
A Learning on graphs using single hidden layer fully connected network

Proof of Theorem 1. A fully connected neural network with sigmoid activation function fn, in
principle, could approximate any function f , provided there is enough training data. Barron’s result
[2] states that the upper-bound on the approximation error of a single layer is given by

ε := ‖f − fn‖ ∼ O

(
C2
f

n

)
+O

(
nd

S
logS

)
, (11)

where n is the number of neurons, d is the dimension of the input, S is the number of samples, and
Cf is the L1 norm of the Fourier coefficients of the function f .

Cf =

∫
ddw|w|1|f̃(w)| (12)

f(x) =

∫
ddweiwxf̃(w)

|w|1 =

d∑
j=1

|wj |.

Using (11), we can bound the approximation error of for learning graph moments. Assume that
the input is a graph with N nodes, represented by an adjacency matrix A, the dimension of the
input is thus d = N2. If the number of nodes is not too large (logN ∼ O(1)), the second term
in (11) essentially states that we need S ∼ O(N2) samples to approximate any function well and
avoid overfitting. The first term in (11) depends on the form of the function f . Specifically, Cf
depends on the Fourier coefficients which have a non-negligible magnitude. Consider for example
a polynomial function f(x) =

∑p
k=0 ckx

k of order p of a single variable x defined over the unit
interval I = [−1, 1], so that it is Lebesgue integrable. Performing the Fourier transform over this
interval yields a Fourier series with coefficients given by

f(x) =

p∑
k=0

ckx
k =

∑
m=0

f̃(m)e−2πimx

f̃(m) =
∑
k=0

ck

∫ 1

−1

dx

2πi
xje−2πimx =

ck
2πik!

∂k

∂mk
δ(m). (13)

If all the coefficients ck ∼ O(1), (13) states that at most p Fourier coefficients will have O(1)
magnitudes for this polynomial function and so Cf ∼ O(p) for a polynomial f of a single variable x.
If x is d dimensional, we have Cf ∼ O(pd). We want to learn graph moments, which are polynomial
functions of the elements in Aij . For example, the node degree is a first order polynomial of the
form f(A)i =

∑N
j=0Aij . Higher order moments are generally functions of higher powers of A. For

example, the number paths of length two between nodes nodes i and j on an unweighted graph are
given by Pij =

∑
k AikAkj . We can write this as a second order function in Aij

Pij =

N∑
k,l=1

AikAljc
kl

In general, for a graph moment of order p, denoted as Mp(A), we have an expression:

Mp(A) =

p∏
q=0

ciqkqAkqjq+1 . (14)

which could have as many as O(pN2) or at least O(pN) nonzero coefficients. Assuming all these
nonzero coefficients are O(1), we get Cf ∼ O(pNq) with 1 ≤ q ≤ 2. Thus, in order for the
first term in (11) to be small, we need n > O(C2

f) ∼ O(p2N2q) neurons in the best case, or
n > O(p2N4) in the worst case. Additionally, to make the second error term in (11) small, we would
need S > O(nd) ∼ O

(
p2N2q+2

)
samples.

12

For many real world graphs, we have relatively few samples (S) and a large number of nodes (N),
using a fully-connected network for learning network moments is nearly impossible. However, note
that graph moments are invariant under node permutations. Similar to how Convolutional Neural
Networks (CNNs) exploit translation invariance to drastically reduce the number of parameters
needed to learn spatial features, graph convolutional networks (GCNs) exploit node permutation
invariance, constraining the weights to be the same for all nodes. Additionally, the weights can also
not treat neighbors of nodes differently, as neighbors can be permuted too.

The restriction of being permutation invariant also reduces the representation power of a GCN, forcing
it to take a very simple form. Namely, the weights of a GCN wa are simply multiplied into all entries
of Aij . This architecture is node permutation invariant, but it also uses node attributes to couple the
weights to neighborhoods of nodes. Denote hai as the attribute a of node i. The output of a GCN
follows the formula below:

F (A, h)µi = σ

∑
j

Aijh
a
jW

µ
a + bµ

 (15)

where µ denotes the output dimension and b is the bias term. In principle, Aij can be replaced by any
general function f(A)ij , defined by the propagation rule.

Following the reasoning above, learning nonlinear functions for F (A) requires a lot of data and
parameters. It is, therefore, much easier to combine different propagation rules, aka modules related
to the generation processes of the graph, such as diffusion operators D−1A and D−1/2AD−1/2 and
use them instead of only A. We also add a node-wise dense layer (which act similar to a GCN, not
mixing different nodes) after each of these operators to mix the outputs of these operators.

B Experiment details

we generate 5, 000 graphs with the same number of nodes and varying number of links, half of which
are from the Barabasi-Albert (BA) model and the other half from the Erdos-Renyi (ER) model. In the
BA model, new nodes attach to m existing nodes with likelihood pi proportional to the degree of the
existing node i.

pi =
di∑
i di

The 2, 500 BA graphs are evenly split with m = 1, N/8, N/4, 3N/8, N/2. To avoid bias from order
of appearance of nodes caused by preferential attachment, we shuffle the node labels. ER graphs are
random undirected graphs with a probability p for every link. We choose four values for p uniformly
between 1/N and N/2. All graphs have similar number of links.

For a configuration model [26], the links are generated as follows: Take a degree sequence, i. e.
assign a degree di to each node. The degrees of the nodes are represented as half-links or stubs.
The sum of stubs must be even in order to be able to construct a graph (Σdi = 2m). The degree
sequence is drawn from the adjacency matrix of the BA graph. Choose two nodes uniformly at
random. Connect them with an edge using up one of each node’s stubs. Choose another pair from
the remaining 2m− 2 stubs and connect them. Continue until running out of stubs. The result is a
graph with the pre-defined degree sequence. We rewire the edges of BA graphs to obtain “fake” BA
graphs. The resulting graphs share exactly the same degree distribution, and even mimic the real BA
in higher graph moments.

C Learning graph moments without residual connections

Our first attempt to combine different GCN modules is to stack them on top of each other in a
feed-forward way mimicking multi-layer GCNs. However, our theoretical analysis shows the limited
representation power of this design. In particular, no matter how many layers or how non-linear the
activation function gets, multiple GCN layers stacked in a feed-forward way cannot perform well
in learning network moments whose order is not precisely the number of layers. We observe in our
experiments that this is indeed the case.

As shown in Fig 7 shows the test loss over number of epochs for learning first-order (top), second-
order (middle) and third-order (bottom) graph moments. We vary the number of layers from 1 to 4

13

100 101 102 103

epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

No Residual Connections
A1 moment, linear activation

1 layers
2 layers
3 layers
4 layers

100 101 102 103

epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

No Residual Connections
A1 moment, relu activation

1 layers
2 layers
3 layers
4 layers

100 101 102 103

epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

No Residual Connections
A1 moment, sigmoid activation

1 layers
2 layers
3 layers
4 layers

100 101 102 103

epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

No Residual Connections
A1 moment, tanh activation

1 layers
2 layers
3 layers
4 layers

100 101 102 103

epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

No Residual Connections
A2 moment, linear activation

1 layers
2 layers
3 layers
4 layers

100 101 102 103

epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

No Residual Connections
A2 moment, relu activation

1 layers
2 layers
3 layers
4 layers

100 101 102 103

epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

No Residual Connections
A2 moment, sigmoid activation

1 layers
2 layers
3 layers
4 layers

100 101 102 103

epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

No Residual Connections
A2 moment, tanh activation

1 layers
2 layers
3 layers
4 layers

100 101 102 103

epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

No Residual Connections
A3 moment, linear activation

1 layers
2 layers
3 layers
4 layers

100 101 102 103

epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

No Residual Connections
A3 moment, relu activation

1 layers
2 layers
3 layers
4 layers

100 101 102 103

epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

No Residual Connections
A3 moment, sigmoid activation

1 layers
2 layers
3 layers
4 layers

100 101 102 103

epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

No Residual Connections
A3 moment, tanh activation

1 layers
2 layers
3 layers
4 layers

Figure 7: Expressiveness of GCN module without Residual Connections: learning first (top), second
(middle) and third (bottom) order graph moments with multiple GCN layers and different activation
functions. GCN without residual connections fails to learn well when the target graph moments order
is greater than the number of layers. With ReLU, sometimes more layers performs even worse. Also,
without residuals higher number of layers doesn’t always perform as good as when the number of
layer matches the order of the moment exactly.

and test with different activation functions including linear, ReLU, sigmoid and tanh. GCN without
residual connections fails to learn well when the target graph moments order is greater than the
number of layers. With ReLU, sometimes more layers performs even worse. Also, without residuals
higher number of layers doesn’t always perform as good as when the number of layer matches the
order of the moment exactly.

D A Note on Graph Attention Networks

The Graph Attention Network (GAT) [31] modifies a message-passing neural network such as GCN
by modifying the weights on the edges of the graph. This changes how much each neighbor j of a
node i plays a role in the output of node i. Assume the input of the GCN layer where the attention
layer is added has F features per node, and the output has F ′ features. Take the F ×F ′ shared weight
matrix W of GCN. Graph attention uses a function a : RF ′ × RF ′

: R to look at similarities of the
linear outputs for different nodes

eij = a(Whi,Whj) (16)
However, eij is only computed for neighbors, meaning that what we really calculate is

eij = a(Whi,Whj) ◦ Âij (17)

where ◦ denotes element-wise multiplication and Â is the unweighted adjacency matrix of the graph.
The function a is implemented as a neural network with a 2F ′ × 1 weight matrix and softmax
activation. Now, consider an unweighted graph so that Â = A. The attention mechanism is a function
over neighbors only. It takes the output features and passes a linear combination through an activation
function σ (usually Leaky ReLU)

eij = σ (α1 ·W · hi + α2 ·W · hj) (18)

where αn are F ′ × 1 weight matrices for the attention layer. This output is then also passed through
softmax over the neighbors of node i. Compared with normal GCN, the attention network is deciding
which neighbors should get more weight in the output of node i. Our modular approach does not

14

distinguish among neighbors and is a regular message-passing neural network. We concatenate the
output of multiple propagation rules, but each rule is still used in a regular message passing step.

15

