
Appendix

A Construction of DK(x; p) and corresponding estimator

We want to construct polynomial approximation of function f(x; pi) = [pi − eε x]+ on [0, 1] under
smooth regimes. The resulting two-step polynomial estimator, has two characterizations, depending
on where pi is. Let ∆ = (c1 lnn)/n.

Case 1: pi ≤ eε∆ and q̂i ∈ U(pi; c1, c1) = [0, 2∆]. We consider the function g(y) = [pi −
eε2∆y]+ by substituting 2∆y = x into f(x; pi) = [pi − eεx]+. Let HK(y) be the best polynomial
approximation of g(y) ∈ C[0, 1] with order K, i.e. HK(y) = argminP∈polyK

maxy′∈[0,1]

-

- g(y′)−
P (y′)

-

- and denote it as HK(y) =
$K

j=0 ajy
j . Then DK(x; pi) = HK(x/(2∆)) =

$K
j=0 aj(2∆)−jxj . Once we have the polynomial approximation, we estimate with the uniformly

minimum variance unbiased estimator (MVUE) to estimate DK(q̂i; pi).

D̃K(q̂i; pi) =

K
!

j=0

aj(2∆)−j

j−1
6

k=0

(q̂i −
k

n
) . (18)

Computing the aj’s can be challenging, and we discuss this for the general case when P is not
known in Section 2.2.

Case 2: pi > eε∆ and q̂i ∈ [e−εpi −
.

e−εpi∆, e−εpi +
.

e−εpi∆]. In this regime, the best
polynomial approximation DK(x; pi) of [pi − eεx]+ is given by

DK(x; pi) =
eε

2

K
!

j=0

rj
4
.

e−εpi∆
5−j+1

(x− e−εpi)
j +

pi − eεx

2
,

where rj’s are defined from the best polynomial approximation RK(y) of g(y) = |y| on [−1, 1]

with order K: RK(y) =
$K

j=0 rjy
j . The unique uniformly minimum variance unbiased estimator

(MVUE) for (qi − pi)
j is

gj,pi(q̂i) ≜
j

!

k=0

2

j

k

3

(−pi)
j−k

k−1
6

h=0

2

q̂i −
h

n

3

,

shown in Lemma 11. Hence,

D̃K(x; pi) =
eε

2

7

K
!

j=0

rj
4
.

e−εpi∆
5−j+1

gj,e−εpi
(q̂i) + g1,e−εpi

(q̂i)
8

.

The coefficients rj’s only depend on K and can be pre-computed and stored in a table.

B Details of Experiments

We implemented both plug-in estimator and Algorithm 2. Note that the coefficients of bivariate
polynomial uK(x, y), vK(x, y) on [0, 1]2 and RK(t) on [−1, 1] are independent of data and ε. We
pre-compute the coefficients and look them up from a table when running our estimators. Using
numerical computation provided by Chebfun toolbox [41], we obtained the coefficients of RK by
Remez algorithm, and the coefficients of bivariate polynomial uK , vK by lowpass filtered Cheby-
shev expansion [24]. The time complexity of Algorithm 2 is O(n ln2 n).

We compare the proposed Algorithm 2 and the plug-in estimator on synthetic data (Appendix B.1),
and demonstrate the (ε, δ) regions for some of the popular differential privacy mechanisms and their
variations (Appendix B.2). All experiments are done on a Macbook Pro with Intel R© CoreTM i5
processor and 8 GB memory. Our estimator is implemented in Python 3.6. We provide the code as
a supplementary material.
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B.1 Synthetic experiments

Although in the analysis we make conservative choices of the constants c1, c2 and c3, Algorithm 2 is
not sensitive to those choices in practice and we fix them to be c1 = 4, c2 = 0.1 and c3 = 1.5 in the
experiments. The degree of polynomial approximation is chosen as K = ⌊c3 ln(n)⌋. Figure 1 (a)
illustrates the Mean Square Error (MSE) for estimating dε(P%Q) between uniform distribution P
and Zipf distribution Q, where the support size is fixed to be S = 100, Zipf(α) ∝ 1/iα, and
α = −0.6 for i ∈ [S]. The ε is fixed to be ε = 0.4. Figure 2 shows results for a different choice
of ε = 0.2 (left) and different distributions of Zipf and mixture of uniform (right). Each data point
represents 100 random trials, with standard error (SE) error bars smaller than the plot marker. This
suggests that the Algorithm 2 consistently improves upon the plug-in estimator, as predicted by
Theorem 4.

MSE

sample size n

(a)

MSE

sample size n

(b)

Figure 2: (a) and (b) show the proposed minimax optimal estimator in Algorithm 2 consistently
improves upon the plug-in estimator on synthetic data. Each data point represents 100 random
trials, with standard error (SE) error bars smaller than the plot marker.

B.2 Detecting violation of differential privacy with Algorithm 2

We demonstrate how we can use Algorithm 2 to detect mechanisms with false claim of DP guaran-
tees on four types of mechanisms: Report Noisy Max [25], Histogram [26], Sparse Vector Technique
[8] and Mixture of Truncated Geometric Mechanism. Following the experimental set-up of [11], the
test query and databases defining (Q,D,D′) are chosen by some heuristics, shown in Table 1. How-
ever, unlike the approach from [11], we do not require to know the size of the support S, we don’t
have to specify candidate bad events E ⊆ [S], and we can estimate general approximate DP with
δ > 0. Throughout all the experiments, we fix c1 = 4, c2 = 0.1, c3 = 0.9, and the mean of number
of samples n = 100000. For the examples in Report Noisy Max, Histogram, and Sparse Vector
Technique, we compose 5 and 10 queries together to form a one giant query. There are several cate-
gories of queries and databases to be tested, each represented by the true answer of the 5 queries in
the table. When testing, we test all categories, and report the largest estimate δ̂ for each given ε.

Table 1: Database categories and samples [11]

Category [Q1(D), . . . ,Q5(D)] [Q1(D′), . . . ,Q5(D′)]

One Above [1, 1, 1, 1, 1] [2, 1, 1, 1, 1]
One Below [1, 1, 1, 1, 1] [0, 1, 1, 1, 1]
One Above Rest Below [1, 1, 1, 1, 1] [2, 0, 0, 0, 0]
One Below Rest Above [1, 1, 1, 1, 1] [0, 2, 2, 2, 2]
Half Half [1, 1, 1, 1, 1] [0, 0, 0, 2, 2]
All Above & All Below [1, 1, 1, 1, 1] [2, 2, 2, 2, 2]
X Shape [1, 1, 1, 1, 1] [0, 0, 1, 1, 1]

Report Noisy Max. For privacy budget ε0, Report Noisy Argmax with Laplace noise (RNA+Lap)
adds independent Lap(2/ε0) noise to query answers Q(D) and return the index of the largest noisy
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query answer. Report Noisy Argmax with Exponential noise (RNA+Exp) adds Exp(2/ε0) noise
instead of Laplace noise. Their claimed level of (ε0)-DP is correctly guaranteed [25, Claim 3.9 and
Theorem 3.10]. On the other hand, Report Noisy Max with Laplace noise (RNM+Lap) or Report
Noisy Max with Exponential noise (RNM+Exp) return the largest noisy answer itself, instead of
its index. This reveals more information than intended, leading to violation of claimed (ε0, 0)-DP.
Figure 1 (b) and (c) show (ε, δ) regions for the above variations of noisy max mechanisms for privacy
budget ε0 = 0.3. As expected, for each ε0, RNA+Lap and RNA+Exp satisfy (ε0, 0)-DP, whereas
RNM+Lap and RNM+Exp have δ̂ > 0.

Histogram. For privacy budget ε0, Histogram takes histogram queries as input, adds independent
Lap(1/ε0) noise to each query answers, and output the randomized query answers directly, which is
proved to be (ε0, 0)-DP [25]. As a comparison, Histogram with incorrect noise adds incorrect noise
Lap(ε0). Note that as we use histogram queries, we require Q(D) and Q(D′) to be different in at
most one element, which is tested on One Above and One Below samples as shown in Table 1. With
the setting ε0 = 0.5, Figure 1 (d) shows that the incorrect histogram is likely to be (1/ε0, 0)-DP.

Sparse Vector Technique (SVT). We consider original sparse vector technique mechanism SVT [8],
and its variations iSVT1 [42], iSVT2 [43], and iSVT3 [44]. They are discussed in Section 1 and also
studied and tested in [11]. Figure 1 (e) shows that SVT is likely to be (ε0, 0)-DP. However, iSVT1
and iSVT2 are not likely to be pure differentially private for ε ∈ [0, 1] with budget ε0 = 0.5. As
discussed in [8], iSVT3 is in fact ( (1+6N)

4 ε0, 0)-DP, where N is the bound of number of trues in the
output Boolean vector and set as N = 1 in this experiment. Figure 1 (e) shows that with δ̂ = 0, ε is
likely to be in the range [0.8, 0.9], which verifies the theoretic guarantee.

Mixture of Truncated Geometric Mechanism (MTGM) With privacy budget ε0, Truncated Ge-
ometric Mechanism (TGM) proposed by [45] is provably to be (ε0, 0)-DP. With probability privacy
budget ε0 and δ0 ∈ [0, 1], Mixture of Truncated Geometric Mechanism (MTGM) outputs the original
query answer with probability δ0, and outputs the randomized query answer with probability 1− δ0.
MTGM can be proved to be (ε0, δ0)-DP by composition theorem. Note that TGM and MTGM both
take single counting query as query function Q. In the experiment, we consider the single counting
query with range {0, 1, 2, 3}. Figure 1 (f) shows that MTGM is likely to be (ε0, δ0) differentially
private.

C Proofs

C.1 Auxiliary lemmas

C.1.1 Lemmas on Poisson distribution

Lemma 1 ([46, Exercise 4.7]). If X ∼ Poi (λ), then for any δ > 0, we have

P
7

X ≥ (1 + δ)λ
8

≤
7 eδ

(1 + δ)1+δ

8λ

≤ e−δ2λ/3 ∨ e−δλ/3 , (19)

P
7

X ≤ (1− δ)λ
8

≤
7 e−δ

(1− δ)1−δ

8λ

≤ e−δ2λ/2 . (20)

Lemma 2 ([46, Exercise 4.14]). Suppose X ∼ Poi (λ1), Y ∼ Poi (λ2), and Z = αX + Y , where
α > 1 is a constant. Then E[Z] = αλ1 + λ2, and for any δ > 0, we have

P
7

Z ≥ (1 + δ)(αλ1 + λ2)
8

≤ e−δ2(αλ1+λ2)/3 ∨ e−δ(αλ1+λ2)/3 , (21)

P
7

Z ≤ (1− δ)(αλ1 + λ2)
8

≤ e−δ2(αλ1+λ2)/2 . (22)

Lemma 3. Suppose nq̂ ∼ Poi (nq), then

E
%

[q̂ − q]+
&

∈
+

q e−nq , 0 ≤ q ≤ 1
n"

.

q
4n ,

.

q
2n

#

, q ≥ 1
n

(23)
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Hence,

1

2

7

q ∧
/

q

n

8

≤ E[[q̂ − q]+] ≤
7

q ∧
/

q

n

8

. (24)

Proof. Let λ = nq, then

E
%

[q̂ − q]+
&

=
1

n

∞
!

k=⌊λ⌋+1

λke−λ

k!
(k − λ)

=
1

n

∞
!
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k!
k − 1

n

∞
!
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k!
λ

=
1

n
λ

∞
!

k=⌊λ⌋
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k!
− 1

n
λ

∞
!

k=⌊λ⌋+1

λke−λ

k!

=
λ⌊λ⌋+1e−λ

n ⌊λ⌋!
For λ = nq ≤ 1, this is qe−nq . For λ ≥ 1, we use Stirling’s approximation to get

λ⌊λ⌋+1e−λ

n ⌊λ⌋! ∈
"1

e
,

1√
2π

#

× λ⌊λ⌋+1 e−λ

n ⌊λ⌋⌊λ⌋+ 1
2 e−⌊λ⌋

.

As λ⌊λ⌋+1
2 e−λ

⌊λ⌋⌊λ⌋+1
2 e−⌊λ⌋

is in [1 , 1.12] for λ ≥ 1, this gives the desired bound. □

Lemma 4. Suppose nq̂ ∼ Poi (nq), then

E
%

[p− eεq̂]+ − [p− eεq]+
&

≤ eε min
9

q, e−εp,

/

q

n
,

/

e−εp

n

:

. (25)

Proof.

E
%

[p− eεq̂]+ − [p− eεq]+
&

= E
% (p− eεq̂) + |p− eεq̂|

2
− (p− eεq) + |p− eεq|

2

&

=
1

2

7

E
%

|p− eεq̂|
&

− |p− eεq|
8

.

If p ≥ eεq, then
1

2

7

E
%

|p− eεq̂|
&

− |p− eεq|
8

=
1

2

7

E
%

|p− eεq̂|− (p− eεq)
&

8

=
1

2

7

E
%

(p− eεq̂)− (p− eεq) + 2[eεq̂ − p]+
&

8

= E
%

[eεq̂ − p]+
&

≤ eεE
%

[q̂ − q]+
&

≤ eε
7

q ∧
/

q

n

8

,

where the second equality is because of the fact that x = [x]+ − [−x]+ and |x| = [x]+ + [−x]+,
the first inequality follows from the fact that [x]+ is monotone, and the last inequality follows from
Lemma 3.

If p < eεq, then
1

2

7

E
%

|p− eεq̂|
&

− |p− eεq|
8

=
1

2

7

E
%

|p− eεq̂|− (eεq − p)
&

8

=
1

2

7

E
%

(eεq̂ − p)− (eεq − p) + 2[p− eεq̂]+
&

8

= E
%
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&

,
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Now we construct new random variable p̂ by nq̂ = ne−εp̂ + Z, where Z is independent of p̂ and
Z ∼ Poi (n(q − e−εp)). Hence, e−εp̂ ≤ q̂ with probability one. And the marginal distribution
satisfies ne−εp̂ ∼ Poi (ne−εp). We have

E
%

[e−εp− q̂]+
&

≤ E
%

[e−εp− e−εp̂]+
&

≤
7

e−εp ∧
/

e−εp

n

8

,

where the first inequality follows from that fact that [x]+ is monotone, and the last inequality follows
from Lemma 3. □

Lemma 5. Suppose nq̂ ∼ Poi (nq), then for any p and q, we have

Var
4

[p− eε q̂]+
5

≲ eεp

n
. (26)

Proof. Case 1: If nq < 1 and e−εp ≥ q or if nq ≥ 1 and ne−εp > ⌊nq⌋ − 1:

Var
4

[p− eεq̂]+
5

= inf
a
E
4

[p− eεq̂]+ − a
52

≤ E
4

[p− eεq̂]+ − [p− eεq]+
52

= E
4 (p− eεq̂)− (p− eεq)

2
+

|p− eεq̂|− |p− eεq|
2

52

≤ E
4 eε|q̂ − q|

2
+

-

-|p− eεq̂|− |p− eεq|
-

-

2

52

≤ e2εE
4 |q̂ − q|

2
+

|q̂ − q|
2

52

= e2εE
4

q̂ − q
52

=
e2εq

n

≤ eεp

n
,

where the last step follows from the assumption that e−εp ≥ q.

Case 2: If nq < 1 and e−εp < q or if nq ≥ 1 and ne−εp < 1 :

In both cases, ne−εp < 1, and we have

[ne−εp− nq̂]+ =

;

ne−εp w.p. e−nq

0 w.p. 1− e−nq ,

which is a Bernoulli random variable. The variance of it is

Var
4

[p− eεq̂]+
5

=
e2ε

n2
Var

4

[ne−εp− nq̂]+
5

= p2(1− e−nq)e−nq

≤ p2 <
eεp

n
,

where we used the assumption that ne−εp < 1.

Case 3: If nq ≥ 1 and 1 ≤ ne−εp ≤ ⌊nq⌋ − 1:

Let λ = nq, and denote the random variable X ∼ Poi (λ).
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If 1 ≤ ne−εp ≤ ⌊nq⌋ − 1, we know from Lemma 1 that

P
4

X ≤ ne−εp
5

≤ e−DKL(ne
−εp%nq) , (27)

where DKL(k%m) ≜ m− k + k ln(k/m).

We have

E
4

[p− eεq̂]+
52

=

⌊ne−εp⌋
!

k=0

7

p− eε
k

n

827λke−λ

k!

8

= p2P
4

X ≤ ne−εp
5

− 2eεpqP
4

X ≤ ne−εp− 1
5

+
e2εq

n
P
4

X ≤ ne−εp− 1
5

+ e2εq2P
4

X ≤ ne−εp− 2
5

= p2P
4

X ≤ ne−εp
5

− 2eεpqP
4

X ≤ ne−εp
5

+ 2eεpqP
4

X = ⌊ne−εp⌋
5

+
e2εq

n
P
4

X ≤ ne−εp
5

− e2εq

n
P
4

X = ⌊ne−εp⌋
5

+e2εq2P
4

X ≤ ne−εp
5

− e2εq2P
4

X = ⌊ne−εp⌋
5

− e2εq2P
4

X = ⌊ne−εp⌋ − 1
5

= (p2 − 2eεpq +
e2εq

n
+ e2εq2)P

4

X ≤ ne−εp
5

+(2eεpq − e2εq

n
− e2εq2 − e2εq⌊ne−εp⌋

n
)P
4

X = ⌊ne−εp⌋
5

≲
7

(eεq − p)2 ∨ e2εq

n

8

e−DKL(ne
−εp%nq) .

Let y = q/(e−εp), as 1 ≤ ne−εp ≤ ⌊nq⌋ − 1, we know y > 1.

We have
e2εq

n
e−DKL(ne

−εp%nq) =
eεpy

n
e−ne−εp(y−1−ln y)

≲ eεp

n
,

where we used the assumption that ne−εp ≥ 1 and the inequality that ye−(y−1−ln y) is bounded by
some constant for y > 1.

We have

(eεq − p)2e−DKL(ne
−εp%nq) = (y − 1)2p2e−ne−εp(y−1−ln y)

≲ eεp

n
,

where we used the assumption that ne−εp ≥ 1 and the inequality that (y− 1)2e−x(y−1−ln y) ≲ 1/x
for x, y > 1.

It suffices to show that fy(x) = lnx− x(y − 1− ln y) + 2 ln(y − 1) is bounded by some constant
for x, y > 1. Indeed, when y − 1 − ln y > 1, f ′

y(x) = 1/x − (y − 1 − ln y) < 0. fy(x) is
monotonically decreasing and fy(x) < fy(1) = 2 ln(y − 1) − y + 1 + ln y, which is bounded.
When y − 1 − ln y < 1, fy(x) attains maximum at x = 1/(y − 1 − ln y). In this case, we have
fy(x) ≤ 2 ln(y − 1)− ln(y − 1− ln y)− 1, which is also bounded.

□

Lemma 6. Suppose nq̂ ∼ Poi (nq). Then,

P
4

eεq̂ /∈ U(e2εq; c1, c1)
5

≤ 2

n−c1e−ε/3
≤ 2

n−c1/3
, (28)

and

P (q̂ /∈ U(eεq; c1, c1)) ≤ 2

n−c1/3
. (29)
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Proof. The second inequality is exactly [21, Lemma 1]. We now prove the first inequality.

If q ≤ c1e
−ε lnn
n , we have

P
4

eεq̂ /∈ U(e2εq : c1, c1)
5

= P
4

nq̂ ≥ 2c1e
−ε lnn

5

≤ P
4

Poi (c1e
−ε lnn) ≥ 2c1e

−ε lnn
5

≤ e−
c1e−ε lnn

3 ,

where we applied Lemma 1 in the last inequality.

If q > c1e
−ε lnn
n , we have

P
4

eεq̂ /∈ U(e2εq; c1, c1)
5

= P

<

eεq̂ > eεq +

/

c1eεq lnn

n

=

+ P

<

eεq̂ < eεq −
/

c1eεq lnn

n

=

≤ P
7

Poi (nq) > nq +
.

c1qe−εn lnn
8

+ P
7

Poi (nq) < nq −
.

c1qe−εn lnn
8

≤ e−
c1e−ε lnn

nq
nq
3 + e−

c1e−ε lnn
nq

nq
2

≤ 2

nc1e−ε/3
.

□

C.1.2 Lemmas on the best polynomial approximation

The first-order and second-order symmetric difference with function ϕ(x) =
.

x(1− x) are defined
as

∆hϕf(x) ≜ f(x+
hϕ(x)

2
)− f(x− hϕ(x)

2
) , (30)

and

∆2
hϕf(x) = f(x+ hϕ(x))− 2f(x) + f(x− hϕ(x)) , (31)

respectively.

For function f(x) with domain [0, 1], the first-order Ditzian-Totik modulus of smoothness is defined
as

ω1
ϕ(f, t) ≜ sup

0<h≤t
%∆1

hϕf(x)%∞ , (32)

and the second-order Ditzian-Totik modulus of smoothness is defined as

ω2
ϕ(f, t) ≜ sup

0<h≤t
%∆2

hϕf(x)%∞ . (33)

The following lemma upper bounds the best polynomial approximation error by the Ditzian-Totik
moduli.
Lemma 7 ([47, Theorem 7.2.1 and 12.1.1]). There exists a constant M(r) > 0 such that for any
function f ∈ C[0, 1],

∆L[f ; [0, 1]] ≤ M(r)ωr
ϕ(f,

1

L
) , L > r , (34)

where ∆L[f ; I] denotes the distance of the function f to the space polyL in the uniform norm
% · %∞, I on I ⊂ R. Moreover, if f(x) : [0, 1]2 8→ R, we have

∆L[f ; [0, 1]
2] ≤ Mωr

[0,1]2(f,
1

L
) , L > r , (35)

where M is independent of f and L, and ∆L[f ; [0, 1]
2] denotes the distance of the function f to the

space poly2L in the uniform norm on [0, 1]2.
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Lemma 8. For f(x) = [p − eε2x∆]+, for some ∆ > 0, p ∈ [0, 2eε∆], x ∈ [0, 1], and any integer
K ≥ 1,

ω2
ϕ(f,K

−1) =

(

1

)

1

*

p p
2eε∆ ≤ 1

1+K2√
p(2eε∆−p)

K
1

1+K2 ≤ p
2eε∆ ≤ K2

1+K2

eε∆− p K2

1+K2 ≤ p
2eε∆ ≤ 1

≲ min
9

p ,

.

p(2eε∆− p)

K
, eε∆− p

:

,

where ω2
ϕ(f, t) is defined in Eq. (33).

Proof. Let g(x) := |p− 2eε∆x|.

∆2
hϕf(x) = [p− 2eε∆(x+ hϕ(x))]+ − 2[p− 2eε∆x]+ + [p− 2eε∆(x− hϕ(x))]+

=

4

p− 2eε∆(x+ hϕ(x))
5

− 2
4

p− 2eε∆x
5

+
4

p− 2eε∆(x− hϕ(x))
5

2
+

-

-p− 2eε∆(x+ hϕ(x))
-

-− 2
-

-p− 2eε∆x
-

-+
-

-p− 2eε∆(x− hϕ(x))
-

-

2

=
1

2
∆2

hϕg(x)

Hence,

ω2
ϕ(f, t) =

1

2
ω2
ϕ(g, t) (36)

It follows from [21, Lemma 12] that, for some ∆ > 0, p ∈ [0, 2eε∆], x ∈ [0, 1] and any integer
K ≥ 1, we have:

ω2
ϕ(g,K

−1) =

(

1

)

1

*

2p p
2eε∆ ≤ 1

1+K2

2
√

p(2eε∆−p)

K
1

1+K2 ≤ p
2eε∆ ≤ K2

1+K2

2eε∆− p K2

1+K2 ≤ p
2eε∆ ≤ 1

,

which implies the desired bound.

□

Lemma 9. Suppose f(x) = [
√
x−

√
a]+, x ∈ [0, 1] and a ∈ [0, 1]. Then

ω1
ϕ(f, t) ≤ t√

2
. (37)

Similarly, suppose f(x) = [
√
a−

√
x]+, x ∈ [0, 1] and a ∈ [0, 1]. Then

ω1
ϕ(f, t) ≤ t√

2
. (38)
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Proof. Let g(x) = |
√
x−

√
a|.

∆1
hϕf(x) =

-

-

-

-

f(x+
hϕ(x)

2
)− f(x− hϕ(x)

2
)

-

-

-

-

=

-

-

-

-

-

-

>
/

x+
hϕ(x)

2
−
√
a

?+

−
>
/

x− hϕ(x)

2
−
√
a

?+
-

-

-

-

-

-

=

-

-

-

-

-

1

2

<-

-

-

-

-

/

x+
hϕ(x)

2
−
√
a

-

-

-

-

-

−

-

-

-

-

-

/

x− hϕ(x)

2
−
√
a

-

-

-

-

-

=

+

,

x+ hϕ(x)
2 −

,

x− hϕ(x)
2

2

-

-

-

-

-

-

≤ 1

2
∇1

hϕg(x) +
1

2

-

-

-

-

-

/

x+
hϕ(x)

2
−
/

x− hϕ(x)

2

-

-

-

-

-

=
1

2
∇1

hϕg(x) +
1

2

-

-

-

-

-

hϕ(x)
.

x+ hϕ(x)/2 +
.

x− hϕ(x)/2

-

-

-

-

-

≤ 1

2
∇1

hϕg(x) +
1

2

-

-

-

-

-

hϕ(x)
.

x+ hϕ(x)/2 + x− hϕ(x)/2

-

-

-

-

-

≤ 1

2
∇1

hϕg(x) +
h
√
1− x

2
√
2

≤ t√
2
,

where we used the fact that
√
x+

√
y ≤ x+ y and [21, Lemma 11] for smoothness of g. □

Lemma 10 ([20, Lemma 27]). Let pn(x) =
$n

v=0 avx
v be a polynomial of degree at most n such

that |pn(x)| ≤ A for x ∈ [a, b]. Then

1. If a+ b ∕= 0, then

|av| ≤ 27n/2A

-

-

-

-

a+ b

2

-

-

-

-

−v 2-
-

-

-

b+ a

b− a

-

-

-

-

n

+ 1

3

, v = 0, 1, · · · , n . (39)

2. If a+ b = 0, then

|av| ≤ Ab−v(
.

(2) + 1)n , v = 0, 1, · · · , n . (40)

C.1.3 Lemmas on the uniformly unbiased minimum variance unbiased estimator

Lemma 11 ([21, Lemma 18]). Suppose nX ∼ Poi (np), p ≥ 0, q ≥ 0. Then, the estimator

gj,q(X) ≜
j

!

k=0

2

j

k

3

(−q)j−k
k−1
6

h=0

2

X − h

n

3

(41)

is the unique uniformly minimum variance unbiased estimator for (p − q)j , j ≥ 0, j ∈ N, and its
second moment is given by

E
"

4

gj,q(X)
52
#

=

j
!

k=0

2

j

k

32

(p− q)2(j−k) p
kk!

nk
= j!

7 p

n

8j

Lj

2

−n(p− q)2

p

3

assuming p > 0 , (42)

where Lm(x) stands for the Laguerre polynomial with order m, which is defined as:

Lm(x) =

m
!

k=0

2

m

k

3

(−x)k

k!
. (43)
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If M ≥ max
9

n(p−q)2

p , j
:

, we have

E
"

4

gj,q(X)
52
#

≤
2

2Mp

n

3j

. (44)

When k = 0,
@k−1

h=0

4

X − h
n

5

≜ 1. When p = 0, gj,q(X) ≡ (−q)j , E [gj,q(X)]
2 ≡ q2j .

Lemma 12. Suppose (np̂, nq̂) ∼ Poi (np)× Poi (nq). Then the following estimator using (p̂, q̂) is
the unique uniformly minimum unbiased estimator for (eεq − p)j , j ≥ 0, j ∈ Z:

Âj(p̂, q̂) =

j
!

k=0

2

j

k

3 k−1
6

i=0

2

q̂ − i

n

3

eεk(−1)j−k

j−k
6

m=0

7

p̂− m

n

8

. (45)

Furthermore,

EÂ2
j ≤

2

2(eεq − p)2 ∨ 8j(e2εq ∨ p)

n

3j

. (46)

Proof. It follows from [21, Lemma 19] and binomial theorem that Âj(p̂, q̂) is the unique uniformly
minimum variance unbiased estimator for (eεq − p)j . Now we show EÂ2

j is bounded.

It follows from binomial theorem again that for any fixed r > 0,

(eεq − p)j = (eεq − r + r − p)j (47)

=

j
!

k=0

2

j

k

3

(eεq − r)k(−1)j−k(p− r)j−k . (48)

The following estimator is also unbiased for estimating (eεq − p)j ,

j
!

k=0

eεkgk, r
eε
(q̂)(−1)j−kgj−k,r(p̂) , (49)

where gi,q(p̂) is defined in Lemma 11.

Define M1 =
n(q− r

eε )2

p ∨ j, M2 = n(p−r)2

p ∨ j, M = 2(eεq − p)2 ∨ 8j(e2εq∨p)
n and set r = eεq+p

2 .

Denote %X%2 =
.

E(X − EX)2 for random variable X . It follows from Lemma 11 that

%Âj%2 ≤
j

!

k=0

2

j

k

3

eεk%gk, r
eε
(q̂)%2 · %gj−k,r(p̂)%2

≤
j

!

k=0

2

j

k

3

eεk
2

2M1q

n

3k/2 2
2M2p

n

3(j−k)/2

=

<

eε
/

2M1q

n
+

/

2M2p

n

=j

=

<
/

(eεq − p)2

2
∨ 2je2εq

n
+

/

(eεq − p)2

2
∨ 2jp

n

=j

= M j/2 .

□
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C.2 Proof of Theorem 1

In this section we prove a more general statement in the following theorem, in which case Theorem 1
follows as a corollary.

Theorem 5. For any ε ≥ 0, support size S ∈ Z+, and distribution P ∈ MS , the plug-in estimator
satisfies

sup
Q∈MS

EQ

%

|dε(P%Qn)− dε(P%Q)|2
&

≲
7

S
!

i=1

pi ∧
/

eεpi
n

82

+
eε

n
, (50)

with expected number of samples n. If S ≥ 2, we can also lower bound the worst case mean squared
error as

sup
Q∈MS

EQ

%

|dε(P%Qn)− dε(P%Q)|2
&

≳
7

S
!

i=1

pi ∧
/

eεpi
n

82

. (51)

Note that

EQ

%

|dε(P%Qn)− dε(P%Q)|2
&

=
7

S
!

i=1

EQ

%

[pi − eεq̂i]
+
&

− [pi − eεqi]
+
82

+Var
4

dε(P%Qn)
5

. (52)

We first claim the following upper bound for all P :

S
!

i=1

EQ

%

[pi − eεq̂i]
+
&

− [pi − eεqi]
+ ≤

S
!

i=1

pi ∧
/

eεpi
n

, (53)

where the inequality follows from Lemma 4.

For the upper bound of the variance term in Eq. (52), we have

Var
4

dε(Pn%Q)
5

=

S
!

i=1

Var
4

[pi − eεq̂i]
+
5

≲
S
!

i=1

eεqi
n

=
eε

n
, (54)

where the inequality follows from Lemma 5.

We next construct Q to get the lower bound. Let

qi =

+

e−εpi , i ∈ S+
1−Q(S+)
S−|S+| , i ∈ S−

(55)

where S+ is a set of indices satisfying Q(S+) =
$

i∈S+
qi ≤ e−ε.

Note that each term in the bias of Eq. (52) is non-negative via Jensen’s inequality, which gives

S
!

i=1

EQ

%

[pi − eεq̂i]
+
&

− [pi − eεqi]
+ ≥ eε

!

i∈S+

EQ

%

[qi − q̂i]
+
&

(56)

≳
!

i∈S+

9

pi ∧
/

eεpi
n

:

, (57)

where we used Lemma 3. Note that we can choose Q such that |S+| = S/3. This implies the desired
lower bound when plugged into Eq. (52).

C.3 Proof of Theorem 2

In this section we prove a more general statement in the following theorem, in which case Theorem 2
follows as a corollary.
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Theorem 6. For any P , suppose c lnS ≤ lnn ≤ C ln(e−ε
$S

i=1

√
eεpi ∧ pi

√
n lnn) for some

constants c and C, then there exist constants c1, c2 and c3 that only depends on c, C and ε such that

sup
Q∈MS

EQ

% -

- 'dε,K,c1,c2(P%Qn)− dε(P%Q)
-

-

2 & ≲
7

S
!

i=1

pi ∧
/

eεpi
n lnn

82

, (58)

for K = c3 lnn and where 'dε,K,c1,c2 is defined in Algorithm 1.

Define good events, where our choice of the regimes are correct as

E ≜
9

{i : q̂i,1 > U(pi; c1, c2)} ⊆ S+
:

∩
9

{i : q̂i,1 < U(pi; c1, c2)} ⊆ S−
:

∩
9

{i : q̂i,1 ∈ U(pi, c1, c2) ⊆ {i : qi ∈ U(pi, c1, c1)}}
:

, (59)

where S+ = {i : eεqi ≥ pi} and S− = {i : eεqi ≤ pi}. Decompose the error under the good events
as

E1 ≜
!

i∈I1

A

[pi − eεq̂i,2]
+ − [pi − eεqi]

+
B

, (60)

E2 ≜
!

i∈I2

A

D̃K(q̂i,2; pi)− [pi − eεqi]
+
B

. (61)

where the indices of those regimes under the good event are

I1 ≜ {i : q̂i,1 < U(pi; c1, c2), e
εqi ≤ pi} (62)

I2 ≜ {i : q̂i,1 ∈ U(pi; c1, c2), qi ∈ U(pi; c1, c1)} . (63)

We can bound the squared error as

E
% 4

'dε,K,c1,c2(P%Qn)− dε(P%Q)
52 & ≤ E[

4

'dε,K,c1,c2(P%Qn)− dε(P%Q)
52 I(E) ] + P(Ec)

≤ E[(E1 + E2)2] + P(Ec)

≤ 2E[(E1)2] + 2E[(E2)2] + P(Ec) , (64)

The last term on the bad event is bounded by 3S/nβ as shown in the following lemma, and a proof
is provided in Appendix C.3.1. This is a direct consequence of standard concentration inequality for
Poisson variables.

Lemma 13. Let β = min{ c22
3c1

, (c1−c2)
2

4c1
,
(
√
c1−

√
c2)

2

3 }, then for the good event E defined in (59),

P(Ec) ≤ 3S

nβ
. (65)

The first term is bounded by eε/n, as

E[(E1)2] = E[Var(E1|I1) + (E[E1|I1])2] = E[Var(E1|I1)] ≤
S
!

i=1

eε pi
n

≤ eε

n
(66)

where we used Lemma 5 and the fact that E[E1|I1] = 0 with probability one.

The second term is bounded by the following lemma, with a proof in Appendix C.3.2.
Lemma 14. For nq̂ ∼ Poi (nq) and q ∈ U(p; c1, c1), there exists a universal constant B > 0 such
that

-

-E[D̃K(q̂; p)]− [p− eε q]+
-

- ≲ p ∧ 1

K

/

eε p c1 lnn

n
, and (67)

Var
4

D̃K(q̂; p)
5

≲ BK eε c1 lnn

n
(p+ eεq) , (68)

where D̃K(p̂; q) is the uniformly minimum variance unbiased estimate (MVUE) defined in Eq. (18),
U(q, c1) is defined in Eq. (5), and K = c3 lnn for some c3 < c1.
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We have

E[(E2)2] ≲
S
!

i=1

BKeεc1 lnn

n
(pi + eεqi) +

7

S
!

i=1

pi ∧
1

K

/

eεpic1 lnn

n

82

(69)

≲ c1 lnn

n1−c3 lnB
eε(eε + 1) +

7

S
!

i=1

pi ∧
C

eεpic1
c23n lnn

82

. (70)

Substituting bounds (70), (66) and (65), we get that

E
% 4

'dε,K,c1,c2(P%Qn)− dε(P%Q)
52 & ≲ c1 lnn

n1−c3 lnB
e2ε +

7

S
!

i=1

pi ∧
C

eεpic1
c23n lnn

82

+
S

nβ
(71)

where we use the fact that eε

n ≲ c1 lnn
n1−c3 lnB eε(eε + 1).

As lnn ≳ lnS, one may choose c1 large enough to and let c2 = c1/2 to ensure that S
nβ ≲

c1 lnn
n1−c3 lnB e2ε. As lnn ≲ ln

7

e−ε
$S

i=1

√
eεpi ∧ pi

√
n lnn

8

, one may choose c3 small enough to

ensure c1 lnn
n1−c3 lnB e2ε ≲

7

$S
i=1 pi ∧

,

eεpic1
c23n lnn

82

. The worst case of P result is proved upon noting

S
!

i=1

pi ∧
/

eεpi
n lnn

≤
S
!

i=1

/

eεpi
n lnn

≤
/

eεS

n lnn
. (72)

Note that in the worst case of P , we do not require lnn ≳ lnS, as we can take c1 large enough and
c2 = c1/2 to ensure S

nβ ≲ eεS
n lnn .

C.3.1 Proof of Lemma 13

Let E1 =
9

{i : q̂i,1 > U(pi; c1, c2)} ⊆ S+
:

, E2 =
9

{i : q̂i,1 < U(pi; c1, c2)} ⊆ S−
:

and

E3 =
9

{i : q̂i,1 ∈ U(pi, c1, c2) ⊆ {i : qi ∈ U(pi, c1, c1)}}
:

. We first show P(Ec
1) ≤ Sn−β for

β ≤ (c2)
2/(3c1).

P(Ec
1) = P

7

S
D

i=1

{q̂i,1 > U(pi; c1, c2), e
εqi < pi}

8

≤ S max
i∈S

P({q̂i,1 > U(pi; c1, c2), e
εqi < pi})

= S max
i∈S

P({Poi (nqi) > nU(pi; c1, c2), qi < e−εpi})

≤ S max
i∈S

P({Poi (ne−εpi) > nU(pi; c1, c2)})

If pi ≤ (c1e
ε lnn)/n, it follows from Lemma 1 that

P({Poi (ne−εpi) > nU(pi; c1, c2)}) = P({Poi (ne−εpi) > (c1 + c2) lnn})
≤ P({Poi (c1 lnn) > (c1 + c2) lnn})

≤ e−
c22
3c1

lnn .

If pi > (c1e
ε lnn)/n, it follows from Lemma 1 that

P({Poi (ne−εpi) > nU(pi; c1, c2)}) = P({Poi (ne−εpi) > ne−εpi +
.

c2e−εpin lnn})

≤ e−
c2 lnn

3 .

Together, these bounds imply that P(Ec
1) ≤ Sn−β .

Next, we show P(Ec
2) ≤ Sn−β , for positive constant β ≤ c22/(3c1). Recall that

P(Ec
2) = P

7

S
D

i=1

{q̂i,1 < U(pi; c1, c1), e
εqi ≥ pi}

8

.
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If pi ≤ (c1e
ε lnn)/n, P({q̂i,1 < U(pi; c1, c2), e

εpi ≥ qi}) = 0. If pi > (c1e
ε lnn)/n, it follows

from Lemma 1 that

P({q̂i,1 < U(pi; c1, c2), e
εqi ≥ pi}) = P({Poi (nqi) < ne−εpi −

.

c2e−εpin lnn, qi ≥ e−εpi})
≤ P({Poi (ne−εpi) < ne−εpi −

.

c2e−εpin lnn, qi ≥ e−εpi})

≤ e−
c2 lnn

2 .

As c2/2 ≥ c22/(3c1), we have P(Ec
2) ≤ Sn−β .

Finally, we show that P(Ec
3) ≤ Sn−β for β ≤ min{(c1 − c2)

2/(4c1), (
√
c1 −

√
c2)

2/3}. Recall

P(Ec
3) = P(

S
D

i=1

{q̂i,1 ∈ U(pi; c1, c2), qi /∈ U(pi; c1, c1)}) .

If pi ≤ (c1e
ε lnn)/n,

P({q̂i,1 ∈ U(pi; c1, c2), qi /∈ U(pi; c1, c1)}) = P({Poi (nqi) ≤ (c1 + c2) lnn, nqi ≥ 2c1 lnn})
≤ P({Poi (2c1 lnn) ≤ (c1 + c2) lnn})

≤ e−
(c1−c2)2

4c1
lnn .

If pi > (c1e
ε lnn)/n,

P({q̂i,1 ∈ U(pi; c1, c2), qi > U(pi; c1, c1)})
= P({Poi (nqi) ≤ ne−εpi +

.

c2e−εpin lnn, nqi > ne−εpi +
.

c1e−εpin lnn})
≤ P({Poi (ne−εpi +

.

c1e−εpin lnn) ≤ ne−εpi +
.

c2e−εpin lnn})

≤ e
−
"

(
√

c1−√
c2)

√
e−εpin lnn

ne−εpi+
√

c1e−εpin lnn

#2
1
2 (ne

−εpi+
√

c1e−εpin lnn)

≤ e−
(
√

c1−√
c2)2 lnn

4 ,

Similarly, we can show that P({q̂i,1 ∈ U(pi; c1, c2), qi < U(pi; c1, c1)}) ≤ e−(
√
c1−

√
c2)

2 lnn/3.

C.3.2 Proof of Lemma 14

Let ∆ = (c1 lnn)/n. We divide the analysis into two regimes.

Case 1: p ≤ eε∆ and q ∈ U(p, c1, c1) = [0, 2∆].

First we analyze the bias. As we apply the universally minimum variance unbiased estima-
tor (MVUE) to DK(q; p), the bias is entirely due to the functional approximation. Recall that
we consider the best polynomial approximation HK(y) of function g(y) = [p − eε2∆y]+ on
[0, 1] with order K, i.e. HK(y) = argminP∈polyK

maxy′∈[0,1]

-

- g(y′) − P (y′)
-

-. Denote it as
HK(y) =

$K
j=0 ajy

j . Then DK(x; p) = HK(x/(2∆)). It follows from Lemma 8 that there exists
a universal constant M ≥ 0 such that for all K ≥ 1,

sup
x∈[0,2∆]

-

-DK(x; p)− [p− eεx]+
-

- = sup
y∈[0,1]

-

-DK(2∆y; p)− [p− eε2∆y]+
-

-

= sup
y∈[0,1]

|HK(y)− g(y)|

≤ M

<

p ∧ 1

K

/

eεc1p lnn

n

=

. (73)

Next to analyze the variance, we upper bound the magnitude of the coefficients in D̃K using
Lemma 10, and upper bound the second moment of the unique MVUE using the tail bound of Pois-
son distribution in Lemma 11. As the universal MVUE is of the form

$K
j=0 aj(2∆)−j

@j−1
k=0(p̂ −

26



k/n) as shown in Appendix C.1.3, The variance is upper bounded by

Var( D̃K(q̂; p) ) = Var
7

K
!

j=0

aj(2∆)−j

j−1
6

k=0

(q̂ − k

n
)
8

≤
7

K
!

j=0

|aj |(2∆)−j
7

Var
4

j−1
6

k=0

(q̂ − k

n
)
5

8
1
2
82

≤ max
0≤j′≤K

|aj′ |2
7

K
!

j=1

(2∆)−j
7

4∆q
8

j
2
82

(74)

= max
0≤j′≤K

|aj′ |2
7

K
!

j=1

4 q

∆

5

j
2

82

= max
0≤j′≤K

|aj′ |2
q

∆

7

K−1
!

j=0

4 q

∆

5

j
2

82

≤ max
0≤j′≤K

|aj′ |2
q

∆

7

K−1
!

j=0

2
j
2

82

≲ e2εBK∆2 q

∆
(75)

≲ BK eεc1 lnn

n
(eεq) ,

where B is some universal constant, we use q ≤ 2∆ and ∆ = (c1 lnn)/n in the last inequality, and
(74) follows from Lemma 11, (75) from Lemma 10. Concretely, it follows from Lemma 11 that for
M2 = max

A

2n∆,K
B

= 2n∆,

Var
4

j−1
6

k=0

(q̂ − k

n
)
5

≤ E
4

j−1
6

k=0

(q̂ − k

n
)
52 ≤

42M2q

n

5j
=

4

4∆q
5j

.

To apply Lemma 10, we first transform the domain of the polynomial approximation to be sym-
metric around the origin by change of variables. We consider HK(z2) =

$K
j=0 ajz

2j , which is a
polynomial with degree no more than 2K and satisfies

sup
z∈[−1,1]

|HK(z2)| ≤ M1e
ε∆ .

This bound follows from a triangular inequality applied to maxy∈[0,1] |g(y)| ≲ eε∆ and
supy∈[0,1] |HK(y)−g(y)| ≲ eε∆. It follows that there exists a universal constant M1 > 0 such that
supy∈[0,1] |HK(y)| ≤ M1e

ε∆. It follows from Lemma 10 that for all 0 ≤ j ≤ K,

|aj | ≤ M1e
ε∆(

√
2 + 1)2K . (76)

Case 2: p > eε∆ and q ∈ [e−εp−
.

e−εp∆, e−εp+
.

e−εp∆].

First, we analyze the bias. In this regime, we claim that the best polynomial approximation DK(x; p)
of [p− eεx]+ is given by

DK(x; p) =
eε

2

K
!

j=0

rj
4
.

e−εp∆
5−j+1

(x− e−εp)j +
p− eεx

2
, (77)

where rj’s are defined from the best polynomial approximation RK(y) of g(y) = |y| on [−1, 1]

with order K: RK(y) =
$K

j=0 rjy
j . And it is well known (e.g. [48, Chapter 9, Theorem 3.3])
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that there exists a universal constant M3 such that |RK(y) − |y|| ≤ M3/K, for all y ∈ [−1, 1]. As
[a]+ = (1/2)a+ (1/2)|a|, the optimality of DK(x; q) follows from

-

-DK(x; p)− [p− eεx]+
-

- =
-

-

eε
$K

j=0 rj
4
.

e−εp∆
5−j+1

(x− e−εp)j − |p− eεx|
2

+
(p− eεx)− (p− eεx)

2

-

-

=
eε

2

-

-

-

K
!

j=0

rj
4
.

e−εp∆
5−j+1

(x− e−εp)j − |e−εp− x|
-

-

-

=
eε
.

e−εp∆

2

-

-

-
Rk(

x− e−εp
.

e−εp∆
)− | e

−εp− x
.

e−εp∆
|
-

-

-

=

√
eεp∆

2

-

-

-
Rk(y)− |y|

-

-

-
,

where we let x = e−εp + y
.

e−εp∆, and we want small approximation error in y ∈ [−1, 1]. This
gives the desired bound on the bias:

|DK(x; p)− [p− eεx]+| =

√
eεp∆

2

-

-

-
Rk(y)− |y|

-

-

-
≤ M3

√
eεp∆

K
≲ 1

K

/

eε p c1 lnn

n

Next, we analyze the variance. Recall from Lemma 11 that gj,c(q̂) defined as

gj,c(q̂) ≜
j

!

k=0

2

j

k

3

(−c)j−k
k−1
6

h=0

2

q̂ − h

n

3

(78)

is the unique uniformly minimum variance unbiased estimator (MVUE) for (q − c)j , j ≥ 0, j ∈ N.
Hence,

D̃K(x; p) =
eε

2

7

K
!

j=0

rj
4
.

e−εp∆
5−j+1

gj,e−εp(q̂) + g1,e−εp(q̂)
8

(79)

Let aj = rj for j = 0, 2, 3, . . . ,K and a1 = r1 − 1 and we can write D̃K(x; p) as

D̃K(x; p) =
eε

2

K
!

j=0

aj
4
.

e−εp∆
5−j+1

gj,e−εp(q̂) .

It is shown in [49, Lemma 2] that |rj | ≤ 23K , for 0 ≤ j ≤ K. So we can safely say
max0≤j≤K |aj |2 ≤ 4 · 26K . It follows from Lemma 11 that for M4 = max{n(q−e−εp)2

q ,K},

Var(gj,e−εp(q̂)) ≤ Eg2j,e−εp(q̂) ≤ (
2M4q

n
)j .

28



Note that if q = 0, the variance is 0. We consider the case q ∕= 0. The variance is

Var(D̃K(x; p)) =
e2ε

4
Var(

K
!

j=0

aj
4
.

e−εp∆
5−j+1

gj,e−εp(q̂))

≤ e2ε

4

7

K
!

j=0

|aj |
4
.

e−εp∆
5−j+1

Var
1
2 (gj,e−εp(q̂))

82

≤ e2ε26Ke−εp∆
7

K
!

j=0

4
.

e−εp∆
5−j

(
2M4q

n
)

j
2

82

= eε26Kp∆
7

K
!

j=0

(
2M4q

ne−εp∆
)

j
2

82

≤ eε26Kp∆
7cK+1 − 1

c− 1

82

(80)

≤ c2

(c− 1)2
(8c)2Keεp∆

≲ BK c1 lnn

n
eεp ,

where c = max{
√
2, 2

.

c3/c1}, and B > 0 is some universal constant as c3 < c1. The inequality
in (80) follows from

.

2M4q/(ne−εp∆) ≤ c, which follows from
C

2Kq

ne−εp∆
≤

C

2K(e−εp+
.

e−εp∆)

ne−εp∆
≤

C

2K · 2e−εp

ne−εp∆
=

/

4c3
c1

, and

C

2q

ne−εp∆
· n(q − e−εp)2

q
=

C

2(q − e−εp)2

e−εp∆
≤

C

2e−εp∆

e−εp∆
=

√
2 .

C.4 Proof of Theorem 3

In this section we prove a more general statement in the following theorem, in which case Theorem 3
follows as a corollary.
Theorem 7. Suppose S ≥ 2 and there exists a constant C > 0 such that lnn ≥ C lnS. Then for
any P , there exists a constant C ′ that only depends on C such that if

$S
j=1 pj ∧

.

eεpj/(n lnn) ≥
C ′

7

.

(eε lnn)/n+ (eε
√
S lnn)/n

8

, then

inf
!dε(P%Qn)

sup
Q∈MS

EQ

% -

- 'dε(P%Qn)− dε(P%Q)
-

-

2 & ≳
7

S
!

i=1

pi ∧
/

eεpi
n lnn

82

, (81)

where the infimum is taken over all possible estimator.

Note that dε(P%Q) =
$S

i=1[pi − eεqi]
+ is well defined even if Q does not sum to exactly one.

Define a set of such approximate probability vectors as

MS(ζ) =

+

Q :
-

-

-

S
!

i=1

qi − 1
-

-

-
≤ ζ

0

. (82)

Later in this section, we use the method of two fuzzy hypotheses from [50] to show that for some
χ ≳

$S
j=1 pj ∧

.

eεpj/(n lnn) and χ ≤ eε, the estimation error exceeds χ/4 with a strictly
positive probability, under a minimax setting over the approximate probability class MS(ζ) with
ζ = χ/(10eε):

inf
!dε(P%Qn)

sup
Q∈MS(χ/(10eε))

P
7

-

- 'dε(P%Qn)− dε(P%Q)
-

- ≥ χ

4

8

≥ 1

3
, (83)
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for a sufficiently large n, where we extend the definition of Qn to be Poisson sampling each alphabet
with the appropriate rate. This gives a lower bound on the minimax risk for ζ = χ/(10eε):

R(S, n, P, ζ) ≜ inf
!dε(P%Qn)

sup
Q∈MS(ζ)

EQ

E

7

'dε(P%Qn)− dε(P%Q)
82

F

(84)

≥ χ2

16

+

inf
!dε(P%Qn)

sup
Q∈MS(ζ)

Q
7

-

- 'dε(P%Qn)− dε(P%Q)
-

- ≥ χ

4

8

0

≥ χ2

48
,

As our goal is to prove a lower bound on the minimax error, which is R(S, n, P, 0), we use the
following lemma. We provide a proof in Appendix C.4.1.
Lemma 15. For any S, n ∈ N+, 0 < ζ < 1, any distribution P ∈ MS , and any ε > 0 that defines
the quantity dε(·%·) used in the definition of R(·) in (84), we have

R(S, n(1− ζ)/4, P, 0) ≥ 1

4
R(S, n, P, ζ)− 1

2
e−n(1−ζ)/8 − 1

2
e2εζ2 . (85)

This implies that for our choice of ζ = χ/(10eε),

R(S, n(1− ζ)/4, P, 0) ≥ 1

4
R(S, n, P, ζ)− 1

2
e−n(1−ζ)/8 − 1

2
e2εζ2

≥ χ2

192
− 1

2
e−n(1−χ/(10eε))/8 − χ2

200

≳ χ2

≳

G

H

S
!

j=1

pj ∧
/

eεpj
n lnn

I

J

2

,

where ζ ≤ 1/10, which follows from χ ≤ eε, this proves the desired theorem.

Now, we are left to prove Eq. (83), by applying the following Lemma from [50]. The idea is to
construct two fuzzy hypotheses, such that they are sufficiently close to each other (as measured by
total variation) to be challenging, while sufficiently separated in dε. Translating the theorem into
our context, we get the following corollary.
Lemma 16 (Corollary of [50, Theorem 2.15]). For any s > 0, ζ > 0, 0 ≤ β0,β1 < 1, λ ∈ R, if
there exists two distributions σ0 and σ1 on Q = [q1, . . . , qS ] ∈ MS(ζ) such that

σ0(Q : dε(P%Q) ≤ λ− s) ≥ 1− β0 , (86)
σ1(Q : dε(P%Q) ≥ λ+ s) ≥ 1− β1 , (87)

and DTV(F1, F0) ≤ η < 1, then

inf
!dε(P%Qn)

sup
Q∈MS(ζ)

PQ

7

|'dε(P%Qn)− dε(P%Q)| ≥ s
8

≥ 1− η − β0 − β1

2
, (88)

where Fi is the marginal distribution of Qn given the prior σi for i ∈ {0, 1}.

We construct two hypotheses, satisfying the assumptions with choices of s = χ/4 ≳
$S

j=1 pj ∧
.

eεpj/(n lnn) and η,β0,β1 = o(1) such that Eq. (83) follows. We will first introduce the construc-
tion, check the separation conditions in Eqs. (86) and (87), and check the total variation condition.

Constructing two prior distributions. Fix the distribution P ∈ MS , and assume pS =
min1≤i≤S pi. Let µ0, µ1 be two prior distributions on the parameter Q where Qn will be drawn
from, and set

µ0 = µ
(p1)
0 ⊗ µ

(p2)
0 ⊗ . . .⊗ µ

(pS−1)
0 ⊗ δ1−γ , (89)

µ1 = µ
(p1)
1 ⊗ µ

(p2)
1 ⊗ . . .⊗ µ

(pS−1)
1 ⊗ δ1−γ , (90)
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where

γ =
!

j:pj≤ ceε lnn
n

pj
eεD

+
!

j:pj>
ceε lnn

n

e−εpj , (91)

and c ∈ (0, 1) is a constant, D is the universal constant in Lemma 20. Note that this does not produce
a valid probability distribution, as it will not sum to one almost surely. However, this is sufficient
as we can bound the difference in the minimax rate between exact and approximate probability
distributions using Lemma 15. This choice of γ ensures that the sum

$S
j=1 qj concentrates around

one. For a p ∈ (0, 1), we construct µ(p)
i , i ∈ {0, 1} depending on p in two separate cases. Our

goal is to construct two prior distributions, which match in the first L degree moments (such that the
marginal total variation distance is sufficiently small), but at the same time sufficiently different in
estimation of dε, such that they differ approximately as much as the resolution of the best polynomial
function approximation.

Case 1: p > (ceε lnn)/n, for some constant c ∈ (0, 1). Define function g(x) = e−εp +

(
.

(ce−εp lnn)/n)x, where x ∈ [−1, 1]. Let νi, i = 0, 1 be two measures constructed in Lemma 17.
Lemma 17 ( [49, Lemma 1]). For any positive integer L > 0, there exists two probability measure
ν0 and ν1 on [−1, 1] such that

1.
K

tlν1(dt) =
K

tlν0(dt), for all l = 0, 1, 2, . . . , L;

2.
K

[−t]+ν1(dt)−
K

[−t]+ν0(dt) = ∆L[[−t]+; [−1, 1]],

where ∆L[[−t]+; [−1, 1]] is the distance in the uniform norm on [−1, 1] from the function [−t]+ to
the space of polynomial functions of degree L: polyL.

We define two new measures µ
(p)
i , i = 0, 1 on [e−εp −

,

ce−εp lnn
n , e−εp +

,

ce−εp lnn
n ] by

µ
(p)
i (A) = νi(g

−1(A)). Note that we need the lower bound on p to ensure that this is non-negative.
Let L = d2 lnn, d2 > 1. It follows that

1.
L

tµ
(p)
1 (dt) =

L

tµ
(p)
0 (dt) = e−εp ; (92)

2.
L

tlµ
(p)
1 (dt) =

L

tlµ
(p)
0 (dt), ∀l = 2 . . . , L+ 1; (93)

3.
L

[p− eεt]+µ
(p)
1 (dt)−

L

[p− eεt]+µ
(p)
0 (dt) =

/

ceεp lnn

n
∆L[[−t]+; [−1, 1]]

≳ p ∧
C

ceεp

d22n lnn
. (94)

The last inequality follows from the following lemma, with a choice of L = d2 lnn for some
constant d2.
Lemma 18 ([51] ). For L > 1,

∆L[[−t]+; [−1, 1]] = ∆L[|t|; [−1, 1]] = β∗L
−1(1 + o(1)) ≍ 1

L
, (95)

where β∗ ≈ 0.2802 is the Bernstein constant.

Case 2: 0 < p ≤ (ceε lnn)/n, for some constant c ∈ (0, 1). When p is too close to zero,
directly applying the above strategy only gives a lower bound on the difference in dε under the two
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hypotheses that scales only as p/ lnn, and not as
.

p/(n lnn) as desired. Instead, we construct an
approximation of f(x; a) = ([a− eεx]+ − a)/(eεx).

Our strategy is to first construct two prior distributions ν̃η,ai ’s on {0} ∪ [η, 1] which are difference
in estimating f(x; a) = ([a− eεx]+ − a)/(eεx) (instead of [a − eεx]+). The non-smoothness of
f(x; a) near zero allows one to control the hardness of this estimation by choosing η, while ensuring
the non-negativity of the resulting random variable p drawn from µi’s and also the expectation is
close to q. Concretely, we let µ(p)

i to be a measure on {0} ∪ [p/(Deε),M ], where g(x) = Mx and
µ
(q)
i = ν̃η,a0 (g−1(A)). We first construct two new probability measures ν̃η,ai , i = 0, 1 from the two

probability measures νη,ai , i = 0, 1 constructed in Lemma 19.

Lemma 19. Let f(x; a) ≜ ([a− eεx]+ − a)/(eεx), a ∈ [0, 1]. For any 0 < η < 1 and positive
integer L > 0, there exists two probability measure νη,a0 and νη,a1 on [η, 1] such that

1.
K

tlνη,a1 (dt) =
K

tlνη,a0 (dt), for all l = 0, 1, 2, . . . , L;

2.
K

f(t; a)νη,a1 (dt)−
K

f(t; a)νη,a0 (dt) = ∆L[f(x; a); [η, 1]],

where ∆L[f(x; a); [η, 1]] is the distance in the uniform norm on [η, 1] from the function f(x; a) to
the space of polynomial functions of degree L: polyL.

We construct ν̃η,ai by scaling down νη,ai and putting the remaining probability mass on zero. This
ensures that the restriction on [η, 1] of ν̃η,ai is absolutely continuous with νη,ai , and we construct the
Radon-Nikodym derivative to be

dν̃η,ai

dnuη,a
i

=
η

t
≤ 1, t ∈ [η, 1] , (96)

and ν̃η,ai ({0}) = 1− ν̃η,ai ([η, 1]) ≥ 0. This choice of scaling ensures that

It follows that ν̃η,ai , i = 0, 1 are probability measures on [0, 1] that satisfy the following properties

1.
K

tν̃η,a1 (dt) =
K

tν̃η,a0 (dt) = η;

2.
K

tlν̃η,a1 (dt) =
K

tlν̃η,a0 (dt), for all l = 2, . . . , L+ 1;

3.
K

[a− eεt]+ν̃η,a1 (dt)−
K

[a− eεt]+ν̃η,a0 (dt) = ηeε∆L[f(x; a); [η, 1]].

Define

L = d2 lnn, η =
a

D
, a =

p

eεM
, M =

2c lnn

n
, (97)

where D is a universal constant in Lemma 20 and d2 > 1 is a constant.

Lemma 20. Let f(x; a) := [a−eεx]+−a
eεx , a ∈ (0, 1

2 ], x ∈ [0, 1], there exists universal constant D
such that

∆L

"

f(x; a); [
a

D
, 1]

#

≳
2

1 ∧ 1

L
√
a

3

. (98)

Let g(x) = Mx and let µ(p)
i be the measure on [0,M ] defined by µ

(p)
i = ν̃η,a0 (g−1(A)). Then we

have µ
(p)
i (A) = M ν̃η,a0 (A). It then follows that

1.
L

tµ
(p)
1 (dt) =

L

tµ
(p)
0 (dt) =

p

eεD
; (99)

2.
L

tlµ
(p)
1 (dt) =

L

tlµ
(p)
0 (dt), ∀l = 2 . . . , L+ 1; (100)
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3.
L

[p− eεt]+µ
(p)
1 (dt)−

L

[p− eεt]+µ
(p)
0 (dt) = η eε M ∆L[f(x; a); [

a

D
, 1]](101)

≳ p ∧
C

ceεp

d22n lnn
. (102)

Separation conditions. In both cases, since we set qS = 1 − γ, which is defined in Eq. (91), it
follows from Eq. (99) and (92) that

Eµ0

M

N

n
!

j=1

qj

O

P = Eµ1

M

N

n
!

j=1

qj

O

P = 1 . (103)

Let

χ = Eµ1 [dε(P%Q)]− Eµ0 [dε(P%Q)] , (104)

ζ =
χ

10eε
. (105)

We know from Eq. (102) and (94) that, by construction, the estimates are separated in expectation:

χ ≳
S−1
!

j=1

pj ∧
C

ceεpj
d22n lnn

≥ (1− 1

S
)

S
!

j=1

pj ∧
C

ceεpj
d22n lnn

≳
S
!

j=1

pj ∧
C

ceεpj
d22n lnn

,

where the second inequality follows from the assumption that pS = min1≤j≤S pj . To show concen-
tration of Eµi

[dε(P%Q)] around its mean, for i = 0, 1, we introduce the events

Ei = MS(ζ) ∩
9

Q :
-

-

-
dε(P%Q)− Eµi

%

dε(P%Q)
&

-

-

-
≤ χ

4

:

. (106)

Introduce

F (P ) =
!

j:pj≤ ceε lnn
n

2

2c lnn

n

32

+
!

j:pj>
ceε lnn

n

2

4ce−εpj lnn

n

3

≤ 4c2S ln2 n

n2
+

4ce−ε lnn

n
.

It follows from the union bound and Hoeffding bound that

µi(E
c
i ) ≤ µi

G

H

-

-

-

S
!

j=1

qj − 1
-

-

-
> ζ

I

J+ µi

7-

-

-
dε(P%Q)− Eµi

%

dε(P%Q)
&

-

-

-
>

χ

4

8

≤ 2 exp

2

− 2ζ2

F (P )

3

+ 2 exp

2

− χ2

8F (P )

3

.

Then we choose parameter c such that µi(E
c
i ) can be made arbitrarily small. Since we assumed c ∈

(0, 1) and d2 > 1, and from the assumption that
$S

j=1 pj ∧
,

eεpj

n lnn ≥ C ′
2

,

eε lnn
n + eε

√
S lnn
n

3

,
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we have

ζ ≍ χ

eε

≳ 1

eε

S
!

j=1

pj ∧
C

ceεpj
d22n lnn

≥
√
c

eεd2

S
!

j=1

pj ∧
/

eεpj
n lnn

≥
√
c

d2
C ′

<
/

e−ε lnn

n
+

√
S lnn

n

=

≳ 1

d2
C ′

<
/

ce−ε lnn

n
+

c
√
S lnn

n

=

≳ 1

d2
C ′

.

F (P ) .

Hence, it suffices to take C ′ large enough to ensure µi(E
c
i ), is as small as we desire for i = 0, 1. So

with this constant C ′, we have

µ0

7

dε(P%Q) ≤ Eµ0

%

dε(P%Q)
&

+
χ

4

8

≥ 1− β0 , (107)

µ1

7

dε(P%Q) ≥ Eµ1

%

dε(P%Q)
&

− χ

4

8

≥ 1− β1 , (108)

fo any constant β0 and β1, which satisfy the conditions of Lemma 16 and s = χ/4.

Total variation condition. Let Gi be marginal distribution of (X1, X2, . . . , XS) under priors µi

for i = 0, 1. Denote by πi the probability measures defined as

πi(A) =
µi (Ei ∩A)

µi (Ei)
, i = 0, 1 . (109)

Let Fi be marginal distribution of (X1, X2, . . . , XS) under priors πi for i = 0, 1.

Triangle inequality of total variation yields
TV(F0, F1) ≤ TV(F0, G0) + TV(G0, G1) + TV(G1, F1)

= sup
A

-

-

-
µ0(A)− µ0(A ∩ E0)

µ0(E0)

-

-

-
+TV(G0, G1) + sup

A

-

-

-
µ1(A)−

µ1(A ∩ E1)

µ1(E1)

-

-

-

= TV(G0, G1) + µ0(E
c
0) + µ1(E

c
1) .

In view of fact that TV
4

⊗S
i=1Pi,⊗S

i=1Qi

5

≤
$S

i=1 TV (Pi, Qi), we have

TV(G0, G1) ≤
S−1
!

i=1

TV(µ
(pi)
0 , µ

(pi)
1 )

≤
S−1
!

i=1

2

2

1

2

3d2 lnn

≤ 2S

nd2 ln 2
,

where in the second inequality we applied the following lemmas, assumming d2 to be large enough.
Lemma 21 ([16, Lemma 3] when qi ≤ ceε lnn/n). Suppose U0, U1 are two random variables
supported on [0,M ], where M ≥ 0 is constant. Suppose E[U j

0 ] = E[U j
1 ], 0 ≤ j ≤ L. Denote the

marginal distribution of X where X|λ ∼ Poi (λ), λ ∼ Ui as Fi for i = 0, 1. If L > 2eM , then

TV(F0, F1) ≤
2

2eM

L

3L

. (110)
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Lemma 22 ([21, Lemma 32] when qi > ceε lnn/n). Suppose U0, U1 are two random variables
supported on [a − M,a + M ], where a ≥ M ≥ 0 are constants. Suppose E[U j

0 ] = E[U j
1 ],

0 ≤ j ≤ L. Denote the marginal distribution of X where X|λ ∼ Poi (λ), λ ∼ Ui as Fi for i = 0, 1.
If L+ 1 ≥ (2eM)2/a, then

TV(F0, F1) ≤ 2

<

eM
.

a(L+ 1)

=L+1

. (111)

Since there exists a constant C > 0 such that lnn ≥ C lnS, S ≥ 2, we can conclude that with
chosen parameters, T (F0, F1) = o(1).

C.4.1 Proof of Lemma 15

We define minimax risk under the multinomial sampling model for a fixed P as

RB(S, n, P ) ≜ inf
!dε(P%Qn)

sup
Q∈MS

EQ

E

7

'dε(P%Qn)− dε(P%Q)
82

F

. (112)

Let T̂ = T̂ (X1, X2, . . . , XS) be a near-minimax estimator under multinomial model such that for
every sample size n,

sup
Q∈MS

EQ

E

7

T̂ − dε(P%Q)
82

F

< RB(S, n, P ) + ξ , (113)

where ξ > 0.

For any Q ∈ MS(ζ), let
$S

i=1 qi = A, we have

-

-

-

-

-

dε
4

P% Q
$S

i=1 qi

5

− dε
4

P%Q
5

-

-

-

-

-

≤
S
!

i=1

-

-[pi − eεqi/A]+ − [pi − eεqi]
+
-

-

≤
S
!

i=1

eεqi|1/A− 1|

= eε|1−A|
≤ eεζ .

Now we consider risk of T̂ for Q ∈ MS(ζ) under Poisson sampling model, where Xi are mu-
tually independent with marginal distributions Xi ∼ Poi (nqi). Let n′ =

$S
i=1 Xi, we know

n′ ∼ Poi (n
$S

i=1 qi). In view of fact that conditioned on n′ = m, (X1, X2, . . . , XS) follows
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multinomial distribution parameterized by
7

m, Q$S
i=1 qi

8

, we have

EQ

E

7

T̂ − dε(P%Q)
82

F

(114)

= EQ

>

7

T̂ − dε
4

P% Q
$S

i=1 qi

5

+ dε
4

P% Q
$S

i=1 qi

5

− dε(P%Q)
82

?

(115)

≤ 2EQ

>

7

T̂ − dε
4

P% Q
$S

i=1 qi

5

82
?

+ 2EQ

>

7

dε
4

P% Q
$S

i=1 qi

5

− dε(P%Q)
82

?

(116)

≤ 2EQ

>

7

T̂ − dε
4

P% Q
$S

i=1 qi

5

82
?

+ 2e2εζ2 (117)

= 2

∞
!

m=0

EQ

>

7

T̂ − dε
4

P% Q
$S

i=1 qi

5

82

|n′ = m

?

P(n′ = m) + 2e2εζ2 (118)

≤ 2

∞
!

m=0

RB(S,m, P )P(n′ = m) + 2(e2εζ2 + ξ) (119)

≤ 2
4

1 · P
4

n′ ≤ n(1− ζ)/2
5

+RB

4

S, n(1− ζ)/2, P
5

P
4

n′ ≥ n(1− ζ)/2
55

+2(e2εζ2 + ξ) (120)

≤ 2RB

4

S, n(1− ζ)/2, P
5

+ 2P
4

n′ ≤ n(1− ζ)/2
5

+ 2(e2εζ2 + ξ) (121)

≤ 2RB

4

S, n(1− ζ)/2, P
5

+ 2P
4

Poi (n(1− ζ)/2) ≤ n(1− ζ)/2
5

+ 2(e2εζ2 + ξ)(122)

≤ 2RB

4

S, n(1− ζ)/2, P
5

+ 2e−n(1−ζ)/8 + 2(e2εζ2 + ξ) , (123)

where (120) follows from RB(S,m, P ) ≤ 1, and the last inequality follows from Lemma 1. Taking

the supremum of EQ

E

7

T̂ − dε(P%Q)
82

F

over MS(ζ) and using the arbitrariness of ζ, we have

R(S, n, P, ζ) ≤ 2RB

4

S, n(1− ζ)/2, P
5

+ 2e−n(1−ζ)/8 + 2e2εζ2 , (124)

which is equivalent to

RB

4

S, n(1− ζ)/2, P
5

≥ 1

2
R(S, n,Q, ζ)− e−n(1−ζ)/8 − e2εζ2 . (125)

It follows from [15, Lemma 16] that RB

4

S, n, P
5

≤ 2R
4

S, n/2, P, 0
5

. Hence,

R(S, n(1− ζ)/4, P, 0) ≥ 1

2
RB(S, n(1− ζ)/2, Q) (126)

≥ 1

4
R(S, n, P, ζ)− 1

2
e−n(1−ζ)/8 − 1

2
e2εζ2 . (127)

C.4.2 Proof of Lemma 19

By [21, Lemma 31], there are two probability measures νη,a1 and νη,a0 on [η, 1] such that

1.
L

tlνη,a1 (dt) =

L

tlνη,a0 (dt), for all l = 0, 1, 2, . . . , L .

2.
L |eεx− a|− a

eεx
νη,a1 (dt)−

L |eεx− a|− a

eεx
νη,a0 (dt) = 2∆L

E

|eεx− a|− a

eεx
; [η, 1]

F

,

which is equivalent to
L

2[a− eεx]+ − 2a

eεx
νη,a1 (dt)−

L

2[a− eεx]+ − 2a

eεx
νη,a0 (dt) = 2∆L

E

[a− eεx]+ − a

eεx
; [η, 1]

F

.

The two desired measures are constructed.
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C.4.3 Proof of Lemma 20

Let g(x; a) = [a−x]+−a
x . We have

g(x; a) =
|x− a|− a

2x
− 1

2
. (128)

By the definition of best polynomial approximation error, for L > 1, we have

∆L

"

g(x; a); [
a

D
, 1]

#

= inf
h(x)∈PolyL

sup
x∈[ a

D ,1]

-

-

-

-

|x− a|− a

2x
− 1

2
− h(x)

-

-

-

-

= inf
h(x)∈PolyL

sup
x∈[ a

D ,1]

-

-

-

-

|x− a|− a

x
− h(x)

-

-

-

-

= ∆L

E

|x− a|− a

x
; [

a

D
, 1]

F

≳
+

1
L
√
a

1
L2 ≤ a ≤ 1

2

1 0 < a < 1
L2

,

where D is from [21, Lemma 30].

Now we consider f(x; a) = [e−εa−x]+−e−εa
x , where a ∈ (0, 1/2]. As e−εa ∈ (0, 1

2 ]. there exists
D > 0 such that

∆L

"

f(x; a); [
a

D
, 1]

#

≥ ∆L

E

f(x; a); [
e−εa

D
, 1]

F

≳
2

1 ∧ 1

L
√
e−εa

3

≥
2

1 ∧ 1

L
√
a

3

.(129)

C.5 Proof of Theorem 4

Define good events, where our choice of regimes are correct as

E1 =

+

9

i : p̂i,1 − eεq̂i,1 >

/

(c1 + c2) lnn

n
(
.

p̂i,1 +
.

eεq̂i,1)
:

⊆
9

i : eεqi ≤ pi

:

0

, (130)

E2 =

+

9

i : p̂i,1 − eεq̂i,1 < −
/

(c1 + c2) lnn

n
(
.

p̂i,1 +
.

eεq̂i,1)
:

⊆
9

i : eεqi ≥ pi

:

0

,(131)

E3 =

;

9

i : eεq̂i,1 + p̂i,1 <
c1 lnn

n

:

⊆
9

i :
4

pi, e
εqi

5

∈ [0,
2c1 lnn

n
]2
:

Q

, (132)

and

E4 =

;

9

i : (p̂i,1, e
εq̂i,1) ∈ U(c1, c1), p̂i,1 + eεq̂i,1 ≥ c1 lnn

n

:

⊆
9

i : (pi, e
εqi) ∈ U(c1, c1), pi + eεqi ≥

c1 lnn

2n
, p̂i,1 + eεq̂i,1 ≥ pi + eεqi

2

:

Q

. (133)

Denote the overall good event as

E = E1 ∩ E2 ∩ E3 ∩ E4 . (134)

Decompose the error under good events as

E1 ≜
!

i∈I1

A

p̂i,2 − eεq̂i,2 − [pi − eεqi]
+
B

, (135)

E2 ≜
!

i∈I2

A

D̃
(1)
K (p̂i,2, q̂i,2)− [pi − eεqi]

+
B

, (136)

E3 ≜
!

i∈I3

A

D̃
(2)
K (p̂i,2, q̂i,2; p̂i,1, q̂i,1)− [pi − eεqi]

+
B

, (137)
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where the indices of those regimes under the good events are

I1 ≜
+

i : p̂i,1 − eεq̂i,1 >

/

(c1 + c2) lnn

n
(
.

p̂i,1 +
.

eεq̂i,1), e
εqi ≤ pi

0

, (138)

I2 ≜
+

i : p̂i,1 + eεq̂i,1 ≤ c1e
ε lnn

n
, (pi, e

εqi) ∈
E

0,
2c1 lnn

n

F2
0

, (139)

I3 ≜
;

i : p̂i,1 + eεq̂i,1 ≥ c1 lnn

n
, (p̂i,1, e

εq̂i,1) ∈ U(c1, c2),

(pi, e
εqi) ∈ U(c1, c1), pi + eεqi ≥

c1 lnn

2n
, p̂i,1 + eεq̂i,1 ≥ pi + eεqi

2

Q

. (140)

We can bound the squared error as

E
% 4

'dε,K,c1,c2(Pn%Qn)− dε(P%Q)
52 & ≤ E[

4

'dε,K,c1,c2(Pn%Qn)− dε(P%Q)
52 I(E) ] + P(Ec)

≤ E[(E1 + E2 + E3)2] + P(Ec)

≤ 3E[E2
1 ] + 3E[E2

2 ] + 3E[E2
3 ] + P(Ec) . (141)

The last term on the bad event is bounded by 15S/nβ as shown in following lemma, with a proof in
Appendix C.5.1.
Lemma 23. Assuming c2

c1
< 8

(
√
2+1)2

− 1 ≈ 0.373, and let β =

min

;

c1
6 ,

(c1−c2)
2

96c1
, 1
3

7√
2c1 −

√
2+1
2

√
c1 + c2

82
Q

, we have

P(Ec) ≤ 15S

nβ
, (142)

where good event E is defined in Eq. (134).

For the first term in Eq. (141), we have

E[E2
1 ] = E[Var(E1|I1) + (E[E1|I1])2] = E[Var(E1|I1)] ≤

!

i∈{i:eεqi≤pi}

pi + e2εqi
n

≲ eε

n
(143)

where we use the fact that E[E1|I1] = 0 with probability one and the fact that p̂i,2 and q̂i,2 are
independent for indices in I1.

The second term in Eq. (141) is bounded by following lemma, with a proof in Appendix C.5.3.

Lemma 24. Suppose (p, eεq) ∈
%

0, 2c1 lnn
n

&2
, (np̂, nq̂) ∼ Poi (np)× Poi (nq). Then,

-

-

-
ED̃(1)

K (p̂, q̂)− [p− eεq]+
-

-

-
≲ 1

K

/

c1 lnn

n
(
√
p+

√
eεq) +

1

K2

c1 lnn

n
, (144)

and

Var
7

D̃
(1)
K (p̂, q̂)

8

≲ BKc1c
4
3 ln

5 n

n
(p+ eεq) , (145)

for some constant B > 0. The estimator D̃(1)
K is introduced in Eq. (13) and K = c3 lnn, c3eε < c1.

We have

E[E2
3 ] (146)

≲
S
!

i=1

BKc1c
4
3 ln

5 n

n
(pi + eεqi) +

<

S
!

i=1

1

K

/

c1 lnn

n
(
√
pi +

√
eεqi) +

1

K2

c1 lnn

n

=2

(147)

≲ c1c
4
3 ln

5 n

n1−c3 lnB
(eε + 1) +

c1(e
ε + 1)S

c23n lnn
∨
2

c1S

c23n lnn

32

. (148)

The third term in Eq. (141) is bounded by following lemma, with a proof in Appendix C.5.4.
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Lemma 25. Suppose (p, eεq) ∈ U(c1, c1), p+eεq ≥ c1 lnn
2n , x+eεy ≥ p+eεq

2 , x ∈ [0, 1], y ∈ [0, 1].
Suppose (np̂, nq̂) ∼ Poi (np)× Poi (nq). Then,

-

-

-
ED̃(2)

K (p̂, q̂;x, y)− [p− eεq]+
-

-

-
≲ 1

K

/

c1 lnn

n
(
√
x+

√
eεy) , (149)

and

Var
7

D̃
(2)
K (p̂, q̂;x, y)

8

≲ BKc1 lnn

n
(x+ eεy) , (150)

for some constant B > 0, and K = c3 lnn, c3eε < c1.

We have

E
%

E2
4 |p̂i,1, q̂i,1 : 1 ≤ i ≤ S

&

(151)

≲
S
!

i=1

BKc1 lnn

n
(p̂i,1 + eεq̂i,1) +

<

S
!

i=1

1

K

/

c1 lnn

n
(
.

p̂i,1 +
.

eεq̂i,1)

=2

, (152)

where B is the larger constant defined in both Lemma 24 and Lemma 25.

Taking expectation with respect to {p̂i,1, q̂i,1 : 1 ≤ i ≤ S}, we have

E
%

E2
4

&

(153)

≲
S
!

i=1

c1 lnn

n1−c3 lnB
E (p̂i,1 + eεq̂i,1) + E

<

S
!

i=1

.

c1 (p̂i,1 + eεq̂i,1)
.

c23n lnn

=2

(154)

≲ c1 lnn

n1−c3 lnB
(eε + 1) +

S
!

i=1

E
c1 (p̂i,1 + eεq̂i,1)

c23n lnn
+ (155)

!

1≤i,j≤S,i ∕=j

C

E [c1 (p̂i,1 + eεq̂i,1)]

c23n lnn

C

E [c1 (p̂j,1 + eεq̂j,1)]

c23n lnn
(156)

≲ c1 lnn

n1−c3 lnB
(eε + 1) +

c1
c23n lnn

(eε + 1) +
!

1≤i,j≤S

c1 (pi + eεqi + pj + eεqj)

c23n lnn
(157)

≲ c1 lnn

n1−c3 lnB
(eε + 1) +

c1
c23n lnn

(eε + 1) . (158)

Combing everything together, we have

E
% 4

'dε,K,c1,c2(Pn%Qn)− dε(P%Q)
52 &

(159)

≲ eε

n
+

(c1c
4
3 + c1) ln

5 n

n1−c3 lnB
(eε + 1) +

c1(e
ε + 1)S

c23n lnn
∨
2

c1S

c23n lnn

32

+
S

nβ
. (160)

If lnn ≲ lnS, as we assume c2
c1

< 0.373, we can take c2 small enough and c1, c3 large enough to

guarantee that S
nβ ≲ S

n lnn , ln5 n
n1−c3 lnB ≲ S

n lnn . We have,

E
% 4

'dε,K,c1,c2(Pn%Qn)− dε(P%Q)
52 & ≲ eεS

n lnn
. (161)

C.5.1 Proof of Lemma 23

The following lemma shows that non-smooth region U(c1, c2) contains the region U(p; c1, c2) de-
fined previously, which will be later used to bound the probability of bad events.

Lemma 26. The two-dimensional set U(c1, c1) defined in Eq. (5) satisfies

∪x=eεy,x,y∈[0,1]U(eεx; c1, c1)× U(e2εy; c1, c1) ⊂ U(c1, c1) . (162)
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1) Analysis of P(Ec
1):

It follows from Lemma 26 that

P(Ec
1) = P

<

S
D

i=1

9

eεqi < pi, e
εq̂i,1 − p̂i,1 >

/

(c1 + c2) lnn

n
(
.

eεq̂i,1 +
.

p̂i,1)
:

=

≤ Smax
i∈[S]

P

<

eεqi < pi, e
εq̂i,1 − p̂i,1 >

/

(c1 + c2) lnn

n
(
.

eεq̂i,1 +
.

p̂i,1)

=

≤ Smax
i∈[S]

P
7

eεqi = pi, e
εq̂i,1 − p̂i,1 >

/

(c1 + c2) lnn

n
(
.

eεq̂i,1 +
.

p̂i,1)
8

≤ Smax
i∈[S]

P
7

eεqi = pi, (p̂i,1, e
εq̂i,1) /∈ U(c1, c2)

8

≤ Smax
i∈[S]

P
7

eεqi = pi, (p̂i,1, e
εq̂i,1) /∈ U(eεpi;

c1 + c2
2

,
c1 + c2

2
)×

U(e2εqi;
c1 + c2

2
,
c1 + c2

2
)
8

≤ Smax
i∈[S]

7

1− P
4

p̂i,1 ∈ U(eεpi;
c1 + c2

2
,
c1 + c2

2
)
5

×

P
4

eεqi = pi, e
εq̂i,1 ∈ U(e2εqi;

c1 + c2
2

,
c1 + c2

2
)
5

8

≤ S

<

1−
2

1− 2

n
c1+c2

6

32
=

≤ 4S

n
c1+c2

6

,

where we have applied Lemma 6 in the last inequality.

2) Analysis of P(Ec
2): Similarly, we have

P(Ec
2) ≤ 4S

n
c1+c2

6

. (163)

3) Analysis of P(Ec
3):

P(Ec
3) = P

<

S
D

i=1

+

(pi, e
εqi) /∈

E

0,
2c1 lnn

n

F2

, p̂i,1 + eεq̂i,1 <
c1 lnn

n

0=

≤ P

<

S
D

i=1

;

pi + eεqi >
2c1 lnn

n
, p̂i,1 + eεq̂i,1 <

c1 lnn

n

Q

=

≤ Smax
i∈[S]

P
2

pi + eεqi >
2c1 lnn

n
, p̂i,1 + eεq̂i,1 <

c1 lnn

n

3

≤ S

nc1/4
,

where we have applied Lemma 2 in the last inequality.

4) Analysis of P(Ec
4):

P(Ec
4) ≤ Smax

i∈[S]
P ((pi, e

εqi) /∈ U(c1, c1), (p̂i,1, e
εq̂i,1) ∈ U(c1, c2)) +

Smax
i∈[S]

P
2

p̂i,1 + eεq̂i,1 >
c1 lnn

n
, pi + eεqi <

c1 lnn

2n

3

+

Smax
i∈[S]

P
2

p̂i,1 + eεq̂i,1 ≥ c1 lnn

n
, pi + eεqi ≥ 2(p̂i,1 + eεq̂i,1)

3

.
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Using Lemma 2 again, we have

Smax
i∈[S]

P
2

p̂i,1 + eεq̂i,1 >
c1 lnn

n
, pi + eεqi <

c1 lnn

2n

3

≤ S

nc1/6
,

and

Smax
i∈[S]

P
2

p̂i,1 + eεq̂i,1 ≥ c1 lnn

n
, pi + eεqi ≥ 2(p̂i,1 + eεq̂i,1)

3

≤ Smax
i∈[S]

P
2

pi + eεqi ≥
2c1 lnn

n
, pi + eεqi ≥ 2(p̂i,1 + eεq̂i,1)

3

≤ S

nc1/4
.

It suffices to show that for p, q ∈ [0, 1], there exists some constant c > 0 such that
G

H

D

(p,eεq)/∈U(c1,c1)

U(eεp; c, c)× U(e2εq; c, c)

I

J

R

U(c1, c2) = ∅. (164)

Indeed, we have

Smax
i∈[S]

P ((pi, e
εqi) /∈ U(c1, c1), (p̂i,1, e

εq̂i,1) ∈ U(c1, c2))

≤ Smax
i∈[S]

P
4

(p̂i,1, e
εq̂i,1) /∈ U(eεpi; c, c)× U(e2εqi; c, c)

5

≤ Smax
i∈[S]

7

1− P
4

p̂i,1 ∈ U(eεpi; c, c)
5

P
4

eεq̂i,1 ∈ U(e2εqi; c, c)
5

8

≤ S

<

1−
2

1− 2

n
c
3

32
=

≤ 4S

nc/3
,

where the last inequality follows from Lemma 6.

Now we work out a c that satisfies (164). We prove the case when
√
p −

√
eεq ≥

,

2c1 lnn
n . The

other case can be proved in a similar way. Assume c < c1. In this case p ≥ 2c1 lnn
n . We will show

that for any point (x, eεy) ∈ U(eεp; c, c)× U(e2εq; c, c), we have
√
x−

√
eεy ≥

,

(c1+c2) lnn
n .

If q ≤ ce−ε lnn
n , for any (x, eεy) ∈ U(eεp; c, c)× U(e2εq; c, c), we have

√
x−

√
eεy ≥

C

p−
/

cp lnn

n
−
/

2c lnn

n

≥
/

2c1 lnn

n
−
√
2cc1

lnn

n
−
/

2c lnn

n

=

/

lnn

n

2
,

2c1 −
√
2cc1 −

√
2c

3

,

where in the second step, we use the fact that x−
√
ax, a > 0 is a monotonically increasing function

when x ≥ a/4 and the fact that p ≥ 2c1 lnn
n . Let c = (c1−c2)

2

32c1
, we can verify that

√
x−

√
eεy ≥

/

lnn

n

2
,

2c1 −
√
2cc1 −

√
2c

3

≥
/

lnn

n

√
c1 + c2 . (165)

If q > ce−ε lnn
n , for any (x, eεy) ∈ U(eεp; c, c)× U(e2εq; c, c), we have
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√
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/
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n
−
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/
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n

=
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,
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,
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n

/
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,

cp lnn
n +

/

eεq +
,

ceεq lnn
n

=
(
√
p−

√
eεq)(

√
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√
eεq)−

,

c lnn
n (

√
eεq +

√
p)

/

p−
,

cp lnn
n +

/

eεq +
,

ceεq lnn
n

≥ (
√
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√
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/
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n

√
p+

√
eεq

/

p−
,

cp lnn
n +

/

eεq +
,

ceεq lnn
n

.

Further, since eεq > c lnn
n ,
√
p+

√
eεq

/

p−
,

cp lnn
n +

/

eεq +
,

ceεq lnn
n

≥
√
p+

√
eεq

√
p+

√
2eεq

≥
√
eεq +

,

2c1 lnn
n +

√
eεq

√
2eεq +

√
eεq +

,

2c1 lnn
n

≥ 2√
2 + 1

,

where in the second inequality, we used the fact that x+
√
eεq

x+
√
2eεq

is a monotonically increasing function
of x when x ≥ 0, and in the third inequality, we used the fact that 2x+a

(
√
2+1)x+a

is a monotonically

decreasing function of x when a > 0, x > 0. To guarantee that
√
x −

√
eεy ≥

,

(c1+c2) lnn
n , we

need
2√
2 + 1

4√
2c1 −

√
c
5

≥
√
c1 + c2 , (166)

which is equivalent to

c ≤
<

√
2c1 −

√
2 + 1

2

√
c1 + c2

=2

, (167)

with the constraint that c2
c1

< 8
(
√
2+1)2

− 1 ≈ 0.373.

C.5.2 Proof of Lemma 26

If x ≤ c1e
ε lnn
n and thus y ≤ c1 lnn

n , it suffices to show [0, 2c1 lnn
n ]2 ⊂ U(c1, c1). For (u, eεv) ∈

[0, 2c1 lnn
n ]2, we have

|
√
u−

√
eεv| ≤

/

2c1 lnn

n
. (168)

For x > c1e
ε lnn
n and thus y > c1 lnn

n , it suffices to show
E

x−
,

c1x lnn
n , x+

,

c1x lnn
n

F2

⊂

U(c1, c1). It is shown in [21, Lemma 3] that for any (u, eεv) ∈
E

y −
,

c1y lnn
n , y +

,

c1y lnn
n

F2

,

we have

|
√
u−

√
eεv| ≤

/

2c1 lnn

n
. (169)

42



C.5.3 Proof of Lemma 24

We first analyze the bias. Let ∆ = c1 lnn
n . As we have applied unbiased estimator D̃(1)

K (x, y) of
D

(1)
K (x, y), the bias is entirely due to the functional approximation. We show that for (x, y) ∈ [0, 1]2,

|uK(x, y)vK(x, y)− [x− y]+| ≲
7√

x+
√
y

K + 1
K2

8

. Indeed, we have

-

-uK(x, y)vK(x, y)− [x− y]+
-

-

=
-

-uK(x, y)vK(x, y)− uK(x, y)[
√
x−√

y]+ + uK(x, y)[
√
x−√

y]+ − [x− y]+
-

-

≤ |uK(x, y)||vK(x, y)− [
√
x−√

y]+|+ [
√
x−√

y]+|uK(x, y)−
√
x−√

y|
≤ |uK(x, y)−

√
x−√

y||vK(x, y)− [
√
x−√

y]+|+
|
√
x+

√
y||vK(x, y)− [

√
x−√

y]+|+ [
√
x−√

y]+|uK(x, y)−
√
x−√

y| .

It follows from Lemma 7 and Lemma 9 that

∆K

%√
x; [0, 1]

&

≲ 1

K
, (170)

which implies

|uK(x, y)−
√
x−√

y| ≲ 1

K
. (171)

It follows from Lemma 7, Lemma 9 and the fact that [
√
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√
a]+ ≤ [

√
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√
c]+ + [

√
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√
a]+,

we have

|vK(x, y)− [
√
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y]+| ≲ 1

K
. (172)

Together with Eq. (171), we have

-

-uK(x, y)vK(x, y)− [x− y]+
-

- ≲ 1
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√
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√
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K
(173)
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√
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√
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K
, (174)

which implies there exists a constant M > 0 such that

-

-uK(x, y)vK(x, y)− uK(0, 0)vK(0, 0)− [x− y]+
-

- ≤ M

2

1
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√
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√
y

K

3

. (175)

Let x = p/(2∆) and y = eεq/(2∆). We have

sup
(p,eεq)∈[0,2∆]2

-

-

-
ED̃(1)

K (p̂, q̂)− [p− eεq]+
-

-

-
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-

-
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-

-

-
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-

-
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2∆
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2∆
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We now analyze the variance. Express the polynomial h2K(x, y) explicitly as

h2K(x, y) =
!

0≤i≤2K,0≤j≤2K,i+j≥1

hijx
iyj (176)

=
!

0≤i≤2K

G

H

!

0≤j≤2K,i+j≥1

hijy
j

I

Jxi . (177)

For any fixed value of y, h2K(x2, y2) is a polynomial of x with degree no more than 4K that is
uniformly bounded by a universal constant on [0, 1]. It follows from Lemma 10 that for any fixed
y ∈ [−1, 1],

-

-

-

-

-

-

!

0≤j≤2K

hijy
2j

-

-

-

-

-

-

≤ M(
√
2 + 1)4K , (178)

which together with Lemma 10, implies that

|hij | ≤ M(
√
2 + 1)8K . (179)

Since D̃
(1)
K is the unbiased estimator of 2∆h2K( p

2∆ , eεq
2∆ ), we know
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(1)
K (p̂, q̂) =
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hij(2∆)1−i−jejεgi,0(p̂)gj,0(q̂) , (180)

where gi,0(p̂) =
@i−1

k=0(p̂−
k
m ) introduced by Lemma 11.

Denote %X%2 =
.

E(X − EX)2 for random variable X , and M1 = 2K ∨ 2n∆, M2 = 2K ∨
2ne−ε∆. Using triangle inequality of the norm % · %2 and Lemma 11, we know
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Since for any x ∈ [0, 1]. y ∈ [0, 1],
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-

-

-
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+
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we know
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C

BK
c1c53 ln
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(p+ eεq) , (182)

for some constant B > 0.
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C.5.4 Proof of Lemma 25

We first analyze the bias. As we apply the unbiased estimator D̃(2)
K (p̂, q̂;x, y) of D(2)

K (p, q;x, y).
The bias is entirely due to the functional approximation error. Namely,

E
"

D̃
(2)
K (p̂, q̂;x, y)|x, y

#

= D
(2)
K (p, q;x, y) (183)

=
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2

K
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rjW
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2
, (184)

where W =
,

8c1 lnn
n (

√
eεx+ y), and rj is defined as the coefficient of best polynomial approxi-

mation RK(t) of |t| over [−1, 1] with order K: RK(t) =
$K

j=0 rjt
j .

Since (p, eεq) ∈ U(c1, c1), we know
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.
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where we have used the fact that
√
p +

√
eεq ≤

.

2(p+ eεq) and the assumption that p + eεq ≤
2(x+ eεy).

It is known in [48, Chapter 9, Theorem 3.3] that

|Rk(t)− |t|| ≲ 1

K
, (185)

for all t ∈ [−1, 1].

We show D
(2)
K (p, q;x, y) is best polynomial approximation of [p− eεq]+. We have

-

-

-
D

(2)
K (p, q;x, y)− [p− eεq]+

-

-

-
=
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Now we analyze the variance.

Let aj = rj for j = 0, 2, 3, . . . ,K and a1 = r1 − 1 we can write D
(2)
K (p, q;x, y) as

D
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K (p, q;x, y) =

1

2

K
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j=0

ajW
−j+1(eεq − p)j . (186)

It was shown in [49, Lemma 2] that rj ≤ 23K , 0 ≤ j ≤ K. So we have |aj | ≤ 2 · 23K . Denote
the unique uniformly minimum unbiased estimator (MVUE) of (eεq − p)j by Âj(p̂, q̂). Then the
unbiased estimator D̃(2)

K of polynomial function D
(2)
K is
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K
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45



Denote %X%2 =
.

E(X − EX)2 for random variable X . It follows from triangle inequality of % ·%2
and Lemma 12 that
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Consequently,
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where B > 0 is some constant.
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