Appendix
A Construction of D (x; p) and corresponding estimator

We want to construct polynomial approximation of function f(x;p;) = [p; — e ] on [0, 1] under
smooth regimes. The resulting two-step polynomial estimator, has two characterizations, depending
on where p; is. Let A = (¢ Inn)/n.

Case 1: p; < efAand §; € U(p;;c1,¢1) = [0,2A]. We consider the function g(y) = [p; —
€“2Ay|™ by substituting 2Ay = x into f(z;p;) = [pi — e“x]". Let Hk (y) be the best polynomial
approximation of g(y) € C[0, 1] with order K, i.e. Hx (y) = arg minpe 1, maxycjoq | 9(y') —
P(y')| and denote it as Hg(y) = Zj‘io ajy’.  Then Dg(z;p;) = Hg(z/(24)) =
ZJK:O a;j(2A)~Iz3. Once we have the polynomial approximation, we estimate with the uniformly
minimum variance unbiased estimator (MVUE) to estimate D (§;; p; ).

Drc(Gis pi) Za] (24) JH (18)

Computing the a;’s can be challenging, and we discuss this for the general case when P is not
known in Section 2.2.

Case 2: p;, > efAand §; € [e °p; — Ve *p;A, e p; + /e ¢p;A]. In this regime, the best
polynomial approximation D (x; p;) of [p; — eSz|™ is given by

=

—j+1 pi —€x

D (;p;) 5

% Ve epid) T (z — e i) +
7=0

where 7;’s are defined from the best polynomial approximation R (y) of g(y) = |y| on [—1,1]

with order K: Ry (y) = Zﬁio 7;y7. The unique uniformly minimum variance unbiased estimator
(MVUE) for (¢q; — p;)? is

J . k—1 h
i) £ 3 (1) 0 T (a7
=0 h=0
shown in Lemma 11. Hence,
X j+1
D (x;pi) = (Z i (Ve pid) 7T g (@) + gre-p, (q))) :
7=0
The coefficients r;’s only depend on K and can be pre-computed and stored in a table.

B Details of Experiments

We implemented both plug-in estimator and Algorithm 2. Note that the coefficients of bivariate
polynomial ug (%), vi (z,y) on [0,1]? and Rx (t) on [—1, 1] are independent of data and c. We
pre-compute the coefficients and look them up from a table when running our estimators. Using
numerical computation provided by Chebfun toolbox [41], we obtained the coefficients of Ry by
Remez algorithm, and the coefficients of bivariate polynomial ux, vk by lowpass filtered Cheby-
shev expansion [24]. The time complexity of Algorithm 2 is O(n In? n).

We compare the proposed Algorithm 2 and the plug-in estimator on synthetic data (Appendix B.1),
and demonstrate the (g, §) regions for some of the popular differential privacy mechanisms and their
variations (Appendix B.2). All experiments are done on a Macbook Pro with Intel® Core™ i5
processor and 8 GB memory. Our estimator is implemented in Python 3.6. We provide the code as
a supplementary material.
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B.1 Synthetic experiments

Although in the analysis we make conservative choices of the constants ¢y, co and cs3, Algorithm 2 is
not sensitive to those choices in practice and we fix them to be ¢; = 4, co = 0.1 and ¢3 = 1.5 in the
experiments. The degree of polynomial approximation is chosen as K = |c3In(n)|. Figure 1 (a)
illustrates the Mean Square Error (MSE) for estimating d. (P||@) between uniform distribution P
and Zipf distribution @, where the support size is fixed to be S = 100, Zipf(a) o 1/i%, and
a = —0.6 for i € [S]. The ¢ is fixed to be e = 0.4. Figure 2 shows results for a different choice
of ¢ = 0.2 (left) and different distributions of Zipf and mixture of uniform (right). Each data point
represents 100 random trials, with standard error (SE) error bars smaller than the plot marker. This
suggests that the Algorithm 2 consistently improves upon the plug-in estimator, as predicted by
Theorem 4.

(a) (b)

—+— Plug-in Estimator
Algorithm 2

—— Plug-in Estimator
Algorithm 2

MSE

sample size n sample size n

Figure 2: (a) and (b) show the proposed minimax optimal estimator in Algorithm 2 consistently
improves upon the plug-in estimator on synthetic data. Each data point represents 100 random
trials, with standard error (SE) error bars smaller than the plot marker.

B.2 Detecting violation of differential privacy with Algorithm 2

We demonstrate how we can use Algorithm 2 to detect mechanisms with false claim of DP guaran-
tees on four types of mechanisms: Report Noisy Max [25], Histogram [26], Sparse Vector Technique
[8] and Mixture of Truncated Geometric Mechanism. Following the experimental set-up of [11], the
test query and databases defining (Q, D, D’) are chosen by some heuristics, shown in Table 1. How-
ever, unlike the approach from [11], we do not require to know the size of the support .S, we don’t
have to specify candidate bad events £ C [S], and we can estimate general approximate DP with
6 > 0. Throughout all the experiments, we fix ¢; = 4, co = 0.1, ¢3 = 0.9, and the mean of number
of samples n = 100000. For the examples in Report Noisy Max, Histogram, and Sparse Vector
Technique, we compose 5 and 10 queries together to form a one giant query. There are several cate-
gories of queries and databases to be tested, each represented by the true answer of the 5 queries in

the table. When testing, we test all categories, and report the largest estimate 6 for each given €.

Table 1: Database categories and samples [11]

Category [Q1(D),...,Q5(D)] [Qi(D'),...,Q5(D')]
One Above [1,1,1,1, 1] [2,1,1,1,1]
One Below [1,1,1,1,1] [0,1,1,1,1]
One Above Rest Below [1,1,1,1, 1] [2,0,0,0,0]
One Below Rest Above [1,1,1,1,1] [0,2,2,2,2]
Half Half [1,1,1,1,1] [0,0,0,2,2]
All Above & All Below [1,1,1,1, 1] [2,2,2,2,2]
X Shape [1,1,1,1,1] [0,0,1,1,1]

Report Noisy Max. For privacy budget €, Report Noisy Argmax with Laplace noise (RNA+Lap)
adds independent Lap(2/¢¢) noise to query answers Q(D) and return the index of the largest noisy
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query answer. Report Noisy Argmax with Exponential noise (RNA+Exp) adds Exp(2/eg) noise
instead of Laplace noise. Their claimed level of (g¢)-DP is correctly guaranteed [25, Claim 3.9 and
Theorem 3.10]. On the other hand, Report Noisy Max with Laplace noise (RNM+Lap) or Report
Noisy Max with Exponential noise (RNM+Exp) return the largest noisy answer itself, instead of
its index. This reveals more information than intended, leading to violation of claimed (g, 0)-DP.
Figure 1 (b) and (c) show (e, ) regions for the above variations of noisy max mechanisms for privacy
budget ¢g = 0.3. As expected, for each g, RNA+Lap and RNA+Exp satisfy (g, 0)-DP, whereas

RNM+Lap and RNM+Exp have § > 0.

Histogram. For privacy budget ¢y, Histogram takes histogram queries as input, adds independent
Lap(1/ep) noise to each query answers, and output the randomized query answers directly, which is
proved to be (g9, 0)-DP [25]. As a comparison, Histogram with incorrect noise adds incorrect noise
Lap(gp). Note that as we use histogram queries, we require Q(D) and Q(D’) to be different in at
most one element, which is tested on One Above and One Below samples as shown in Table 1. With
the setting 9 = 0.5, Figure 1 (d) shows that the incorrect histogram is likely to be (1/£¢, 0)-DP.

Sparse Vector Technique (SVT). We consider original sparse vector technique mechanism SVT [8],
and its variations iSVT1 [42], iSVT2 [43], and iSVT3 [44]. They are discussed in Section 1 and also
studied and tested in [11]. Figure 1 (e) shows that SVT is likely to be (g9, 0)-DP. However, iSVT/
and iSVT?2 are not likely to be pure differentially private for e € [0, 1] with budget ¢g = 0.5. As
discussed in [8], iSVT3 is in fact (@50, 0)-DP, where N is the bound of number of trues in the

output Boolean vector and set as N = 1 in this experiment. Figure 1 (e) shows that with 6=0,¢eis
likely to be in the range [0.8, 0.9], which verifies the theoretic guarantee.

Mixture of Truncated Geometric Mechanism (MTGM) With privacy budget €y, Truncated Ge-
ometric Mechanism (TGM) proposed by [45] is provably to be (gg, 0)-DP. With probability privacy
budget g and &y € [0, 1], Mixture of Truncated Geometric Mechanism (MTGM) outputs the original
query answer with probability dg, and outputs the randomized query answer with probability 1 — dg.
MTGM can be proved to be (g9, do)-DP by composition theorem. Note that TGM and MTGM both
take single counting query as query function Q. In the experiment, we consider the single counting
query with range {0, 1,2,3}. Figure 1 (f) shows that MTGM is likely to be (£, do) differentially
private.

C Proofs

C.1 Auxiliary lemmas

C.1.1 Lemmas on Poisson distribution

Lemma 1 ([46, Exercise 4.7]). If X ~ Poi (), then for any § > 0, we have

P(Xz (1+6)/\> < (ﬁ)A < L YEIRY e N3 (19)
IP’(X < (1—6)/\> < (<1_66§1_6)A < e N2 (20)

Lemma 2 ([46, Exercise 4.14]). Suppose X ~ Poi (A1), Y ~ Poi(X\2), and Z = aX + Y, where
a > 1is a constant. Then E[Z] = a)l; + Ag, and for any 6 > 0, we have

]P)(Z 2 (1 + 5)(04)\1 + )\2)) g 6752(11)\1*‘1’/\2)/3 \/ 6*5(01)\14’)\2)/3 , (21)

A

P(Z < (1= 8)(ah + X)) e @rr) 2 .

Lemma 3. Suppose ng ~ Poi (nq), then

ge™" ,0<q<+
Bla-al € | [VEVE] ezt @)
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Hence,

1 .
s(any/2) < Ela-a*] < (any/2) - 24)
n n
Proof. Let A = ng, then
R 1 = e
Elli-d*] = — > (k-
k=[\]+1 ’
1 e )\k -2 1 e )\k -
D
n k! n k!
k=[A]+1 k=[A)+1
1. o= MeA 1 = MeA
AR S T D Dl
k=[] k=[A]+1
)\LAJ—H@—)\
n|[AJ!
For A = ng < 1, this is ge™™4. For A\ > 1, we use Stirling’s approximation to get
AL FL=2 1 1 ALAFL oA
_ - X .
TLL)\J' |:6)\/27'r:| nL)\JP‘J“’% e— A
A oL . .
isin [1, 1.12] for A > 1, this gives the desired bound. O

By LMJr% e—LAJ

Lemma 4. Suppose ng ~ Poi (nq), then

E[[p—edt — [p—eq]*] < ¢ min {q,e7p, \/g,\/? b (25)

[(p— eq)+lp—eq (p—eq)+p—eq| ]
2 2

(E[ lp—eql] —Ip— 68Q|) :

Proof.

E[lp—eql" —[p—eq)"]

If p > e®q, then

3 (Elp—cal] - lp-eal) = 5 (B[b-<dl- - c0)])

(= d) = (p— e*q) + 20e“G — "] )

INA
)
o
N
(=)
>
e
N————

where the second equality is because of the fact that z = [z]* — [—z]* and |z| = [2]T + [—2]T,
the first inequality follows from the fact that [z]™ is monotone, and the last inequality follows from
Lemma 3.

If p < e°q, then

3 (Bl - cdl] ~lp-cal) = 5 (B[~ <l - (- p)])
= % (E[(°a—p) — (c"a—p) +2lp— e ]
= E[[p—eq"],
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Now we construct new random variable p by ng = ne™¢p + Z, where Z is independent of p and
Z ~ Poi(n(q — e p)). Hence, e ¢p < ¢ with probability one. And the marginal distribution
satisfies ne=¢p ~ Poi (ne~°p). We have

Ellep-d"] < E[lep—e4l"]

e—¢€
< (TS,

where the first inequality follows from that fact that [z] T is monotone, and the last inequality follows
from Lemma 3. U

Lemma 5. Suppose ng ~ Poi (nq), then for any p and q, we have

e p
-

Var( [p—e® g™ ) < (26)

~

Proof. Casel: If ng < land e “p > gorifng > 1and ne p > |ng| — 1:

Var([p—eg(j]"') = iI;fE([p—eE(j]"‘ —a)2

< E(p-edt —lp-eqt)’
E((p—esd)—(p—eEQ) . Ip—esdl—lp—eEQI)2

2 2
elg—ql |lp—edl—Ip—eql| 2

< E( 5+ 5 )
sermy 14— al | 13 —q|\2

< ER(Fo—+ o)

= E(i—q)
eQaq

- n

< &P

<

where the last step follows from the assumption that e =*p > q.

Case2: If ng<land e p <qorifng>landne *p<1:

In both cases, ne~¢p < 1, and we have

€

e, a4 _ ] meFp wp. e ™
[ne™"p = nd] { 0 wp. l—e™™ ~

which is a Bernoulli random variable. The variance of it is

626

Var ([p - eacj]+) = ﬁVar ([ne_ap — n(j]+)
= P
15
P o< =2
n

<

where we used the assumption that ne *p < 1.

Case3: Ifng > 1land 1 < ne °p < |ng| — 1:
Let A\ = ng, and denote the random variable X ~ Poi ().
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If 1 <ne¢p < |ng| — 1, we know from Lemma 1 that
P(X <ne~fp) < e Prlne v, @7)

where Dy, (k|jm) £ m — k + kIn(k/m).

We have
U S G AL Elc
k=0

= p2P(X < ne_ap) — 2eaquP’(X <ne °p-— 1)
2
+?IP’(X < ne °p-— 1) + ezSQQIP’(X <ne p-— 2)
= pz]P’(X < ne_ap) — 2eaquP’(X < ne_ep) + 2eapq]P’(X = Lne_gpj)
626(] 625(]
—|—TIP’(X < ne °p) — T}P’(X = |ne~p])
+e*¢*P(X < ne °p) — e*¢°P(X = [ne °p)) — e*¢’P(X = |ne °p| — 1)
2
— P -2 pr+ L e R)P(X < ne )

n
625

625 ne—¢
e2€q2_ Q|_ pJ)]P)(X: L

~ ne*EpJ)

+(2e“pg —
eQaq e
S ((66(] _ p)2 V. >67DKL(ne pling) )
n

Lety =q/(e °p),as 1 <ne °p < |ng| — 1, we know y > 1.

We have
2e £
€ 9,-Dxu(neplng)  _  CPY —nep(y-1-Iny)

n n
£

< &P

b
n

where we used the assumption that ne~¢p > 1 and the inequality that ye~(*~1-"%) is bounded by
some constant for y > 1.

We have

)ZB—DKL(ne’EMIM) — _ 1)2p2e—ne’5p(y—1—lny)

p

)
n

(efq—p

a

g

<

where we used the assumption that ne~p > 1 and the inequality that (y — 1)2e~*(=1-10v) < 1 /3
forz,y > 1.

It suffices to show that fy(z) = Inz — 2(y — 1 — Iny) + 2In(y — 1) is bounded by some constant
for z,y > 1. Indeed, wheny — 1 —Iny > 1, fi(z) = 1/x — (y — 1 —Iny) < 0. f,(x) is
monotonically decreasing and f,(z) < fy(1) = 2In(y — 1) — y + 1 + Iny, which is bounded.
Wheny — 1 —Iny < 1, f,(2) attains maximum at = 1/(y — 1 — Iny). In this case, we have
fy(xz) <2In(y — 1) —In(y — 1 — Iny) — 1, which is also bounded.

U
Lemma 6. Suppose ng ~ Poi (nq). Then,
. 2 2
P(e°q ¢ U(e**q;c1,01)) < e s S Tajs (28)
and
) . P
PG U(egena) < — . (29)
n 1
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Proof. The second inequality is exactly [21, Lemma 1]. We now prove the first inequality.

If g < @, we have

P (es(j ¢ U(e*q: e, cl)) = P (n(j > 2c1e” ¢ lnn)
< P (Poi (cie™fIlnn) > 2¢1e”°1n n)
S o (;16735 In n 7

where we applied Lemma 1 in the last inequality.

Ifqg > @, we have

gql gql
PG U o) — P <q s eqr ,/M) i <q < etq- ./M)
n n

< P (Poi (ng) > ng + \/clqe—fnlnn) +P (Poi (ng) < ng — \/clqe—anlnn)
_c1e flnn ng _c1e flnn ng

S e nq 3 +€ nq 2

< 2

— ncle*5/3 :

C.1.2 Lemmas on the best polynomial approximation

The first-order and second-order symmetric difference with function p(z) = /x(1 — x) are defined
as

Biof@) 2 flo+ 5~ je - 25, (30)
and
Aj f(z) = fla+hp(@) = 2f(z) + f(z — hy(2)) (31)
respectively.

For function f(z) with domain [0, 1], the first-order Ditzian-Totik modulus of smoothness is defined
as

we(fit) & sup AL, f(@)]oo 32)
0<h<t
and the second-order Ditzian-Totik modulus of smoothness is defined as

wi(f,t) £ sup A, f(2)lloo - (33)
0<h<t

The following lemma upper bounds the best polynomial approximation error by the Ditzian-Totik
moduli.

Lemma 7 ([47, Theorem 7.2.1 and 12.1.1]). There exists a constant M (r) > 0 such that for any
function f € C[0,1],

A0 S MW7), D>, (34

where AL[f;I] denotes the distance of the function f to the space polyy, in the uniform norm
| lloo, I on I C R. Moreover; if f(z) : [0,1]? — R, we have

1
ALS0.1P) € Mwfyp(fp), L>r, (35)

where M is independent of f and L, and Ar[f;[0,1]?] denotes the distance of the function f to the
space poly? in the uniform norm on [0, 1]%.
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Lemma 8. For f(z) = [p — e“2z AT, for some A > 0, p € [0,2e°A], z € [0,1], and any integer
K>1,

p 7R < TR
_ ecEA— ‘ B 2 . p(2€€A - p) £
wf,(f,K D= p(2KA = 1+11§2 S 5 S 15[{2 S mm{p’T € A_p}’
A —p 1fK25ﬁ51
where wi(f, t) is defined in Eq. (33).
Proof. Let g(x) := |p — 2e*Ax|.
Ao f(@) = [p—2e°Aa + ho(a)]" = 2[p — 2e°Aa]™ + [p — 2e* Az — hep(z))] "
B (p — 2¢*A(z + hep(2))) — 2(p — 2¢*Az) + (p — 2¢°A(z — hp())) N
B 2
|p — 2 Az + hop(x))| — 2|p — 2¢°Az| + |p — 2¢* Az — ho(x))|
2
1
= §A;2w9(33)
Hence,
2 Lo
w(p(f? t) = 5&)@(‘9,1‘5) (36)

It follows from [21, Lemma 12] that, for some A > 0, p € [0,2e¢A], z € [0,1] and any integer
K > 1, we have:

p 1
2p %A = TIRZ
2 -1\ _ 24/p(2e€A—p) 1 P K?
w9, K77) = K THK? = 2R = T4k?
2e°A — <P <
€ p T+KZ = 2eena =

which implies the desired bound.

t
Lemma 9. Suppose f(x) = [\/x —/a]*, z € [0,1] and a € [0, 1]. Then
WISt < (37
N
Similarly, suppose f(z) = [y/a —/x]T, z € [0,1] and a € [0, 1]. Then
VLD < . (38)
M= s
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Proof. Let g(z) = |/ — /al.
Al f@) = |fa+

o

o )

2
1 1 he(z) \/ he(z)
< v Z \/ kel A -
S Vhetl@ g et T
1 1 ho(x)
= 7v1 g €T + —
] N o PR e ey
1 1 ho(x)
< SVieg(w) +
2Vt S | e e 2t o k()2
1 hv1l—zx
< =Vl gx)+ —=
< _t
— \/§ b)
where we used the fact that v/ + V¥ < +yand [21, Lemma 11] for smoothness of g. O

Lemma 10 ([20, Lemma 27]). Let p,(z) = >_.'_, a,x’ be a polynomial of degree at most n such
that |p,, ()| < A for x € [a,b]. Then

1. Ifa+ b0, then

bl /b "
a] < 274 a—Qi- (‘b—i-a +1)7 v=0,1,--.n. (39)
—a
2. Ifa+b=0, then
‘avl S Abiv(\/(2)+1)n7 U:O,l,"',n. (40)

C.1.3 Lemmas on the uniformly unbiased minimum variance unbiased estimator
Lemma 11 ([21, Lemma 18]). Suppose nX ~ Poi(np), p > 0, ¢ > 0. Then, the estimator
J
gj,q<X)éZ() Y- kH(X——) 1)
k=0

is the unique uniformly minimum variance unbiased estimator for (p — q)?, j > 0, j € N, and its
second moment is given by

J N 2 k1.1 . . 2
2 i oy pTk! 4 (DY n(p Q) .
E|(9:0(X)"] = k§70 (k) (-0 = (1) L (—T) assuming p > 0 , (42)
where L,,(x) stands for the Laguerre polynomial with order m, which is defined as:

Lin(z) = Z (7:) (_]j)k. (43)

k=0
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IfM > max{mpTw,j}, we have

]E[(gj,q(X))ﬂ < (%f. (44)

n

When k = 0, T[EZh (X — £) 2 1. When p = 0, g;4(X) = (—q), E[g;o(X)]” = ¢¥

Lemma 12. Suppose (n;ﬁ, nq) ~ Poi (np) x Poi (ng). Then the following estimator using (p, q) is
the unique uniformly minimum unbiased estimator for (eq — p)’, j > 0, j € Z:

j N k-1 . i—k
SOTE Yecorfien e
k=0 i=0 m=0
Furthermore,

- 2¢ J
8j(e qu)> 46)

EA2 < (2(efq—p)2V
,7_((661 p) -

Proof. Tt follows from [21, Lemma 19] and binomial theorem that /Alj (P, §) is the unique uniformly
minimum variance unbiased estimator for (eq — p)?. Now we show IEIAJQ is bounded.

It follows from binomial theorem again that for any fixed r > 0,

(efg—p) = (g —r+r- p)’ (47)
= > @ (g =" (=1 (p—r) 7. (48)
k=0

The following estimator is also unbiased for estimating (eq — p)7,

J
> e Fge o (@)1 g nr(P) . (49)

where g; 4(p) is defined in Lemma 11.

N2 . 2e e
Define M, = % V3§, My = ”(PTjTV Vj, M =2(efq — p)? Vv Sg(e2nqw)) and set r = <42,

Denote | X||2 = y/E(X — EX)?2 for random variable X. It follows from Lemma 11 that

J .
A J\ e . R
e < 3 (1)t lon s @l log-r )l

k=0

5 7Y ek (2Mra K2 (o0 p\ U2
k n n

k=0

~ 2M1q 2M2p ’

o n

A

IN
<l
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C.2 Proof of Theorem 1

In this section we prove a more general statement in the following theorem, in which case Theorem 1
follows as a corollary.

Theorem 5. For any ¢ > 0, support size S € Z, and distribution P € Mg, the plug-in estimator
satisfies

eep; e
Jup Eold:(PIQn) - d(PIQ)P (sz YAy (50)

with expected number of samples n. If S > 2, we can also lower bound the worst case mean squared
error as

b Eolde(PQn) - d(PIQ)P (Zpl \/7)2 51)

Note that
S

olld:(PIQu) — d-(PIQP] = (X Eallps— al*] ~ o —eal*) + Var(d:(P|Qu) - (52)

=1

We first claim the following upper bound for all P:

S 15
> Eq[lpi —efailt] — [pi — efqilt < sz M (53)
i=1

where the inequality follows from Lemma 4.

For the upper bound of the variance term in Eq. (52), we have

S 5 15
Var(d.(P,]|Q)) ZVar i —e“qi) " Z = % ) (54)
where the inequality follows from Lemma 5.
We next construct ) to get the lower bound. Let
e °p; , 1€ S+
¢ = 1-Q(S4) . (55)
{ 5] SJ , 1€ 8-

where S is a set of indices satisfying Q(S+) = Zi€S+ g <e -,

Note that each term in the bias of Eq. (52) is non-negative via Jensen’s inequality, which gives

S
D Eollpi— €@l —lpi — ]t = & Y Eqllai—ail'] (56)
i=1 €S,
2 > {mny <) 57)
i€S4

where we used Lemma 3. Note that we can choose @ such that |.S | = S/3. This implies the desired
lower bound when plugged into Eq. (52).

C.3 Proof of Theorem 2

In this section we prove a more general statement in the following theorem, in which case Theorem 2
follows as a corollary.
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Theorem 6. For any P, suppose cInS < Inn < Cln(e™*¢ Zle VeEp; A pivnlan) for some
constants ¢ and C, then there exist constants c1, co and c3 that only depends on ¢, C' and € such that

sp Eq| |- v (PQn) — d-(PIQ) (sz CPOT (s

QeMs nlnn
for K = c3Inn and where 67571(701762 is defined in Algorithm 1.

Define good events, where our choice of the regimes are correct as
F £ {{Z : (ji,l > U(pi;Cl,CQ)} Q S+ } n {{Z : (jz',l < U(pi;Cth)} Q S_}
{10+ dia € Ulpsser,e2) € {5 ai € Ulpiser, )} § (59)

where ST = {i:e°q; > p;} and S~ = {i : e5¢q; < p;}. Decompose the error under the good events
as

& & ) Alpi-caa)t — i - el (60)
icly

82 é Z {DK(qAZ,Qapl) - [pl — eeqi}"'} . (61)
i€y

where the indices of those regimes under the good event are

{i:Gi1 <U(pisci,c),e°q; < pi} (62)
{i: @1 € Upiser,e2),qi € Upiser,en)} (63)

We can bound the squared error as

B[ (dz i cr.e0 (P Qn) — d=(P[Q))° ]

I
I

> 1>

E[ (- i cr.co (P Qn) — d=(P[|Q))* I(E) ] + P(E)
E[(&1 + &)%) + P(E°)
2E[(£1)%] + 2E[(&2)%] + P(E°) | (64)

ININ A

The last term on the bad event is bounded by 3S/n” as shown in the following lemma, and a proof
is provided in Appendix C.3.1. This is a direct consequence of standard concentration inequality for
Poisson variables.

Lemma 13. Let 3 = mm{ 32 (c1—ca)” , (‘5_3\/6)2 }, then for the good event E defined in (59),

4cq
C 3 S
P(E°) < ol (65)
The first term is bounded by €€ /n, as
S 8 £
E[(&)?2] = E[Var(&|L) + (E[&|1)Y] = E[Var(&|L)] Z < < (66)

where we used Lemma 5 and the fact that E[£;|];] = 0 with probability one.

The second term is bounded by the following lemma, with a proof in Appendix C.3.2.
Lemma 14. For ng ~ Poi (nq) and q € U(p; c1, ¢1), there exists a universal constant B > 0 such

that
= e 1t 1 /efpecpInn
[EDk(Gp)] = lp—ead™| S pAg\/——— and (67)

- BEefc; Inn R
Var(Dic(@ip)) S = +ea), (68)

where Dy (p; q) is the uniformly minimum variance unbiased estimate (MVUE) defined in Eq. (18),
Ul(q, c1) is defined in Eq. (5), and K = c3lnn for some cs < c1.

24



We have

BEefc;lnn 5 1 Jefp;ciInny?2
E[(&)?] < —(p; “qi ( i N\ — Z—) 69
(&% < ; ———(pi+c"ai) + Z;p =\ (69)
c1lnn S efpict \ 2
< 1 e/ e _ iC1
S piempe (D (le M zninn) 0)
Substituting bounds (70), (66) and (65), we get that
S
~ 2 clnn efp;ic1 \2 é
_ < € )
E[ (d67K761762 (PHQn) dE(P”Q)) ] ~ n1_03 lnBe + (;pl A an 1117’L> + n 1)
where we use the fact that % < nfjcl%es(ee +1).
As Inn 2> InS, one may choose c¢; large enough to and let ¢ = ¢;/2 to ensure that n% <

nf_lcl%e%. Aslnn < In (6*5 Zle Veep; Apivnlin n) , one may choose c3 small enough to

~ cgnlnn

S eap, S esp_ GES
i o< v/ R ) 72
Zp,/\ nlnn — ; nlnn — nln (72)

=1

2
s = . .
ensure nfjcl%e% < ( > o Di Ny T ) . The worst case of P result is proved upon noting

Note that in the worst case of P, we do not require Inn 2 In S, as we can take c¢; large enough and
co = ¢1/2 to ensure % < e85

~ nlnn"

C.3.1 Proof of Lemma 13

Let E4 = {{i 2 Gin > Ulpiser,ee)} € ST } E, = {{i 2 Gin < Upiser,c2)} C S‘} and
E; = {{z 2 g1 € Ulpi,er,c2) C{iq € Ulpi,er,c1)}} } We first show P(E{) < Sn=" for
B < (c2)?/(3cr).

s
P( UfGia > Upiscr, c2), €0 < pz‘})

=1
S Ifl_ﬂeas},{P({(ji,l > Ul(pisc1,¢2),€°qi < pi})

P(ET)

IN

= S meaSX]P’({Poi (ng;) > nU(pi;c1,¢2),qi < € °pi})

< S meaSXP({POi (ne™%p;) > nU(pi;c1,¢2)})

If p; < (c1e°Inn)/n, it follows from Lemma 1 that

P({Poi (ne™p;) > nU(pi;c1,¢c2)}) = PHPoi(ne ®p;) > (c1 + c2)Inn})
< P{Poi(cilnn) > (¢1 + ¢2)Inn})
S 67 ;Cgl Inn )

If p; > (c1e° lnn)/n, it follows from Lemma 1 that

P({Poi (ne™*p;) > nU(p;;c1,¢c2)}) = P{Poi(ne ®p;) > ne °p; + \/cee p;nlnn})
cglnn
< e s

Together, these bounds imply that P(E$) < Sn=5.

Next, we show P(E$) < Sn~#, for positive constant 3 < ¢2/(3c;). Recall that

S
P(E3) = P( UG <U@iser, 1), i Zpi}) :

i=1
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If p; < (creflnn)/n, P({Gi1 < U(pisci,c2),ep; > ¢;}) = 0. If p; > (c1e® Inn)/n, it follows
from Lemma 1 that

P({gi1 < Ul(pi;cr,c2),€°qi > pi}) = P({Poi(ng) < ne “p; — /e *pinlnn,q; > e “p;})
< P{Poi(ne p;) < ne p; —\/cae fp;nlnn,q; > e °p;})
S o co l2nn

As ca/2 > c2/(3c1), we have P(ES) < Sn=5.
Finally, we show that P(E§) < Sn~" for 8 < min{(c1 — ¢2)?/(4e1), (y/e1 — v/c2)?/3}. Recall

S
P(ES) = P J{@i1€Upiicr,ca),q ¢ Ulpiser.a)}) -

i=1
If p; < (creflnn)/n,

P({gi,1 € Upisc1,¢2),q € Upiscr,e1)})

P({Poi (ng;) < (c1 + c2)Inn,ng; > 2c;Inn})
P({Poi (2¢1Inn) < (c1 + c2) Inn})

2
(c1—c2)
- Inn

IN

IN

e
Ifp; > (c1eflnn)/n,

P({Gi1 € U(ps;ci,c2),qi > U(piser,cn)})

P({Poi (ng;) < ne °p; + \/cae~spinlnn,ng; > ne p; + \/cre sp;nlnn})

< P{Poi(ne  p; + Ve epinlnn) < ne °p; + \/cae fpninn})
2
_(ermveneEpminn \T 1 o ——
< e <ne_api+\/618_5mn1nn) 3(ne”“pi+y/cre~cpininn)
(vei—vep)?inn
< e T

Similarly, we can show that P({¢; 1 € U(pi;c1,¢2),¢ < U(ps;c1,c1)}) < e—(VEi—/@)? Inn/3.

C.3.2 Proof of Lemma 14

Let A = (¢1 Inn)/n. We divide the analysis into two regimes.

Casel: p <eAand g € U(p,c1,c1) = [0,2A].

First we analyze the bias. As we apply the universally minimum variance unbiased estima-
tor (MVUE) to Dg(g;p), the bias is entirely due to the functional approximation. Recall that
we consider the best polynomial approximation Hk (y) of function g(y) = [p — e°2Ay|™ on
[0,1] with order K, i.e. Hg(y) = argminpg, o)y, MaX, (o 1] |9(y') = P(y')|. Denote it as
Hg(y) = Z]K:o ajy’. Then Dg (x;p) = Hg (z/(2A)). It follows from Lemma 8 that there exists
a universal constant M > 0 such that for all K > 1,

sup ’DK(x;p) —[p—e‘z]" | = sup ‘ Dy (2Ay;p) — [p — e*2Ay] T ’
z€[0,2A] y€[0,1]
= sup [Hk(y) —g(y)]
y€[0,1]

IA

1 Jefcplnn
M (p/\ K“ . ) . (73)

Next to analyze the variance, we upper bound the magnitude of the coefficients in Dy using
Lemma 10, and upper bound the second moment of the unique MVUE using the tail bound of Pois-

R . . K i TTi=1
son distribution in Lemma 11. As the universal MVUE is of the form > ;" a;(2A)7 o —
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k/n) as shown in Appendix C.1.3, The variance is upper bounded by

Var(Dg(Gp)) = Var(zaj(m)—j 1:[(@_2))
i=0 k=0

INA
/N
2
<$
—
[\
>
N
:
/2
Q
=
—~
—
SN
\
S|
S~—
SN—
N——
i
N——
N}

K i9
< 1 (oea(1ad))
< max oyl Z;(QA) 4Aq (74)
Jj=
2 4 )
= ol (2 (0))
iz
¢ (N 40h)
_ 24 qy\s
B og;?gK'&J‘ A(]O (A) )
K-1
q i\?
< ! -_—
= 0<_]/SXK|G/J‘ A ( ‘ 022)
=
S epial 75
S e A (75)
< BK e‘cy lnn(eaq) ,

where B is some universal constant, we use ¢ < 2A and A = (¢1 Inn)/n in the last inequality, and
(74) follows from Lemma 11, (75) from Lemma 10. Concretely, it follows from Lemma 11 that for
Ms = max {QnA, K} = 2nA,

var(JT@~ %) < B([Ta-5)* < 220y = (aagy’
k=0 k=0

To apply Lemma 10, we first transform the domain of the polynomial approximation to be sym-
metric around the origin by change of variables. We consider Hx (22) = Z;K:o a;jz?, which is a
polynomial with degree no more than 2K and satisfies

sup |Hg(2?)] < MiefA.
z€[—1,1]

This bound follows from a triangular inequality applied to max,cjo1]|9(y)] < €A and
supyeo) [Hi (y) —9(y)| < e*A. It follows that there exists a universal constant //; > 0 such that
supyepo,1) [Hr (y)| < Mie®A. It follows from Lemma 10 that forall 0 < j < K,

laj| < MiefA(V2 + 1) (76)

Case2: p>e“Aand g € [e °p — /e epA, e p+ /e epAl.

First, we analyze the bias. In this regime, we claim that the best polynomial approximation D (x; p)
of [p — efx]™ is given by

e K . . — ef
Dy = % Zr] VeepA) Ve pA) T @ —emop) + p—; . (77)
7=0
where r;’s are defined from the best polynomial approximation Rk (y) of ¢g(y) = |y| on [—1,1]

with order K: Ri(y) = Zﬁio r;97 . And it is well known (e.g. [48, Chapter 9, Theorem 3.3])
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that there exists a universal constant M3 such that |Rg (y) — |y|| < M3/K, forally € [—1,1]. As
[a]t = (1/2)a + (1/2)]al, the optimality of Dk (x; ¢) follows from

e 1 o1y (/e mpA) T (@ — e=*p) — p— ea

| Dic(a3p) — [p—ea]t| = | 5
(p—ez) — (p—€°x)
+ 5 |
68 K i1 .
= S (V) T a -y — el
§=0
B \/TpA‘R Tr—e 5) |e’5p—x“
B \/e epA \/e*EpA
B \/eEpA‘R
= k(

where we let t = e p + y+/e~pA, and we want small approximation error in y € [—1, 1]. This
gives the desired bound on the bias:

Ve pA

M;s\/eEpA < 1 /efpcy Inn

Dic(w5p) ~ [p— e“alt| = |Re(y) — Iyl| <

Next, we analyze the variance. Recall from Lemma 11 that g; .(§) defined as
7 . . k—1 h
w0 ¢ £ 6
=0 h=0

is the unique uniformly minimum variance unbiased estimator (MVUE) for (¢ — c)j ,j>0,7€N.
Hence,

K
- e i1 . .
Dictasp) = 5 (3o (Ve pB) 7 g0y @) + 91.0-+5(@) (79)
7=0
Letaj =r;for j=0,2,3,...,K and a; = 1 — 1 and we can write EK(as;p) as
5 €€ K i1
Dg =5 Za] e EpA - Gj.e—ep(d) -
7=0

It is shown in [49, Lemma 2] that |rj\ < 23K for 0 < j < K. So we can safely say

maxo<;<x |a;|? < 4- 255 Tt follows from Lemma 11 that for My = max{w, K},




Note that if ¢ = 0, the variance is 0. We consider the case g # 0. The variance is

- e K —j+1 A
Var(Di(z;p)) = —Var()_a; (Ve pA) T gemep(@))
j=0
e 1 & . RS T )2
< S (Xlal(Vepa) Vaw(gj,efsp(q)))
§=0
JZO "
€96K . 2Maq 32
= 2 pA(Z(ne*EpAP)
j=0
K+1_1 2
< e96K ¢
< e pA( — ) (80)
< L(E‘Bc)QKeSpA
= (e—1)
< BKC;LlnneE
~Y n b

where ¢ = max{+/2,2,/c3/c1}, and B > 0 is some universal constant as c3 < c;. The inequality
in (80) follows from +/2Myq/(ne=¢pA) < ¢, which follows from

2K (e—p+ /e cpA) 2K -2e~¢p _ des and
ne_EpA ne—cpA - ne—epA c
= \/5 .

nlg—ep)? _ [20@—e7*p)® _ [2e7°pA
ne~ EpA q N e pA - e pA

C.4 Proof of Theorem 3

In this section we prove a more general statement in the following theorem, in which case Theorem 3
follows as a corollary.

Theorem 7. Suppose S > 2 and there exists a constant C' > 0 such that Inn > ClInS. Then for
any P, there exists a constant C' that only depends on C such that lfz _1pj ANefpj/(nlnn) >

C’( (eflnn)/n + (e 5\/—lnn)/n),then
S Em.
it s Bo| (Pl ~a-(PIQ)[*] 2 (L maySEY L @

d-(P||Qn) QEMs i=1

where the infimum is taken over all possible estimator.

Note that d.(P||Q) = Zf=1 [p; — e®q;]" is well defined even if @Q does not sum to exactly one.
Define a set of such approximate probability vectors as

Ms(¢) = {Q: \zsjqi—lj sc} . (82)
i=1

Later in this section, we use the method of two fuzzy hypotheses from [50] to show that for some
X = Zle p;j A \/€fp;j/(nlnn) and x < e°, the estimation error exceeds x/4 with a strictly
positive probability, under a minimax setting over the approximate probability class Mg (¢) with

¢ =x/(10¢):
inf sip P (|d(P|Qn) - d-(PQ)| =

1
) 2 Pl (83)
d. (P||Qn) QEM s (x/(10e5)) 3

=
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for a sufficiently large n, where we extend the definition of @),, to be Poisson sampling each alphabet
with the appropriate rate. This gives a lower bound on the minimax risk for ¢ = x/(10e°):

> 2
R(S,n,P,¢) 2 _inf  sup Eg [(da(PHQn)—ds(pHQ)” (84)
de(P[|Qn) QEMs ()

2 ~

= % 5 nf Sup Q(‘ds(PHQn)*ds(PHQM2%)
de (P[|Qn) QEMs(C)

2
> X
~ 48

As our goal is to prove a lower bound on the minimax error, which is R(S,n, P,0), we use the
following lemma. We provide a proof in Appendix C.4.1.

Lemma 15. Forany S,n € Ny, 0 < ¢ < 1, any distribution P € Mg, and any € > 0 that defines
the quantity d.(-||-) used in the definition of R(-) in (84), we have

1 1 1
R($,n(1-¢)/4,P,0) > ZR(Sn, P,() - 56—"“—4)/8 — EeQECZ . (85)
This implies that for our choice of { = x/(10e°),

RS- Q/MP0) > LR(Sm P~ 5o 108 - Lo

2

2 2
> X L aaeyaoeys - X
= 192 2 200
z X

2

S e€p
> A —2
~ ;pﬂ V nlnn

where ¢ < 1/10, which follows from x < e®, this proves the desired theorem.

Now, we are left to prove Eq. (83), by applying the following Lemma from [50]. The idea is to
construct two fuzzy hypotheses, such that they are sufficiently close to each other (as measured by
total variation) to be challenging, while sufficiently separated in d.. Translating the theorem into
our context, we get the following corollary.

Lemma 16 (Corollary of [50, Theorem 2.15]). Forany s > 0, ( > 0,0 < [y, 61 < L, A € R, if

there exists two distributions oo and o1 on Q = [q1, . .., qs| € Mg(C) such that
00(Q : de(Pl|Q) < A—s) > 1-fo, (86)
01(Q : d-(P|Q) > A +5) > 101, (87)
and Dy (Fy, Fy) <n <1, then
. ~ 1—p— B —
il sp Bo(Id(PIQ.) ~d(PQ) 2 5) > LITRTA g

d:(P|Qn) QEMs(Q)
where F; is the marginal distribution of Q,, given the prior o; for i € {0,1}.

We construct two hypotheses, satisfying the assumptions with choices of s = x/4 2 Zle D; A

efp;/(nlnn)andn, By, B1 = o(1) such that Eq. (83) follows. We will first introduce the construc-
tion, check the separation conditions in Egs. (86) and (87), and check the total variation condition.

Constructing two prior distributions. Fix the distribution P € Mg, and assume pg =
min;<;<g p;. Let po, p1 be two prior distributions on the parameter () where (),, will be drawn
from, and set

po = Mépl) ® M(()pz) R...® Mgpsfl) @681~ , (89)
po o= p e e euVes (90)
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where

VR D Y o1

. € .
jipy<eetlnn Jipj

> ce€lnn

and ¢ € (0,1) is a constant, D is the universal constant in Lemma 20. Note that this does not produce
a valid probability distribution, as it will not sum to one almost surely. However, this is sufficient
as we can bound the difference in the minimax rate between exact and approximate probability
distributions using Lemma 15. This choice of v ensures that the sum Zle g concentrates around

one. Forap € (0,1), we construct u(p) i € {0,1} depending on p in two separate cases. Our
goal is to construct two prior distributions, which match in the first L degree moments (such that the
marginal total variation distance is sufficiently small), but at the same time sufficiently different in
estimation of d., such that they differ approximately as much as the resolution of the best polynomial
function approximation.

Case 1: p > (ceflnn)/n, for some constant ¢ € (0,1). Define function g(z) = e °p +
(v/(ce~¢plun)/n)x, where x € [—1,1]. Lety;, i = 0, 1 be two measures constructed in Lemma 17.
Lemma 17 ( [49, Lemma 1]). For any positive integer L > 0, there exists two probability measure
vo and vy on [—1,1] such that

1. [tv(dt) = [twe(dt), foralll=0,1,2,...,L;

2 [l uat) — [t w(dt) = Agll—+[-1,1],

where AL [[—t]T;[—1,1]] is the distance in the uniform norm on [—1, 1] from the function [—t]* to
the space of polynomial functions of degree L: poly .

We define two new measures ul(-p),i = 0,1 on [e °p — \/%,eﬁp + \/@] by

ugp ) (A) = v;(g~1(A)). Note that we need the lower bound on p to ensure that this is non-negative.

Let L = dyInn,ds > 1. It follows that

1.
/ tu” (dt) = / tug (dt) = e ~p ; 92)
2.
/tlu(lp)(dt) = /tluép)(dt), Vi=2...,L+1; (93)
epl
/Lp gt ul ) - (- ettal @) = TR ALt -L )
n
S Y e (94)
~ P dnlnn
The last inequality follows from the following lemma, with a choice of L = dyInn for some
constant ds.
Lemma 18 ([51]). For L > 1,
1
Ap([=5 01 = Al [=11]] = AL (1 +o(1) =< £, (95)

where 8, = 0.2802 is the Bernstein constant.

Case 2: 0 < p < (celnn)/n, for some constant ¢ € (0,1). When p is too close to zero,
directly applying the above strategy only gives a lower bound on the difference in d. under the two

31



hypotheses that scales only as p/Inn, and not as y/p/(n1nn) as desired. Instead, we construct an
approximation of f(z;a) = ([a — ez]™ —a)/(e°x).

Our strategy is to first construct two prior distributions 7;"*’s on {0} U [, 1] which are difference
in estimating f(z;a) = ([a — e*z]" — a)/(e°x) (instead of [a — ex]T). The non-smoothness of
f(x; a) near zero allows one to control the hardness of this estimation by choosing 7, while ensuring
the non-negativity of the resulting random variable p drawn from p;’s and also the expectation is

close to g. Concretely, we let ,ugp) to be a measure on {0} U [p/(De®), M|, where g(x) = Mx and
ugq) = 1g""(g7(A)). We first construct two new probability measures 7;"*, i = 0, 1 from the two
probability measures v;"“, i = 0,1 constructed in Lemma 19.

Lemma 19. Let f(x;a) 2 ([a — efz]t —a)/(ex), a € [0,1]. Forany 0 < 1 < 1 and positive

integer L > 0, there exists two probability measure v'* and v;"" on [n, 1] such that

1 [tvl(dt) = [td(dt), foralll =0,1,2,...,L;
2. [fa(dt) = [ ftra)vg*(dt) = Ar[f(zia);(n,1]]

where Ap[f(z;a); [n,1]] is the distance in the uniform norm on [n, 1] from the function f(x;a) to
the space of polynomial functions of degree L: poly .

We construct 7;"“ by scaling down ;" and putting the remaining probability mass on zero. This
ensures that the restriction on [, 1] of 7" is absolutely continuous with 2;"“, and we construct the
Radon-Nikodym derivative to be

e
dv; —
mn,a

dnu,

-+ |3

<1, tenl], (96)

and ;"*({0}) = 1 — &,"“([n, 1]) > 0. This choice of scaling ensures that

It follows that ", i = 0, 1 are probability measures on [0, 1] that satisfy the following properties
L [topt(dt) = [tog“(dt) = mn;
2. [tof(dt) = [tod(dt), foralll =2,...,L+ 1;
3. [la—est]* oy (dt) — [la —et]Tog(dt) = ne*AL[f(x;a); [n, 1]].

Define
I—dl a P o 2clnn ©7)
= nn = — a = —— =
2 ) n D ) s M ) n ’
where D is a universal constant in Lemma 20 and dy > 1 is a constant.
Lemma 20. Ler f(z;a) :== %, a € (0,4], = € [0,1], there exists universal constant D
such that
Ay [f@arisn] 2 (144 ©98)
ria);|—= — .
L ) ) Dv ~ L\/ZL

Let g(z) = Mz and let uz(-p) be the measure on [0, M] defined by ul(-p) = 0"*(97*(A)). Then we
have ;") (A) = Mil"*(A). It then follows that

1.
(p) (p) p
t dt) = t dt) = —
[ = [ =L ©9)
2.
/tlug”)(dt) — /tlué”)(dt), Vi=2...,L+1; (100)
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Jlo=cttul ) ~ [lo= 0 u @) = net M Al fwiay (5, 14100
cecp

> : 102

~ P dnlnn (102)

Separation conditions. In both cases, since we set gg = 1 — ~y, which is defined in Eq. (91), it
follows from Eq. (99) and (92) that

Euo |2 0| = Bui|D 4| = 1. (103)
j=1 j=1
Let
= ]Ell'l [ds(P”Q)] 7EHO [ds(PHQ)] , (104)
¢ = X (105)
10e¢

We know from Eq. (102) and (94) that, by construction, the estimates are separated in expectation:

-1
Cei‘:p
> A J
Xx ij dininn

%

Co|>—‘

XS: cesp;
J

d3nlnn
cecp;
> . J
~ ;pj " dinlnn’

where the second inequality follows from the assumption that pg = min;<;<gs p;. To show concen-
tration of E,,, [d. (P||@)] around its mean, for ¢ = 0, 1, we introduce the events

B = MsOn{Q

4:(P|Q) ~ Ep, [d-(PIQ)]| < T} - (106)

Introduce

F(P) 3 <202nn)2+ 3 <4ce_5pjlnn>

. €1 n
Jipj S et Jipi>

(‘95 ln n

42S1In’n  4ee~clnn
+

n? n

It follows from the union bound and Hoeffding bound that
s

‘qu‘—l’>§ -H%(de

j=1

5 2C2 N 5 X2
exp | — exp | — .
P\"F(P) P\ T8RP
Then we choose parameter ¢ such that p;(EY) can be made arbitrarily small. Since we assumed ¢ €

. S €°pj eslnn e nn
(0,1) and d2 > 1, and from the assumption that ) J;_,; p; A Pi > ¢’ <\/ IT + \/§1> ,

wi(EY)

IN

(PIQ) — B [d-(PIQ)]| > %)

IN

nlnn — n

33



we have

- X
¢ e
s
1 cecp
> _ A J
~ et ij d3nlnn
j=1
c 5 efp
> A 2
- efds ;p] nlnn
>

\/EC, /e*glnn_‘_\/glnn
do n n

1 fce=¢lnn  ¢/Slnn
> . !
~ dzc ( n + n )

> —C'\FP).

Hence, it suffices to take C” large enough to ensure p;(Ef), is as small as we desire for i = 0, 1. So
with this constant C’, we have

po (d=(PI1Q) < By [4:(PIQ)] + 7))
i (de(PIQ) > Eu [d:(PIQ)] ~ 7) 1=, (108)

fo any constant 3y and 31, which satisfy the conditions of Lemma 16 and s = /4.

%

1—5o . (107)

\%

Total variation condition. Let G; be marginal distribution of (X7, X, ..., Xg) under priors p;
for 7 = 0, 1. Denote by 7; the probability measures defined as
i(EiNA .
mi(A) = pilENA) gy (109)
mi (E;)

Let F; be marginal distribution of (X, X, ..., Xg) under priors 7; for i = 0, 1.

Triangle inequality of total variation yields

TV(Fy, F1) < TV(Fy,Go)+ TV(Go,Gr) + TV(Gy, Fr)

MO(A N EO
ko (E

= TV(Go.G1) + Mo(Eo) + pi(EY) .

p1(ANE)

+ TV(Go,Gy) + A) —
‘ 0 1) bup /J1() Hl(El)

T
A

In view of fact that TV (@5, P, ®%_,Q;) < 25_1 TV (P;, Q;), we have
TV(GQ, Gl) < Z TV (Pz (pz )
Szfl ) (1) doInn
, 2
i=1

28
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IN

<

where in the second inequality we applied the following lemmas, assumming ds to be large enough.
Lemma 21 ([16, Lemma 3] when ¢; < celnn/n). Suppose Uy, Uy are two random variables

supported on [0, M|, where M > 0 is constant. Suppose E[U]] = E[U]], 0 < j < L. Denote the
marginal distribution of X where X |\ ~ Poi (\), A ~ U; as F; fori = 0,1. If L > 2eM, then

L
TV(Fy, Fy) < <2SLM) . (110)
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Lemma 22 ([21, Lemma 32] when ¢; > ce®lnn/n). Suppose Uy, Uy are two randqm variables
supported on [a — M,a + M], where a > M > 0 are constants. Suppose E[U}] = E[UY],

0 < j < L. Denote the marginal distribution of X where X|\ ~ Poi (\), A ~ U; as F; fori =0, 1.
IfL+1> (2eM)?/a, then

Iy L+1
e
TV (Fy, F; 2| — . 111
(Fo, F1) < ( a(L+1)> (111)

Since there exists a constant C' > 0 such that Inn > CIn S, S > 2, we can conclude that with
chosen parameters, T(Fy, F1) = o(1).

C.4.1 Proof of Lemma 15

We define minimax risk under the multinomial sampling model for a fixed P as

-~ 2
Ro(S.P) £ it sw Bo | (E(PIQn) - d(Pl@) ] (12
ds(PHQn) QEMS

LetT = T(X 1, X2,...,Xg) be a near-minimax estimator under multinomial model such that for
every sample size n,

sup Eq [(T - ds(PIQ)ﬂ < Ru(S,n, P) + €, (113)
QEMs

where £ > 0.
For any Q@ € Mg((), let Zle q; = A, we have

s
d-(P| SQ ) — ds(ﬂQ)’ < Z |lpi — €“qi/ A" = [pi — e“qi] |
din1 i i=1

s

< Zeaqiﬂ/A—l\
i=1

= €1 — A

< eC.

Now we consider risk of 7" for Q € Mg(¢) under Poisson sampling model, where X; are mu-
tually independent with marginal distributions X; ~ Poi(ng;). Let n’ = Zle X;, we know
n' ~ Poi(n Zle g;). In view of fact that conditioned on n’ = m, (X, Xs,..., Xg) follows
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multinomial distribution parameterized by (m, SLq)’ we have

=1 4%

~ 2
Eq [(T—de(PIIQ)) } (114)
~ 2
= Eq (deE(PH SQ ) +d= (P SQ )—de(P||Q)) ] (115)
i=1qi D1 G
“ Q 2 Q 2
< 2Eq (T —d.(P +2Eq | (do(P —d.(P|Q (116)
o |(T-d |Z§1qi>) o | (2 55 ) (P >)]
~ Q 2 -
< 92Eq (T—dE(P|Zf_1 qi)) 4 2e%(2 (117)
= 2 Z Eq (T d.(P| ))2|n’ = m} P(n' = m) + 2e**¢? (118)
i:l i
< 2 Z Rp(S,m, P)P(n' =m) + 2(e*¢* + ¢) (119)
m=0
< 2(1-P(n' <n(1-¢)/2) + Rp(S,n(1 —¢)/2,P)P(n’ > n(1-)/2))
+2(e%*¢? +§) (120)
< 2Rp(S;n(1-)/2,P)+2P(n' < n(l —0)/2) +2(e** ¢ +¢) (121)
<  2Rp(S.n(1—)/2,P) +2P(Poi(n(l —¢)/2) < n(l —()/2) +2(e*¢* + £)122)
< 2RB(S,n(1— )/2, P) +2¢ "= <>/8+2(626g2+§), (123)

where (120) follows from R (S, m, P) < 1, and the last inequality follows from Lemma 1. Taking
. 2
the supremum of E¢ {(T —d.(P ||Q)> ] over Mg(¢) and using the arbitrariness of ¢, we have

R(S,n,P,¢) < 2Rp(S,n(l—¢)/2,P) +2e "1=0/8 1 2¢%(¢2 (124)
which is equivalent to
Rp(S,n(1-¢)/2,P) > %R(S, n,Q,¢) — e MITC/8 _ 252 (125)
It follows from [15, Lemma 16] that R (S, n, P) < 2R(S,n/2, P,0). Hence,
R(Sn(1- /4 P0) >  Ru(Sn(l1-0)/2,Q) (126)
> %R(S, n,P,¢) — %e_”(l_o/g _ %eZECQ . (127)

C4.2 Proof of Lemma 19
By [21, Lemma 31], there are two probability measures v;"“ and v"“ on [, 1] such that

1.
/tly{"“(dt) = /tlz/g’a(dt),for alll =0,1,2,...,L.

efxr —al—a
|
e

€ J— J—
m( gty — lefx — al a,

efx efx

o efxr—al—a
o (dt) = 2Ap {%;[m 1]} :

which is equivalent to

efx efx efx

_ eyt PRI _ et
/2[(1 e 2a1/{,,a(dt)_/2[a €1 2az/g’a(dt) N [[a ezt —a

The two desired measures are constructed.
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C.4.3 Proof of Lemma 20

Let g(z;a) = % We have
lt —a|l—a 1

glwa) = T —— 5. (128)

By the definition of best polynomial approximation error, for L > 1, we have

|t —al|—a 1

a
A z;a);[—=,1 = inf su h(x
L g( ) [D ] h(xz)ePoly ze[%p,l] 2x 2 ( )
_ inf osup [EZUZO
h(xz)€Poly ze[L 1] x
r—al—a  a
= AL P | ;[5»1]]
1 1
> Iva L2 Sas %
~ 1 0<a< '
where D is from [21, Lemma 30].
Now we consider f(z;a) = W, where a € (0,1/2]. Ase“a € (0, 1]. there exists

D > 0 such that

a

Ay [f(:c;a);[ﬁ,u] > AL {f(m;a);[e_;a,l]} > (ML\/%) > (m%ﬁ) (129)

C.5 Proof of Theorem 4

Define good events, where our choice of regimes are correct as

o R c1+c)lnn _ _ .

B = {{z FPin — € din > la ¥ e)ln n2) (V/bia + esqm)} c {Z Lefq; Spi}} , (130)
o . (c1+c)lnn, ~ _ ..

Ey = {Z ipi1— e < — f(\/pi,l + 68%‘,1)} c {Z Detg; Zpi} ,(131)

1 2c11
By = {{z edia+pia < S < {is (poeta) €0, ””]2}} . a3

n

and

N . R R cilnn
Es = {{Z t(Pi1,€%Gi,1) € U(cr,e1),pin +€5Gi1 > }

; cilnn | R i+ eSq;
< {Z :(pire®qi) € Uler,e1),pi +€°qi > 12n sDi €G> ]%}} . (133)
Denote the overall good event as
E = EINE;NE3NE;. (134)
Decompose the error under good events as
& 2 ) {bio—cha—Ipi—eal"}, (135)
iel,
& 2 3 DK (hizrdiz) — I — ail T} (136)
iely
& = Z {Dg) (Di2, 23 Pis1s Gi) — [pi — € ai) T}, (137)
i€l
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where the indices of those regimes under the good events are

L2 {Z tPi1 — €G> W( Pi1+/€Gi1) efq < Pi} ; (138)
L2 {l (Pi Fegin < @, (pi,e“qi) € [0, 26171;1”} 2} , (139)

I; £ {Z tPin e > a lnn7 (Pi,1,€Gin) € Ulcr,ca),
(pie“qi) € Uer, 1), pi + €Sqi > 61212 s Di + €G> W} : (140)

We can bound the squared error as

~ 2 -~ 2 c
E[(de Ker.co(PallQn) —de(P@)7] < E[(de,i 1,0 (Pull@n) — de(P|Q))" L(E) ] + P(E)
< E[(&+&+ 53)2} +P(E°)

< 3E[&7] + 3E[E5] + 3E[EF] + P(EC) . (141)
The last term on the bad event is bounded by 155/n” as shown in following lemma, with a proof in
Appendix C.5.1.

Lemma 23. Assuming £ < ﬁ 1 =~ 0373, and let B =
2
mm{ 6 (Clgggf) ) :1; (\/ 2¢q \/%H\/ 1+ 02) } we have
158
(&
P(ES) < —5, (142)

where good event E is defined in Eq. (134).

For the first term in Eq. (141), we have

2 2 pi + €% e

i€{icecq; <p;}

where we use the fact that E[&1];] = 0 with probability one and the fact that p; o and §; o are
independent for indices in I;.

The second term in Eq. (141) is bounded by following lemma, with a proof in Appendix C.5.3.
Lemma 24. Suppose (p,e®q) € [O, W]Q (np,ng) ~ Poi(np) x Poi (ng). Then,

~ . 1 Jeilnn 1 c1lnn
EDY (5,0) — [~ e“al| S o/ o (VP HVED + 15 (144)

and
var (D (6.0)) <

for some constant B > 0. The estimator ﬁg)

(p+eq), (145)

is introduced in Eq. (13) and K = c3Inn, czef < c;.

We have
E[£3] (146)
5 BK61(33 In®n S cilnn 1 cilnn
SO 2 ——(pit+efn) + Z— (Vi + V) + (147)
i=1 i=1
4
ciciIn®n ci(ef+1)8 1S
< 8 1 148
~ nl—cs AR cnlnn cAnlnn (148)

The third term in Eq. (141) is bounded by following lemma, with a proof in Appendix C.5.4.
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Lemma 25. Suppose (p,e°q) € U(cy,c1), p+eq > SB2 x4y > w, z €[0,1], y € [0,1].
Suppose (np,ng) ~ Poi (np) x Poi (ng). Then,

~ a 1 /eplnn
‘EDg)(p,qmy)—Dﬂ—eEQ]*‘ S Vo L (VE +VeEy) (149)
and
~(2)~ - BXcilnn .
Var (DK (p,q;x,y)) S T(JC—i—e ), (150)

for some constant B > 0, and K = c3lnn, cze® < c;.

We have
E[&3|pin,dip 1 <i < S] (151)
5 BEe¢iInn 5 1 /eplnn ’
< E 1 5. €4, E - 1 rs £ 152
~ s " (pl,l +e th) + (i_l K " ( Pi1+ € %,1)) , ( )

where B is the larger constant defined in both Lemma 24 and Lemma 25.

Taking expectation with respect to {p; 1,¢;1 : 1 < i < S}, we have

E [£7] (153)
5 ¢ lnn v (P +e%4in)
< > 5E +¢Gi1) +E § ! : (154)
~ P nl—csInB (pz 1 QZ 1 v \/W
cilnn 1(Pin+€°Gin)
< 1) gL\l T Gi1) 155
~ nl cslnB + +Z c3nlnn + ( )
Eler (pig +€°Gi,1)] [Efer (jn + e°4;,1)]
Z 2 5 (156)
= csnlnn csnlnn
1<4,5<S,i#]
cilnn ¢l c1 (pi +e*qi +p;j +€°q;)
< ———(e*+1 f+1 g 157
~ n1_031nB(e * )+c§nlnn(e 1)+ ,, cAnlnn (157
1<4,5<8
cilnn c1
< _E T (o 5
S rens@ HUF D (158)
Combing everything together, we have
~ 2
E[ (de, k1,02 (PllQn) — de(P1Q))” ] (159)
€ (cicd+c1) In°n c1(ef+1)S S 29
< — 4= (ef+1 \Y, — . 160
~ n nl-cslnB (e +1) + nlnn cnlnn + nb (160)

Iflnn < InS, as we assume Z—f < 0.373, we can take co small enough and ¢y, c3 large enough to

S <« _8 n°n < _S
guarantee that TS nan G nE S nian We have,

efS

nlnn

E[ (de.kr.e0 (Pull@n) — d-(P|Q))*] S

(161)

C.5.1 Proof of Lemma 23

The following lemma shows that non-smooth region U (cy, ¢2) contains the region U (p; ¢1, ¢2) de-
fined previously, which will be later used to bound the probability of bad events.

Lemma 26. The two-dimensional set U(cy, ¢1) defined in Eq. (5) satisfies

Ug—eey,z,yefo,U(e° x5 c1, 1) X U(e25y;cl,cl) cUl(cr, ). (162)
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1) Analysis of P(E$):

It follows from Lemma 26 that

s
c . R [(c1+c2)Inn - -
P(EY) = P (l | {65% < pi,€°4in — Dix > —( ! n2) (vesdi1 + pm)})

=1

< S%?&TP (68% < Pir € Gy — Pig > |/ %(@4- ﬁi,l))
< SZHEI?SQ](P(GE% =pi,€Gi1 — Pi1 > \/ %(@ﬂL ﬁi,l))
< S?é[a,g](P(eaqi = pi> (Di1,€°Gin) ¢ U(ChCz))
< 5?61[35)](}?(66% = i, (i1, i) & U(e“ps; —; =3 %)
s, 25
< Smax (1- Bl € UG 52, 05
P(eq; = pi,e°Gi1 € U(e*q;; a ;CQ, 612&)»
<

2
2 458
5<1(161+62)> < —
n 6 n-_ 6

where we have applied Lemma 6 in the last inequality.

2) Analysis of P(ES): Similarly, we have

P(ES) < —qeer - (163)

3) Analysis of P(ES):

S 2
2ci1Inn ~ o cilnn
IP’(E§) = P (U {(pi,equ') ¢ [0, 17’L :| yDijlt +e g1 < ln })
i=1

2ciInn R c1lnn
P ( {pz‘ +eq > ! i +e5Gin < ! })
; n n

=

IN

1

2c1Inn cilnn
< SmaxP (Pz‘ +efq > JDin +edin < ! )
i€[S] n
< S
< e

where we have applied Lemma 2 in the last inequality.

4) Analysis of P(E$):

P(Ef) < 5?61%19((%766%) ¢ Uler,cr), (Pin,€°Gin) € Uler,e2)) +

| |
S max P <ﬁi)1 + 66@‘71 > w,pi +efq; < a nn) +
i€[S] n 2n

cilnn . R
— . pi+eq > 2(Pi1 + €qu‘,1)) .

S max P (ﬁi,l +e°Gi >
i€[S]
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Using Lemma 2 again, we have

R . c1lnn c1lnn S
S P p; €Gi1 > Jpi Hefq < < ,
frel?:s}]( <pz,1 +eqg;1 n p; +€°q; m > nci/6
and

c1lnn

S max P (ﬁm +e°Giq1 > ,pi +efq > 2(pi1 + 65@',1))

i€[S]

2c1Inn . N
< S max P (Pi +efq > ,pi+ecq > 2(pi1 + 65%‘,1))
i€[S] n
< S
- nei/4 -’

It suffices to show that for p, ¢ € [0, 1], there exists some constant ¢ > 0 such that

U(ep;c,c) x U(e*q;c,c) ﬂUCl,CQ = 0. (164)
(p,eEq)iU(cl,cl)

Indeed, we have

Smax]P’((pl,e ¢) ¢ Uler,cr), (Pi1,€54i1) € Uler,c2))

i€[S]
< S’mz[n](]P’((pl 1,€°Gi1) ¢ U(e®pisc,c) X U(e*q;;c, c))
€[S
< S max (1 —P(pig € Ule®pisc,0))P(e°Gin € U(e™qisc, C)))
S
2\? 48
< — — - < —
< S<1 (1 m)) < 5

where the last inequality follows from Lemma 6.

Now we work out a c that satisfies (164). We prove the case when /p — \/eq > 4/ w The

other case can be proved in a similar way. Assume ¢ < ¢;. In this case p > M We will show

that for any point (z,efy) € U(e®p;c,c) x U(e*q;c,c), we have /T — /eFy > M.

If g < e “lnn for any (z,e%y) € U(ep; ¢, ¢) x U(e*q; ¢, ¢), we have

NN / cplnn \/2clnn

\/201 Inn Inn 2clnn
—V2cc;— —
n

n

ﬁ( 201\/M\/%> :

where in the second step, we use the fact that z — y/ax, a > 0 is a monotonically increasing function

- —_ 2 .
when x > a/4 and the fact that p > w Letc = (6132;2) , we can verify that

Ve —yey > wlnTn< 201—\/2001—\/2—0) > lnn\/cl+02 (165)

If g > e “nn for any (z,efy) € U(ep; ¢, ¢) x U(e*q; ¢, ¢), we have
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cplnn cesqlnn
Vo—ey = Vp \/ ¢ )
/cplnn egq ceeqlnn
\/p cplnn+\/egq+ ce qlnn

VP = VED(VP+VeEq) — /SRR (Vg + /p)

\/ cplnn+\/e€q+ /celelnn

—~

9
)

’B

[Inn P+ +\/efq
2 (\/261—\/6) T \/_ .
\/p_ /cpilnn_’_\/egq_i_ /celelnn
clnn

Further, since e*q > s

PV L BV

- / &€

\/p_ /cpilnn+\/egq+ /cef(iLlnn \/]3+ 2e%q
VEEq+ /2R 1\ feFq

\/W%»\/QTJr /2c11nn
2
v”+1’

where in the second inequality, we used the fact that -Y"Z s a monotonically increasing function

+\/2 eq
of x when x > 0, and in the third inequality, we used the fact that ( \/fﬁr)a is a monotonically

decreasing function of = when a > 0, z > 0. To guarantee that \/z — /ey > (ates)Inn o

n
need

2
\/5+1(\/ﬂ—\/5) > e+, (166)

which is equivalent to

2+1
c < <\/201 — \/_2+

with the constraint that g—? <

2
VAol —I-CQ) s (167)

Rﬁﬁﬁ_1“03m'

C.5.2 Proof of Lemma 26
If £ < ”ea% and thus y < <127 it suffices to show [0, 2412212  U(cq, ¢q). For (u,ev) €

[0, 2LI2712 'wye have

26 1
IVa — Ve < 42220 (168)

n

2
For z > Cleg% and thus y > Cll%, it suffices to show [x - \/C””Ti“",aﬂ— \/C””nln"] C

2
Ul(cy,c1). Tt is shown in [21, Lemma 3] that for any (u, e*v) € [y — g ey gy %} ,
we have
2c1 1
WVu— e < () 2 (169)
n
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C.5.3 Proof of Lemma 24

We first analyze the bias. Let A = ‘11% As we have applied unbiased estimator D! )( y) of
Dg) (x,y), the bias is entirely due to the functional approximation. We show that for (x, ) € [0, 1]2,
lug (z, y)vg (z,y) — [z —y]T| < (@ + %) Indeed, we have

IN A

|urc (@, y)ox (2,) = [v = y]7|
= |urc (@, y)vrc (@,y) — ur (@, 9) Ve — V" +ux (@ y) Ve - yl" = [z —y]"|
luk (@, )|l (,y) — Vo =yl + Ve = vyl T uk (2,y) — Vo = Yl
(

luk (z,y) — \/E_\/,'EH’UK(:U,y)_[\/E_\/mﬂ_’_
Ve -+ Villow (@) = [VE = Vi1 + [V = i useen) = v = vl

It follows from Lemma 7 and Lemma 9 that
A VEDY] S % (170)
which implies
juc(wy) ~VE- VIl S - a7

It follows from Lemma 7, Lemma 9 and the fact that [v/b — v/a]* < [vb — /|t + [V — Va] T,
we have

1
vk (z,y) = [Vz = VylTl < I (172)
Together with Eq. (171), we have
Jr
juxc (e, gocey) — e —9l*| < K2 fVEEEVEZVIL g
VEEVT
< K2+ I (174)

which implies there exists a constant M > 0 such that

e )o(.0) — ure0.0)0xc0.0) ~ o —]*] < 0 (7 + YY) )

Letz = p/(2A) and y = e®q/(2A). We have

sup
(p,efq)€[0,2A)?

D (6.0) — p — gl |

- sup (h.0) — [ — eqI*|
(p,ecq)€[0,2A]?
P €q P eq
= sup  2A ek (5o, o0) — 50 — oA
(p,eiq)G[O,QA]z 2A 2A 2A 2A
= sup  2A |hagc(z,y) — [z — y] ™|
(z,y)€[0,1]?
= sup  2A |ug (2, y) v (,y) — uk (0, 0)vx (0,0) — [z — y] |
(z,y)€[0,1]?
Vat+y
< 2AM
- (K2 K
1 /cl Inn 1 cilnn
< _ / €q
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We now analyze the variance. Express the polynomial hok (, y) explicitly as

> hijz'y’ (176)

0<i<2K,0<j<2K,i+j>1

> S higy' |t (177)

0<i<2K \0<j<2K,it+j>1

h2K (l‘, y)

For any fixed value of y, hog (22, y?) is a polynomial of = with degree no more than 4K that is
uniformly bounded by a universal constant on [0, 1]. It follows from Lemma 10 that for any fixed
Yy S [_17 1]7

S hugy¥| < M(V2+ 1), (178)
0<j<2K

which together with Lemma 10, implies that

N

lhijl < M(

2+1)8% (179)

€

Since [?g) is the unbiased estimator of 2Ahok (5%, 52 ), we know

~ 1y il . R
DY (p,q) = ST hy(2A) e g 0(p)gs0(d) (180)
0<i,j<2K,i+j>1
where g; o(p) = ;;10 (p— %) introduced by Lemma 11.
Denote || X ||z = /E(X —EX)?2 for random variable X, and My = 2K V 2nA, My, = 2K V
2ne~¢A. Using triangle inequality of the norm || - |2 and Lemma 11, we know
~ 1y il . .
1D @ a). < > sl (28)' 777 |lgi,0(B) 5 1195.0(d)

0<i,j<2K,i+j>1

> a5y (/)

IN

0<i,j<2K,i+j>1

< (\/§+1)8K011% 3 < 2pA>Z \/ﬁ)

0<i,j<2K,i+j>1

Since for any = € [0,1]. y € [0,1],

o 2K _ 2K ) .
YDIETI I ) S P e W [ e
0<i,j<2K,i+j>1 j=1 i=1 0<i,j<2K—1
< y(2K)+2(2K) + zy(2K)?
< 22K)*(x+v) .
we know
_ K?Inn P esq
D(l) PN < 241 SKcli . \/: 181
DRl £ (VEEPEEE 2tV (ash
51 5
< \/BKw (p+esq), (182)

for some constant B > 0.
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C.5.4 Proof of Lemma 25

We first analyze the bias. As we apply the unbiased estimator bg)(ﬁ, G;z,y) of Dg) (p,q; z,y).

The bias is entirely due to the functional approximation error. Namely,

E[DRG.dwy)ley] = DR gy (183)
1 & , et
= oYWt e+ P sy

j=0

where W = SclTln" (vVeEx +y), and r; is defined as the coefficient of best polynomial approxi-
mation Ry (t) of |t| over [—1, 1] with order K: Rk (t) = ZJK:Q ritd.

Since (p, e%q) € U(eq, ¢1), we know

2c1Inn

lp—efql < — (VP + Ve
< R (vpre)
2c1Inn .
Tﬁ < 2z +e y)>
< W

where we have used the fact that /p + \/e5q < \/2(p + e°q) and the assumption that p + e°q <
2(x + €%y).

It is known in [48, Chapter 9, Theorem 3.3] that

1
|Re(t) — It]| < K (185)
forallt € [—1,1].
We show Dg) (p, ¢; z,y) is best polynomial approximation of [p — eq] ™. We have
11X
9 » ,
DY (p.g;z.y) —[p— eaq}*‘ = S| nW ) —Ip - el
3=0
_ Wiy <6€qu) _ equp’
2 "W W
< ¥
~ K
1 /eilnn
S % (Vo +Vesy) .
K n
Now we analyze the variance.
Leta; =rjforj=0,2,3,...,K and a; = r; — 1 we can write Dg) (p,q;z,y) as
1 X
9 D .
D (paiwy) = 5> aW I (g —p) . (186)
§=0

It was shown in [49, Lemma 2] that r; < 23,0 < j < K. So we have |a;| < 2 - 23K, Denote

the unique uniformly minimum unbiased estimator (MVUE) of (e*q — p)’ by A;(p,q). Then the
unbiased estimator Dﬁ? of polynomial function Dg) is

K

~ A 1 . R o

D diwy) = 5> aW A (). (187)
§=0
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Denote || X ||2 = y/E(X — EX)? for random variable X . It follows from triangle inequality of || - ||2

and Lemma 12 that

1 K
5 2 lag W14y

(188)

j=1

K e
23KWZ <\/§e q—p| v
j=1

8j(e?*q \/p)>] (189)

W NG

8j(e?q V p)

\/5 QClln”(\/6T+\/_)

W

8K (e*q + p)

= (2) 4 4
1D (B, Gey)ll. <
<
where
V2|efq — p| y
w
<
BRI
B \/iw/efy—l—x
< \/5\/ 2cgef
C1
< V2.
Consequently,
= (2) 4 4
1D (B, Gyl <
<
<

where B > 0 is some constant.

/8¢y lnn\/m

\/ﬁ NG ET
/eQEq +
C1

Vety+x

PEWK(V2)K
93K Ll?}b“”\/mx(\/i)lf

\/BK (x4 efy)cilnn
n

)
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