets (each subsampled to N = 500 data points) in the logistic regression experiment: a syn-
thetic dataset with covariate xn ∈ R2 sampled i.i.d. fromN (0, I), and label yn ∈ {−1, 1} generated from the lo-
gistic likelihood with parameter θ = [3, 3, 0]T ; a phishing websites dataset reduced toD = 10 features via princi-
pal component analysis; and a chemical reactivity dataset withD = 10 features. The original phishing and chem-
ical reactivities datasets are available online at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/binary.html and http://komarix.org/ac/ds/. Preprocessed versions for the experiments in
this paper are available at https://www.github.com/trevorcampbell/bayesian-coresets/.

In Poisson regression, we are given a set of data points (xn, yn)Nn=1, each consisting of a feature xn ∈ RD and
a count yn ∈ N. The goal is to infer the posterior distribution of the latent parameter θ ∈ RD+1 in the following
model:

yn |xn, θ
indep∼ Poiss

(
log
(

1 + ez
T
n θ
))

zn :=

[
xn
1

]
. (68)

15

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://komarix.org/ac/ds/
https://www.github.com/trevorcampbell/bayesian-coresets/


(a) (b)

Figure 5: Computation times for the logistic (5a) and Poisson (5b) regression experiments. Plots
show the median KL divergence (estimated using the Laplace approximation [62] and normalized by
the value for the prior) across 10 trials, with 25th and 75th percentiles shown by shaded areas. From
top to bottom, (5a) shows the results for logistic regression on synthetic, chemical reactivities, and
phishing websites data, while (5b) shows the results for Poisson regression on synthetic, bike trips,
and airport delays data.

We used three additional datasets (each subsampled toN = 500 data points) in the Poisson regression experiment:
a synthetic dataset with covariate xn ∈ R sampled i.i.d. fromN (0, 1), and count yn ∈ N generated from the
Poisson likelihood with θ = [1, 0]T ; a bikeshare dataset with D = 8 features, relating the weather and seasonal
information to the number of bike trips taken in an urban area; and an airport delays dataset with D = 15
features, relating daily weather information to the number of flights leaving an airport with a delay of more
than 15 minutes. The original bikeshare dataset is available online at http://archive.ics.uci.edu/ml/
datasets/Bike+Sharing+Dataset, and the airport delays dataset was constructed using flight delay data
from http://stat-computing.org/dataexpo/2009/the-data.html and historical weather information
from https://www.wunderground.com/history/. Preprocessed versions for the experiments in this paper
are available at https://www.github.com/trevorcampbell/bayesian-coresets/.

D SparseVI optimization alternatives

In the main text, we proposed one particular instantiation of sparse variational inference based on a greedy
iterative method and full gradient-descent-based weight update. There are many possible variations on this
theme; we highlight a few potential directions to explore in future work below.

D.1 Single weight update

Rather than updating all the active weights, one might scale the current weights w while adding the new
component 1n? via

w? = ω(α?, β?) α?, β? = arg min
α,β≥0

DKL

(
πω(α,β)||π

)
s.t. α, β ≥ 0, (69)

where ω(α, β) := βw + α1n? . To optimize, one would use Monte Carlo estimates of the gradients[
∂
∂β
∂
∂α

]
DKL

(
πω(α,β)||π

)
=
[
w 1n?

]T ∇w DKL (πw||π)|w=ω(α,β) . (70)

D.2 Quadratic weight update

The major computational cost in SparseVI is the weight updates in Section 3.3: for each gradient step, one
must simulate a set of samples from πw, compute all of the potentials, and finally compute the Monte Carlo
gradient estimate. Rather than optimizing the weights exactly, one might minimize a quadratic expansion of the
KL divergence at the point w,

DKL (πv||π)≈DKL (πw||π)+(v−w)T∇wDKL (πw||π)+
1

2
(v−w)T∇2

wDKL (πw||π)(v−w), (71)

16

http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://stat-computing.org/dataexpo/2009/the-data.html
https://www.wunderground.com/history/
https://www.github.com/trevorcampbell/bayesian-coresets/


with Monte Carlo estimates of the gradient D and Hessian H based on the potential vector approximations
(ĝs)

S
s=1 already obtained in the greedy selection step,

D := − 1

S

S∑
s=1

ĝsĝ
T
s (1− w), LLT = H :=

1

S

S∑
s=1

ĝsĝ
T
s (1− ĝTs (1− w)). (72)

Since Eq. (71) is quadratic in v or α, β (depending on which type of weight update is used), the resulting weight
update optimization is a nonnegative least squares problem,

v? = arg min
v∈RN ,v≥0

∥∥∥LT v−(LTw − L−1D
)∥∥∥2 s.t.

{
(1− 1I)T v = 0 (fully corrective)
v = ω(α, β) (single-update) . (73)

Upon solving the problem for v?, update the weights via w ← (1 − γt)w + γtv
? with a learning schedule

γt ≥ 0 to reduce the effect of Monte Carlo noise and aid in convergence.

D.3 `1-regularized coreset construction

Another option is to replace the cardinality constraint in Eq. (5) with the standard `1-norm regularization
popularized by the LASSO method [49] for sparse linear regression,

w? = arg min
w∈RN

DKL (πw||π) + λf̃Tw s.t. w ≥ 0, (74)

with regularization weight λ > 0 and potential scales f̃n = Var0 fn. The potential scales f̃ account for the fact
that the optimization is invariant to rescaling the potentials fn by positive constants; the optimization Eq. (74) is
equivalent to optimizing DKL (πw||π) + λ‖w‖1 with scale-invariant potentials fn/

√
Var0 fn . We can solve

this optimization for a particular value of λ using proximal gradient descent,

wt+1 ← proxγtλ (wt − γt∇DKL (πwt ||π)) , proxλ (x) := sgn(x) max
(
|x| − λf̃ , 0

)
, (75)

where γt = O(1/t) is the learning rate when optimizing based on Monte Carlo estimates of ∇DKL (πw||π).
Although this approach generally provides less myopic solutions than greedy methods in the setting of sparse
linear regression, there are two issues to address specific to sparse variational inference. First, since estimating
the gradient of the objective in Eq. (74) involves sampling from πw , the cost of iterations increases as w becomes
dense. To avoid incurring undue cost, a binary search procedure on the regularization λ may be used. First, lower
λu and upper λ` bounds of λ are initialized to 0 and maxn

∣∣Cov0

[
fn, f

T 1
]∣∣, respectively; these bounds ensure

that ‖w‖0 = 0 when λ = λu and ‖w‖0 = N when λ = λ`. Then in each binary search iteration optimization
stage, keep track of ‖w‖0; if it ever becomes too large (e.g. 2M ), return early to prevent costly sampling steps.

17


