A Proofs of Main Theorems and Corollaries

A.1 Proof of Theorem

We first show that W*) ¢ W(W () 7/2) for all k < K satisfying K1 < v/'72~*(log(n/8)) /2.
Suppose W*) e W(W(©) 7/2) forall &’ =1,... k — 1. By Lemma we have

HVWZLS(W(’@’))HF < C10MCSISD) i g (W KD,

Since ny/m < /7 and Es(-) < 1, we can make ¢/ small enough so that we have by the triangle
inequality
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Therefore we are in the 7-neighborhood that allows us to apply the bounds described in the main
section. Define

L
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1=2
Then using the upper bounds for the gradient given in Lemma .4 we have
hi <n < C'pvmEs(WH).
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L
CVmes(W®) +03 (0v/mes(W ™)) + Cv/mes(W®)

=2

Notice that by, = h(W *+1D W (*)) where / is from Lemma4.2] Hence, we have
Ls(W*D) — Lg(W®))

1 L+1 2
< Orsy/mlogm - hy - Es(WW) + Cmhj, =) HVWILS(W(M)HF

=1
Cra/mlogm - v/m - Es(WW)2 + Cm?n? - Es(WW)2 — O mp iy -yt - E(WR)?2
Es(WH)2. (01777%7”\/ logm + Cym® - n” — Csn - mp41 ”74)
The first inequality follows by Lemmaand since tr(ATA) = HA||2F The second inequality uses

the lower bound for the gradient given in Lemma and Therefore, if we take 3 Viogm <

s .
viyt ie. 7 < v -2 (logm)” 2 for some small enough constant v, and if we take 5 < v/ - v4m 1
then there is a constant C' > 0 such that

LeWFD) — LoWW) < —C - ompyy -7t - Eg(WR)2, (6)
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Re-writing this we have
Es(WM)? < Oy~ ()™ (Ls (W) — Ls(W D)) Q)

Before completing this part of the proof, we will need the following bound on the loss at initialization:

Ls(W®) < € flog . ®)

To see this, we notice that fy (z;) is a sum of my,41/2 independent random variables (conditional
on Jf‘L,i)7
mry1/2
fwl@) = 3 ol or) = 0@l i, 220
j=1
Applying the upper bound for ||zz41|, given by Lemma and Hoeffding inequality gives a

constant Cy > 0 such that with probability at least 1 — 0, | fy-0) (2;)] < C14/log(n/d) forall i € [n].
Since £(z) = log(1 + exp(—=z)) < |2| + 1 for all z € R, we have

n

Ls(W©®) = % > Ui+ fwo (i) < 1+ Chy /log% < C/log(n/6).

i=1
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We can thus bound the distance from initialization by

k—1
HVVl(k) B VVl(O)HF <n Z HVWLLS(W(I@'))H
k’=0

F
k—1
< Cnym Yy Es(WH))
k’=0
k—1
< CnvmVky v 4 (mmega) ™ Y (Ls(WH) — Lg(Wk+D))
k'=0
< L ~T2 n T
<CvVkn-~v (log 5)
T
< —.
-2

The first line comes from the definition of gradient descent and the triangle inequality. For the second
line, [(4)] allows us to apply Lemma[4.4] The third line follows by Cauchy—Schwarz and [(7)] The next
line follows by and the last since kn < v"72y*(log(n/ §))~ 2. This completes the induction and
shows that W*) € W(W©) 1) forall k < K.

For the second part of the proof, we want to derive an upper bound on the lowest empirical surrogate
error over the trajectory of gradient descent. Since we have shown that W (*) € W(W(O), 7/2) for
k < K,|(6)|and(8)|both hold. Let k* = argminke{o,m7K_1}SS(W(’“))2. Then telescoping|(6)|over
k yields

K
Ls(W) = Ls(W) < =Cnomppr 7" Y Es(WH)?
k=1
<—C-Kn-mp -yt Es(WED)2,
Rearranging the above gives
1 1 1
Es(WU) < Gy (Kn-m) ™ * (Ls(W D))" 472 < Cy (K -m)~* (log 2 )" 772,
where we have used that Lg(-) is always nonnegative in the first inequality andin the second.

A.2 Proof of Theorem

Denote F(W©) 1) = {fw(z) : W € W(W© 1)}, and recall the definition of the empirical
Rademacher complexity,

~

Rs[FWO 7)) = E, sup 1 Zfzf(ml)

fFeFW© ) N

sup 1Z£if(:ci>], ©)

weww o,y i

where £ = (£1,...,&,) " is an n-dimensional vector of i.i.d. & ~ Unif({#1}). Since y € {£1},
|¢/(z)] < 1and ¢'(-) is 1-Lipschitz, standard uniform convergence arguments (see, e.g., Shalev-
Shwartz and Ben-David [21])) yield that with probability at least 1 — 4,

sup  [Es(W) — Ep(W)| < 2EsHRs []—'(W(O)J)} e w.

wWew(w©) 1)
Since —0'(z) = (1 + exp(—=))~* satisfies —¢'(x) < 3 if and only if z < 0, Markov’s inequality
gives
Playy~p (Y- fw () <0) < 2B y)p (=0 (y - fw(2))) = 2ED(W),
so that it suffices to get a bound for the empirical Rademacher complexity [(9)] If we define
L+1

FW“’),W(f) = fwo (z) + Z tr l:(Wl - Wl(0)>T Vw, fw© (x):| ,
=1
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then since sup, ;e 44 g(@ + b) < sup,c 4 a + sup,c g b, we have

n

sup = Zfz[f(l'z) - FW(0>,W(xi)]‘|

Wew(w© )

~

Rs[FWO, )] < E

Iy
1 n L+1 o T
E sup o) G2t [ Wi =W, Vw, fwo (m)]
¢ Wew(w©) ) 1 1:21 ; < ! ) LW

Iz

For the I; term, we take W = W (% in Lemmal4.2{to get
[ (@) = Fivo w(@)] < € [r8y/mlogm(2 + L6)| + C7*/m (2 + L)
< Cr5y/mlogm.
For Iy, since || AB| < || All || B||,» Lemmaf.1] yields for all I and any matrix ¢,

Jaw™ € < [Jaw || €l < CvmiEl, -

Applying this to the gradient of f at initialization given by [(2)] and using Lemma there is a
constant C5 such that

IV, fiwo || p < Co0CSISD /., (10)
We can therefore bound I as follows:
- L+1 n
I < — 3 B |3 &V fwo (x:)
=1 i=1 7
- L+1 n 2
s - E|> " &Vw fwo ()
1=1 i=1 #
r L+1 n
2
== | 2 IVwfwo (@)
1=1 \ i=1

L
< C% <M+ > Vimé? + M)
=2

m
Cy/—r.
n

IN

The first line above follows since tr(AT B) < ||A|| ||B||» and W € W(W© 7). The second
comes from Jensen inequality, with the third since £ = 1. The fourth line comes from[(10)} with the
final inequality by the scale of 8. This completes the proof.

A.3  Proof of Corollary 3.7

We need only specify conditions on 7,1, K1, and m such that the results of Theorems and
will hold, and such that each of the four terms in[(3)| are of the same scale ¢. To get the two theorems

to hold, we need 7 < 712 (logm) "%, < v/ (y*m =1 Arm~ ), Kn < /v (log(n/8)) ", and

1 L L L L
m > C [y 2dlog — Vv 2log = Vdlog = V T*%dlog —V ng(logm)*1 log — V log .
vy 1) 6 76 § 1)

We now find the appropriate scaling by first setting the upper bound for the surrogate loss given in
Theorem [3.3to € and then ensuring 7 is such that the inequality required for K is satisfied:

Cs (Knm) ™2 (log(n/8))* v 2 =¢,  Kn=v"7"7(log(n/8)) "% .
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Substituting the values for K7 above, we get Cym~ 2y~ 271, /log(n/d) = ¢, so that

T = C’m“‘s‘lm_%\/log(n/é). (11)

Let m be such that vy'? (logm) ™2 = 7, so that m(logm) =32 = Cv=2y732 (log(n/d)) e 2. Tt is
clear that such a 7 can be written m = Q(poly(y~!)) - e~2. Finally we set

Q
L
m* = max ﬁz,dlogm—,T_%logm .
1) T

By|(11)|we can write 7~ 3 log(m/(70)) = v% (1og(n/5))_% £5m3 log (m3/2745(10g(n/5))‘%/5).
Thus we can take

m* = Q(poly(y1)) - max(d,e~?) - log %

Using we see that K = Cy~4 (log(n/é))% e 2and n < v/4*m~! gives the desired forms
of K and 7 as well as the first term of [[3)] For the second term of [3)] we again use [(TT)| to get
riy/mlogm < Cy= % (1og(n/5))% £~3m~6 = Re~3m~% where R = O(poly(y~1)). Since
e=3m~6 < eiff m > ¢4, this takes care of the second term in For the third term, we again
useto write 7v/m/n = C~y~*\/log(n/d)n~2e~! < e, which happens if \/n/log(n/8) >
Ce=2y74,ie.,n = O(poly(y~"'))e~*. For the final term of it’s clear that y/log(1/6)/n < eis
satisfied when 7 > Ce=2log(1/6), which is less stringent than the O(poly(y~'))e~* requirement.

B Proofs of Key Lemmas

In this section we provide proofs to the key lemmas discussed in Section[d] We shall first provide the
technical lemmas needed for their proof, and leave the proofs of the technical lemmas for Appendix
Throughout this section, we assume that § = 1/Q(L).

B.1 Proof of Lemma[4.1} hidden and interlayer activations are bounded

We first recall a standard result from random matrix theory; see, e.g. Vershynin [23], Corollary 5.35.

Lemma B.1. Suppose W1, ..., W are generated by Gaussian initialization. Then there exist
constants C, C’ > 0 such that for any § > 0, if m > d Vv C'log(L/J), then with probability at least
1—-94, Wi, < C foralll € [L+1].

The next lemma bounds the spectral norm of the maps that the residual layers define. This is a key
result that allows for the simplification of many of the arguments that are needed in non-residual
architectures. Its proof is in Appendix

Lemma B.2. Suppose W7,..., Wy, are generated by Gaussian initialization. Then for any § > 0,
there exist constants Cy, C{, C' such that if m > Cylog (L/6), then with probability at least 1 — 9,

for any L > b > a > 2, and for any tuple of diagonal matrices 3, . . . , 3, satisfying Hiz <1 for
2

eachi =a,...,b, we have
H(I+9ibwg)(1+9ib,1wbtl) e (1+9§;awj)H2 <exp(CLOL) < 1.01. (12

In particular, if we consider 3; = ;(x) for any € S9!, we have with probability at least 1 — &,
forall2 < a <b< Landforall z € S41,

[[(I + 05 (2)W, ) (I + 0501 (2)W,y) .- (I + 0S4 (x)W,)]|, < exp (CHOL) < 1.01.

The next lemma we show concerns a Lipschitz property of the map = — x;. Compared with the fully
connected case, our Lipschitz constant does not involve any terms growing with L, which allows for
the width dependence of our result to be only logarithmic in L. Its proof is in Appendix
Lemma B.3. Suppose W1, ..., W, are generated by Gaussian initialization. There are constants
C,C" > 0 such that for any § > 0, if m > Cdlog(mL/¢), then with probability at least 1 — 4,
|z — 2jll, < C" ||z — a'||, forall z, 2’ € S% ' and € [L + 1].
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With the above technical lemmas in place, we can proceed with the proof of Lemma[.1]

Proof of Lemma We first show that a bound of the form C < ||7;||, < C holds for all Z in an
e-net of S%~! and then use the Lipschitz property from Lemma to lift this result to all of S9~1.

Let N* be a 7p-net of S4~!. By applying Lemma A.6 of Cao and Gu [3] to the first layer of
our network, there exists a constant C such that with probability at least 1 — §/3, we can take
m = Q (dlog (m/(799))) large enough so that

dlog (m/(709))

@l < 14 C1 “

< 1.004.

If 2 <1 < L, by an application of Lemma[B.2] by taking m larger we have with probability at least
1—-4§/3,forall2 << L,7€N*,

@]l = [|(Z+ 0Si@W,T) -+ (1 + 08a(@) W, )2 (@)W, 7,
< |1+ 6= @W,) - (I +0S2@WS)||, 171,

<101 (c dl<m/<6>>) .

m

For the last fully connected layer, we can use a proof similar to that of Lemma A.6 in Cao and Gu [3]
using the above upper bound on || ||, to get that with probability at least 1 — §, for any I € [L + 1]
and 7 € N'*,

|12l < 1.02. (13)
For any x € S, there exists Z € N* such that ||z — Z||, < 7. By Lemma this means
that with probability at least 1 — 6/2, ||z; — 2|, < Cy79 for some C > 0, and this holds over all
T € N*. Let 7o = 1/m, so that dlog (mL/(TO(S)) < 2dlog(mL/$). Thenmylelds that with
probability at least 1 — 6, forall z € S L and all € [L + 1],

lzi]ly < @]y + |lzr — 2]y < 1.024 C1/m < 1.024.
As for the lower bound, we again let N* be an arbitrary 7o-net of S?~!. For [ = 1, we use Lemma
A.6 in Cao and Gu [3] to get constants C, C’ such that provided m > Cdlog (m/(79)), then we
have with probability at least 1 — §/3, for all T € N/,
[Z1]l, > 1 — C'/dm=11log (3m/(7od)) (l=1,2,...,L). (14)

To see that the above holds for layers 2 < [ < L, we note that it deterministically holds that
Z;,; > 1,; for such [ and all j. For the final layer, we follow a proof similar to Lemma A.6 of Cao
and Gu [5] with an application of[(13)]to get that with probability at least 1 — 6/3,

18251]2 > 122112 — Co/dm T log (3/(700)).

Thus m = Q(dlog(m/(m9d)) implies there is a constant C4 such that with probability at least 1 — 4,
foralll € [L +1]and T € N,

Zill, > Ca > 0. (15)
By Lemma we have with probability at least 1 — §, for all z € S9~1,
lilly = [[Zlly = [l = Z1lly = Ca = Crro.

Thus by taking 7, to be a sufficiently small universal constant, we get the desired lower bound.

We now demonstrate the upper bound for HH 4 ” Since Hll/ = zy when [ = 1, we need only

consider the case [ > 1. If I’ < L, then H appears in the bound for Lemma and so we are done.
For I’ = L + 1, by Lemmas|B.| andn [B-2 we have

Iy = [ (@)W H (I + 0% ()W)

r=l

2

L
< Erar @)l Wl H (I +05:(n)W,1)|| <C.

2
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B.2 Proof of Lemma.2k semismoothness

To prove the semismoothness result, we need two technical lemmas. The first lemma concerns a
Lipschitz-type property with respect to the weights, along with a characterization of the changing
sparsity patterns of the rectifier activations at each layer. The second lemma characterizes how the
neural network output behaves if we know that one of the initial layers has a given sparsity pattern.
This allows us to develop the desired semi-smoothness even though ReLU is non-differentiable. The
proof for Lemmas [B.4]and [B.5]can be found in Appendix [C.3]and [C.4] respectively.

Lemma B4. Let W = (Wy,...,Wy,1) be generated by Gaussian initialization, and let W=
(/V[71, cey /WLH), W = (Wi,...,Wr,1) be weight matrices such that W, W € W(W, 7). For
z € 8971 let Xy (), 8y(x), 5y () and x;, %, #; be the binary matrices and hidden layer outputs of
the [-th layers with parameters W, /V[7, w respectively. There exist absolute constants C, Cs, C3
such that for any & > 0, if rn > Cy 773 - dlog(m/(76)) V C1dlog(mL/5), then with probability at
least 1 — 4, for any z € S9! and any I € [L + 1], we have

Co Wl - WAl , =1,
2

I3 = @lly < § C2 |y =W | +0C X0, [W, =W 2<i<I,

CQ‘Wl —Wl ‘2+QCQZ£:2‘WT—V~VT 2+CQHWL+1 —WL+1’27 l=L+1.
and

|21@) - 2u@)|, < comr?.
0

Lemma B.5. Let Wy,..., W, be generated by Gaussian initialization. Let Wl be such that

H W, — Wl H2 < rforalll, and let i‘l (z) be the diagonal activation matrices corresponding to Wl, and

H ll/ (x) the corresponding interlayer activations defined in Suppose that Hil(x) - Xi(x) H <s
0
for all z € S9! and all [. Define, for/ > 2 and a € R™ -1,

gla,z) :=v" H- (2)a.

Then there exists a constant C' > 0 such that for any § > 0, provided m > C'7~ 3 (logm)~* log(L/6),
we have with probability atleast 1 —dandall2 <[ < L+ 1,

swpJgu(a,a)| < Cy [rvim+ /slogm] .

Izlla=llall,=1, lally<s

In comparison with the fully connected case of Cao and Gu [3], our bounds in Lemmas [B.4]and [B.3]
do not involve polynomial terms in L, and the residual scaling # further scales the dependence of the
hidden layer activations on the intermediate layers.

With the above two technical lemmas, we can proceed with the proof of Lemmaf.2]

Proof of semismoothness, Lemma Recalling the notation of interlayer activations H ll/ from

we have for any | € [L + 1] f(x) = vT HEA'%), where we have denoted H] (z) = H} for

notational simplicity. Similarly, in what follows we denote ¥(x) by ¥ with the understanding that
each diagonal matrix X still depends on x. We have the decomposition

AES Wi = (ﬁ;ﬂ - ggw) SOV @+ AW
andfor2 <[ <L,
I+1 I+1 I+1

ﬁzLH AR = (ﬁ—L+1 _ ﬁLH) (IJr QEZW1T> 4 QR+ (ileT _ f;lWlT> )
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Thus we can write
HE @) = BE (@) = (BFF = BEP) S0 o+ BE (S0 = S0 )«
= (ELHW;H - ELJrIWITJrl) T
L
0> AES (ST = W) B+ BF (S0 - S e
=2

We thus want to bound the quantity

fio @) = f @) = v (Sen Wl = Son Wi, ) 2 (1)
L
=+ HUT [Z I:Ill_fgl (2[Wl—r — ilVNVIT) /*/L'\ZI‘| (Tg)
=2
T 7L+l (S 117 T
+v [HQ (zlwl - zlwl) z} . (Ty)  (16)

We deal with the three terms separately. The idea in each is the same.

First term, 7. We write this as the sum of three terms v ' (I + I + I3), where
(EL+1WE+1 - ELJerLTJrl) rr

::(§L+1‘*2L+1>ﬁzﬂ4fL4*iL+1(ﬁila‘*ﬁﬂlq>(fL‘*fLY+iL+1(WGH1‘*WGL4)5L-

I Is I3
a7
By directly checking the signs of the diagonal matrices, we can see that forany [ =1,...,L 4+ 1,
|(E =) Wl <o |[Wi- Wi+ Cullgis — il (18)

We will use Lemmato get specific bounds for each {. Denote |X| as the entrywise absolute values
of a diagonal matrix X, so that |X|3 = ¥ provided the diagonal entries are all in {0, =1}. Then we
can write

' I| = HUT ’§L+1 - iLH‘ <§L+1 - Z~3L+1) W;+153'\LH2
< Cyr3m H (EL—H - SL+1> WLTJrlfLHQ
< CgT%\/TH~ (Cl H/WL_H — WL+1H2 + 1 H/-'L'\L - -iL”Q) (19)

The first inequality follows by first noting that for any vector a with |a;| < 1 it holds that ||vTaH2 <
Ha||§, and then applying Lemmato get HELH — ELHHO <s=0 (ng). The last line is by
(18)
The I, term in [(T7)]follows from a simple application of Cauchy—Schwarz:

0TIl < V- €| Woan = Won | 7L = e, (20)
Putting together [(19)|and [(20)| shows that we can bound 77 in[(T6)| by
Ty < Cariy/m - <C1 HWL—H - VFVLHH2 +C1 |7 — jLHg) +vm-C- HWL+1 - WL+1H2 7 — 2Ly

—~ ~ L — ~
W=+ 9; |, -,

1)
)

- — ~ T
0TS0 (Wen = Wei) . 1)

. - B T
+0' Y4 (WL+1 — WL+1) Zr,

< Cyr3/m <C1 HWL+1 - WL+1H2 +C1

e s N (R Sl L
r=2
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Second term, 7,. We again use a decomposition like
ﬁl[jﬂl (ﬁl/W\lT — ilWl—r> /l‘\l,1

I+1 +1

= A (S-S0 W+ BESS (W0 = W) @1ea = ) + HES S (W =W ) s

I Iz I3
(22)

For I, we note that Lemma gives sparsity level s = O(ng) for f)l — 3. We thus proceed
similarly as for the term 77 to get

|’UT11| S HUT2L+1W;+1]:IZL+1 ‘il — il‘ (il — il> /VVIT@\[,1H2
< Cré/mlogm - (c1 HWl - WIHQ Oy T — gzl_lHQ) .

The above follows since slogm > C'log(L/4) holds for s = m73, and we can hence apply Lemma
[B:5]and [(I8)} The bound for the I5 term again follows by Cauchy—Schwarz,

0TIl < V- C W= Wi = il

Thus, for the term T% in we have

L
1, <0 (Corsv/mlogm |[Wo = Wi +Crdy/mlogm||[Wh -4 )
=2

)
)

o v [T, (|7 -, o3 [ -
r=2 r=I

+ HivTﬁLHil (Wﬁ - WZT) Fio1. (23)
=2

+1

L l
+922 (Téx/mlogmz HVT/7 — /W,.
r=2

Third term, 75. For T3, we work on the quantity
.H2L+1 (ilwl—r - ilwl—r) xTr = I;T2L+1 (il - 21) W;SL’ + ];:r2L+1il (Wl - W1> x.
Thus, we again have by Lemma [B.3]

I3 <

o HER (S0 = || [|(S - $0) Waa| + 0T HEVIS (W - WA ) 2
2 2
< r8y/mlogm le - WlH +ol BT, (/Wl - Wl) z. (24)
2

Using the linearity of the trace operator and that tr(ABC') = tr(CAB) = tr(BC A) for any matrices
A, B, C for which those products are defined, we can use the gradient formula [2)]to calculate for
any ! € [L+1],

- L \T _ A\T
9]1(2§l§L),UTHlL+IEl (Wl _ VVI) Tj_1 = tr |:<VVI — VVl) VWZ fw(x):| . (25)
Let now

M) = [T 03 | ] [ W,
=2
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Substituting the bounds from|(21)}[(23)}|(24)|and |(25)|thus yield for some constant C,

fw(x) — fw(x) < CT%\/mlogm

1

L
W= W], + 603 [ = Wi+ € [Wars = Wi
‘ 1 12+ C; ] 12+C L+1 41|,

l
o o [T+ [ i, 00 3 -
=2

+Cvm

L
Wosr = Wo||, [0 = W, +0 [Wess W, 327,
H L+1 L+, 1 L+1 2+ L+1 L+1 2;

)

< Trty/mlogm - (W, W) + Ov/m - h(W,W)? + 3t [ (W= W) Vi S (0)] - 26)

=1

L L l
03 [ [ 03 v (03 -
=2 =2 r=2
L+1

+ 3w [(W = W) Y fi (0)]
=1

This completes the proof of seml—smoothness of fy,. For Lg, denote ¥;, §; as the outputs of the
network for 1nput x; under weights W W respectively. Since £”(z) < 0.5 for all z € R, if we denote
A =Y — Ui = fip(wi) — fii(z3), we have
— . 1 < 1
Ls(W) = Lg(W) < = C(yis) -yi - Dq + = A2
S(07) = Ls(0¥) £ 03 [#0d) - A+ 37

Applying and using that —n =t Y"1 | /(z;) < 1forany 2; € R,

% z:f’(yzgl)yZ A < O3 /mlogm - h(W, W) - E¢(W) + Cy/m - (W, W)? - E5(W)
i=1

L+1 n
+ Z Zz yzyz Sy - tr |:(VVl Wl) VWwa<xz):| .
=1 i=1
Linearity of the trace operator allows the last term in the above display to be written as
L+1

Z tr {(Wl - V~Vl) VWZLS(W)} .
1=1
Moreover, using Lemma[B.4]

~ ~ 2 ~ ~ T T
A? = [0 @rr — Er110)] < ll3 1BLe1i — Frarlls < Com- h(W,W)2.

This term dominates the corresponding 22 term coming from A; and so completes the proof.

B.3  Proof of Lemma[4.3} gradient lower bound

This is the part of the proof that makes use of the assumption on the data distribution given in
Assumption@ and is key to the mild overparameterization required for our generalization result.
The key technical lemma needed for the proof of the gradient lower bound is given below. The proof
of Lemma [B.6]can be found in Appendix|[C.3]

Lemma B.6. Let a(x,y) : S¢~1 x {1} — [0,1]. For any § > 0, there is a constant C' > 0 such
that if m > Cy~2 (dlog(1/v) + log(L/J)) and m > C'log(n/§) then for any such function a, we
have with probability at least 1 — 4,

2

mrL41 1 n 1 1 n 2
]Z:; n ; [a(xiayi) “Yi - o (wZJ,-l,ij,i) ZL’LJ i = 67mL+1’Y <n ;a(fﬂhyz‘)) .
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Proof of Lemma{.3| Let Ui = Ty (@), and define gj =
IS [ widi) vy i - U/(le,ij’i) i) so that

2

mr+1 mr41 1 n
Z lg;l3 = Z - Z [ (i) - yi - 0 (Wi 4y jor) - L]
j=1 i=1 2
Recall that Es(W) = —n~' 31| ¢ (y;7:). Applying Lemmagives
mr 41
Z lg;ll5 > 67mL+1'Y 2[Es(W)]2 27
j=1
By Lemma for any j € [mp41], we have
lgilly < Z 1€ (yidis) - v - i - 0" (W) iy jTLs) - vaiHQ < 1.02E5(W). (28)
Define . )
N . 2 2 T
A= {j elmunl s lgll} > 777" (Es0V)) " }.
We can get the following lower bound on | A|:
[AlEs(W)? Z 102 Z 195115
JEA
> o (mun e (NP — o AR IEs ()P
— 1.05 \ 67 267
1
>_ L 2
e e )

The first line follows by [(28)] and the second by writing the sum over [m 1] as a sum over A and
A€ and then and the definition of A. The last line holds since | A°| < m,41, and all of the above
allows for the bound

1
|A| > 141mL+1'7 (29)

Letnow A’ = {j € [mp1] : 0'(@0] 4 ;L) # o' (w]y ;2L4)}. By Lemma we have
|A/| = HiL+1(m) — ZL+1(.’L‘)HO S CngmLJr]. (30)

Since 7 < 14?3, we can make v small enough so that C 73 < 42 - (1/141 — 1/150). Thus and

[30)|imply

1
|A\ A’ > [A] - |A'] > 141mL+17 — Ci73mp g > 150mL+17 (31)

By definition, V., ;Ls(W V) =1 LS O (yiGi) vy -y J’(QD—L'—_HJ:%LJ) - Zr,;. For indices
j € A\ A’, we can therefore write

- 1 & ~ ~
lgslly = [P, Ls (W) < H" S C@G) vy o Wl jana) - (Tn = F,0)

2

IN

1 — . ~
n SN widis) - vj - yi - 0" (wigy jona) - (@ns — 20|,
i=1

< C37Es(W). (32)

The first inequality follows by the triangle inequality and since indices j € A\ A’ satisfy
o' (W}, ;jir:) = o(w] ;2L4). The second inequality is an application of Jensen inequality.
The last inequality follows by Lemma and since v, y; € {£1}. Now take v small enough so that
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C37 < ((2-67)71/2 —1/16). Then we can use together with the definition of A to get for any
index j € A\ A/,

v 50,2

Thus we can derive the lower bound for the gradient of the loss at the last layer:

B B 1 .
1Es(W) = C37Es(W) 2 27Es(W). (33)

[ = X [T 209
j=1
> Z HVWHL.;’LS(W)Hz
JEA\A!
> Tl A7)

1 -
> m74mL+1[5S(W)]2~

The first line is by definition, and the second is since the spectral norm is at most the Frobenius norm.
The third line uses[(33)] and the final inequality comes from O

B.4 Proof of Lemma[d.4; gradient upper bound

Proof. Using the gradient formula and the I ll/ notation from , we can write

1 — e

Vw, Ls(W) = 0" CSISD =N (ygs) oy - gy v HE ' Si(xs), (L<TI<L41). (34)
n

=1

Since 7 < 1, there is a constant C' such that w.h.p. HVT/I H < C for all [. Thus, it is easy to see that

2
an analogous version of Lemma [B.2]can be applied with Lemma[B.4]to get that with probability at
least 1 — 0, for all ¢ € [n] and for all /,

|‘§3l,1’i||2 < Cl and HFIZI:EI‘L < 02. (35)

Therefore, we can bound

[Fwzs 0],

IN

1 n

1 _ _ L1e
o Z 1€ (yidii) - i - T1-1,4ll, HUTHlLfllZlH(%)
i=1

< C3y/mEs(W).

The first line follows by the triangle inequality, and the second since for vectors a, b, we have
|ab™| . = llall, |[bll,- The last line is by Cauchy—-Schwarz, [(35)} and the definition of g, finishing
the case [ = 1. By substituting the definition of the gradient of the loss using the formula [(34)]
we may similarly demonstrate the corresponding bounds for [ > 2 with an application of Cauchy—
Schwartz. O

O (yi%i) - yi '33171,WT1¥1L++11531+1(33¢) -

.

C Proofs of Technical Lemmas

In this section we go over the proofs of the technical lemmas that were introduced in Appendix [B]
In the course of proving these technical lemmas, we will need to introduce a handful of auxiliary

lemmas, whose proofs we leave for Appendix [D] Throughout this section, we continue to assume that
0 =1/Q(L).
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C.1 Proof of Lemma[B.2} intermediate layers are bounded

By Lemma there is a constant C'; such that with probability at least 1 — 4,
l=a,...,b. Therefore for each r > 2, we have

Willy < C; forall

H1+92TWT

S+ 0|5

Wl < 1+60Cs.

The submultiplicative property of the spectral norm gives

H(I+ O, Wy V(I + 05, Wy y) - (I + 0iawj)H2

b
< [T +esw,

2
< (146Cy)"
<exp (C10L).
The result follows by the choice of scale § = 1/Q(L) and taking 6 small.

C.2 Proof of Lemma[B.3} Lipschitz property with respect to input space at each layer

Before beginning with the proof, we introduce the following claim that will allow us to develop a
Lipschitz property with respect to the weights. This was used in Cao and Gu [5] and Allen-Zhu et al.
1.

Claim C.1. For arbitrary u,y € R™, let D(u) be the diagonal matrix with diagonal en-
tries [D(u)];; = 1(u; > 0). Then there exists another diagonal matrix D(u) such that
| D(u) + D(u)H2 \Y HD(u)H2 <lando(u) —o(y) = (D(u) + D(uw))(u — y).

Proof of Claim Simply define

[D(u) = D)l 2y wi # vis
0 uj = Y-

[D(w)];.; = {
O

Proof of Lemma|B.3] We note that for any x, y, the matrix |X;(x) — X;(y)| is zero everywhere except
possibly the diagonal where it is either zero or one. Therefore its spectral norm is uniformly bounded
by 1 for all z, y. Using this, Lemma@gives with probability at least 1 — §/3, for all 7, 2’ € S971,

21 — 2|y = ||(S1(z1) = Sa ()W, (& — ),
< [[Z1(@1) = Za (@)l [Wally 2 — 27l
<1-C-la—all,.
For the case L > | > 2, we have residual links to analyze. Using Claim|[C.1] we can write
(W, @1-1) — o (W, T1m1) = (B() + Zy(a)) W, (2121 — Ti—1)

for diagonal matrix X satisfying ||§Jl(x)||2 < 1and HEZ(;E) + Sl(x)Hz < 1. By Lemma we
have with probability at least 1 — 6/3, forall 2 <! < Land all z, 2’ € Sd-1,

2 = @illy < [ +0(i(@) + S @)W |, [Jzi-1 — 214,
< (1 + 000) ||$1_1 — .132_1”2

CofL\ "
< (1+%25) el

<Oy flr — 37/”2 )

since AL is uniformly bounded from above.
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The case | = L + 1 follows as in the case [ = 1 by an application of Lemma so that with
probability at least 1 — §/3, |27, —Tr11 ||2 < Cq ||z — '||,. Putting the above three claims

together, we get a constant C'3 such that with probability at least 1 — 4, [|z; — zj||, < Cs ||z — 2’|,
forall x, 2/ € S4~ ! and forall [ € [L + 1].

O

C.3 Proof of Lemma|[B.4; local Lipschitz property with respect to weights and sparsity
bound

For this lemma, we need to introduce an auxiliary lemma that allows us to get control over the sparsity
levels of the ReLU activation patterns. Its proof can be found in Appendix [D.1]

Lemma C.2. There are absolute constants C, C’ such that for any § > 0, if

1 L
m>C (51,/dlogﬁ5 \/dlogm) :

then with probability at least 1 — ¢, the sets
Si(z,B)={j € [m] : |wlijl_1| <B},xestlle[L+1],

satisfy |S;(8)| < C’mlgﬂ forallz € S4tand !l € [L +1].

Proof of Lemma We begin with the Lipschitz property, and afterwards will show the sparsity
bound. Consider [ = 1. Since 1 = o (W; x) andz; = o (WlT :c) , by Claim for every [ there

is a diagonal matrix ¥; () with Hfll(x)||2 < 1land Hil(x) + 3(x)

‘2 < 1 such that
81— @1lly = [[(Z1@) + E1@)) (WTe = W)
<[5+ 520, |75 -,
<[,
Forl =2,..., L, we can write
B — & =1+ 00 (/VVlel,l) S — (WZ%H)
= [I +6 (iz(x) + Ez(m)) WZT} (X111 — &—1) + 0 [il(x) + f)l(x)} (Wz - WZ>T 1.
Therefore, we have
18— aully < || T+ 0E0(@) + S@)WT|| 1811 = sl +0||Z(a) + Zu(@)|_ || W0 = W[ 13l
< (L4 CO) |11 = Fially + 0 [We = W13l (37)

We notice an easy induction will complete the proof. For the base case | = 2, notice that ||z, <

lz1]ls + [|Z1 — z1]], < C + 7 < 7, so that|[(36)|and |(37)| give
O R e R e L

Suppose by induction that there exists a constant C' such that ||Z;_1 — 2;-1]|, < C5 le - Wy H +
2

Cso 12, || - W,

l=2,...,L,

. Then as in the base case,
2

Zi_1|ly, < €', so that (37) gives for all

170 =2, < (1+CO)C

+C0 Hﬁ/\l - WZH
2 2

-1
o le _ W1H2 + 0592 HW W,

l
SCGHWI_WIH +CGQZH/WT—WT .
2 — 2
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Finally, the case [ = L + 1 follows similarly to the case [ < L, as
12241 — Zryall, = H (§L+1($) + 2L+1(a?)) (WL@L - WLT-i-le) H2
<C HWL+1 - WL+1H2 +C' |z -z, -

The bound for the sparsity levels of 3;(z) — () follows the same proof as Lemma B.5 in Cao
and Gu [53] with an application of our Lemma[C.2} Sketching this proof, we note that it suffices

to prove a bound for Hil(x) — Zl(a:)‘

, use the same proof for Hf]l(x) — Zl(ac)H and then use
0 0

triangle inequality to get the final result. We write
[£1@) = =@, = 50+,
where
st (8) = |5 € Siw. B) : (@;811) - (wljwi1) < 0},
2 . c T~
st (8) = 1{J € 8§ (. B) : (8);811) - (i) < O},
which leads to R .
|Si@) - =i@)| < omis+csrip,

1
The choice of 8 = m, * T3 completes the proof. O

C.4 Proof of Lemma behavior of network output in W(W(O), 7) when acting on sparse
vectors

This technical lemma will require two auxiliary lemmas before we may begin the proof. Their proofs

are left for Appendix [D.2]and [D.3]
Lemma C.3. Consider the function g; : R™ x R™%+1 — R defined by

gi(a,b) = bTWLT_H{la, .

where & € R™2*™ and [ > 2. Suppose that with probability at least 1 — /2, ||§;]|, < C holds
forall §,1 = 2,...,L. If slogm = Q(Clog(L/J)), then there is a constant Cy > 0 such that
probability at least 1 — 6, for all [,

1
sup (e, )] < co\/Tgm.
llall,=11bll,=1, llally,llbllg<s m

Lemma C.4. Consider the function g; : R™ — R defined by
gi(a) :==v" 1 (z) W, 1 &a,

where & € R™2*"™ and [ > 2. Assume that with probability at least 1 — ¢, |||, < Cj for all I.
Then provided slogm = Q (log(L/d)), we have with probability at least 1 — 4, for all [,

sup lgi(a)] < Cy+/slogm.

lalla=1, [lallo<s
With these lemmas in place, we can prove Lemma [B.5]

Proof of Lemma[B3] By definition, g;(a,2) = v HFa. First: since HWI — WZH < 7, there is
2

an absolute constant C'y > 0 such that with high probability,

WlH < (4 for all [. Therefore, we
2
have with high probability for all z € S?~!, all [, and all a considered,

L
|ar| < [H |1+ 05 @) 21 laly < (146-1-Co)" 1< Cy, (38)
r=l
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by our choice of . We proceed by bounding ¢; by a sum of four terms:

lgi(a,x)| < a< ‘UT (iLH(ﬂﬁ) - ZL+1($)) WLTHﬁzLa’ + ‘UTZLH(JU)WLTHFIZLG‘
< ‘UT <EL+1($) - 2L+1($)) (WLTH - WLTJrl) fsza‘ + ‘WT <EL+1($) - 2L+1($)) WE+1EIILG"

+ ]szLH(@ (W;H - w;l) HlLa’ +

UTELH(:C)WEHEQLCL’ .

For the first term, we can write
T (Sp(@) -5 Wi, —wi,,) it
v (Ypy1(z) = B4 (@) L1 L+1 ) Hi
< ||U||2 H (ELH(”C) - ELH(CU)) (W;Jrl - WE+1) HfaHQ
< O\/EHSL-H(SC) - EL+1(517)H2 HWL+1 - WL+1H2 HﬁzLaHQ
< C'tv/m,

where we have used Cauchy—Schwarz in the first line, properties of the spectral norm in the second,
and in the third. A similar calculation shows

‘UTELJrl (Wlil - WLT+1) FIZL‘ < vl HELH (Wgﬂ - W;+1) ﬁlLHz
< C1v/m.
For the second and fourth terms, we use Lemmas C.3[and Leth! =o' (ELH () = Xp41 (z))

Then it is clear that HEHO < s and H13H2 < y/m (in fact, ||2 < /s, but this doesn’t matter since the
fourth term dominates the second term). Thus applying Lemmato b="b / ||l3|

27
~ - s
0" (ELH(f) - ELH(@) W/ Hfal < Cvm- —logm

< Cy/slogm.

For the fourth term, we can directly apply Lemma to get another term o /s logm. O

C.5 Proof of Lemma B.6

This lemma is the key to the sublinear dependence on L for the required width for the generalization
result. Essential to its proof is the following proposition which states that there is a linear separability
condition at each layer due to Assumption [3.2] with only a logarithmic dependence on the depth L. In
fact, we only need linear separability at the second-to-last layer for the proof of Lemma [B.6]
Proposition C.5. Suppose m > Cy~2 (d log % + log %) for some large constant C'. Then there
exists & € S™L ! such that with probability at least 1 — §, forall { = 1,..., L, we have

ylaz) = 7/2.

Proof of Proposition[C3] We recall that Assumption implies that there exists c(@) with
[c(u)]l < 1suchthat f(z) = [p.c(u)o(u’ z)p(u)du satisfies y - f(x) > v for all (z,y) €
supp(D). Following Lemma C.1 in Cao and Gu [J3], if we define

e ) ol F))

then v = o/ / |||, € S™ 1 satisfies y - " @1 > 7 forall (z,y) € supp D.

We now show that the /-th layer activations x; are linearly separable using . We can write, for
l=2...,L,

(a, 1) = (o, (I + 0% ()W, )21_1)

l
= <Oé,£L'1> +QZ <0¢,ZZI(I)WZTI1/_1>. 39
=2
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Since (o, %)W, wi-1) = 330 (/e (VBrwik) - o(w)li—1) and [le()]|, < 1, we have
for every [ > 2,

my 1 my 1
_ ; 1 /mT lwezio1| < (o, Sy(a)W 221) < kz::l \ /mT lw/pzi-1] - (40)

Thus it suffices to find an upper bound for the term on the r.h.s. of [(40)] Since we have

2 /2 1
Bfufias| =\ 2 oy oy < Com

we can apply Hoeffding inequality to get absolute constants C'y, Cs > 0 such that for fixed x and [,
we have with probability at least 1 — 4,

L 1 oL [1 ) 1 1
Do\ i <D —Cam™E 4 Cay [ —log
1 VT P m
1. 1
< Cs5+ Cyy[ —log <.
m 1)

Take a 3-net ' of S9! so that || < 5% and every « € S9! has Z € N with ||z — Z[|, < 4. Then,

provided m > C'dlog %, there is a constant Cs > 0 such that we have with probability at least 1 — 4,

forallz e Nandalll < L,
my 1
$ L <
my
k=1

By [(40)| this means for all Z € N and I, —Cs < (o, ()W, Zy—1) < Cs. We can lift this to hold
over 5?1 by using Lemma|[B.3} for arbitrary = € S~ we have
(o, Sy ()W )| < (o, So(@)W (0 — 2) )| + (o, Sa(2) W, )|
< laally 1Ze(@) Iy Wil [l = 2|, + Cs
S 073
so that with probability at least 1 — §, forall ] < L and all = € S9-1 we have
—Cr < (o, Su(a)W, B ) < O
Substituting the above into[39)} we get
(o, 1) > (e, k1) — OLC,
—({a, 1) > —{a,21) — OLCr.
Considering the cases y = +1 we thus get with probability at least 1 — ¢ for all [ and (x, y) € supp D,
yla,z) > y(a,r1) —0LCy > 3 —0LC7, y=1,
y<aa$l> Zy<a,$1>—0LO’7 > %_GLC'T) Y= -1

Thus taking 6 small enough so that 0L < vC ! /4 completes the proof. O
With Proposition [C.5]in hand, we can prove Lemma [B.6]

Proof of Lemma[B.6] By Proposition there exists o, € S™~! such that with probability at
least 1 — 8, y (ap,xr) > /4 for all (z,y) € supp(D). In particular, since a is non-negative, this
implies for all 7,

(a(@i, yi) - yi - T o) = al@i, ¥i) - Yi (Tr, on) > al@, yi)yiv/4. (4D
Since E[o’(w] srri)lzrl = 1, by Hoeffding inequality, with probability at least 1 — & /2, for all
t=1,...,n, we have

mrL41

Z 0'(w2+1,j1?L,i) >
j=1

1

mr+1

—

log(n/d) > —. (42)

| —
&=
+
-
—_
S
(@)



Therefore, we can bound

2

mr+1 n

1
/ T
Z n Z [a(xivyi) Y0 (wL+17ij,i) : xL,i]
j=1 =1 2
2
ML 41
/ T
> mpq1 E E a(wi,yi) i - o' (wp g ;7L) xLz]
mr+1 =
=1
2
2
M 41
1 /
=mry1||— g xuyz “Yi XL E a (wL+1 ]xL,l)
mr41 -1
J= 2
n mrL41 2
1 1 / T
>mpy1( — E a(xi, yi) "Lt E o (wL+1,j33L7i)704L
ni= MmL+1

3\*—‘

=Mmr+i1

n 1 mr+
> alwi,yi) - s > 0w jen) - (wL o)
=1

=

2
49 \? 1 & 2
> (== — s L
- (100> e (nz“(%ylo 12

i=1

1 1 ’
2
2 ﬁmL-H Y (n ; a(i, Z/z)) .
The first inequality above follows by Jensen inequality. The second inequality follows by Cauchy—
Schwarz and since ||z ||, = 1. The third inequality follows with an application of and((42)| and
the final inequality by arithmetic. O

,_.
Il

D Proofs of Auxiliary Lemmas

D.1 Proof of Lemmal[C.2]

Proof. By following a proof similar to that of Lemma A.8 in Cao and Gu [5], one can easily prove
the following claim:

Claim D.1. Forv € R™-!, 8 > 0,and [ € [L + 1] define
Si(v, B) = {j € [m] : [w]jv| < B}, (43)

Suppose that there is an absolute constant £ € (0, 1) such that for any § > 0 we have with probability
at least 1 — > ¢ for all v € V for some finite set V C R™~1. Then there exist absolute

constants C, C’ > 0 such that if m > C 31 /log(4|V|/d), then with probability at least 1 — &, we
have |S;(v, 8)| < C'm 3/25 forallv € V.

By Lemmasand B.1} with probability at least 1 — 6/3, we have |[z;_1||, > C and [lwy ||, < Cy
forallz € S ', 1 € [L+1],and j € [my]. By Lemma with probability at least 1 — ¢/3,
we have |lz; — z}||, < Cs ||z — 2'|, for all z,2’ € S?~!. By taking V to be the 3/(C;Cs)-net

N (891, 8/(C1Cy)), since J\f\ < (401Co/B)?, the assumption that m > CB~1y/dlog(1/(j36))
allows us to apply Lemma|D.1|to get that with probability at least 1 — /3, we have |S;(Z,28)| <

2C'm B foralll and T € N For arbitrary z € S971, there exists 7 € N with |z — 2, <
ﬂ/(C’ng) Thus, we have

|wl—7rj1'lfl| < |U)l—|:j’i'\l,1‘ + |wl—|,—j(xlfl — fl,1)|
< B4 lwilly -1 — Zially
<B+C-Colz—Z,
<28,
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ie. Si(x, B) C Si(7,2p). Therefore |S;(z, B)| < |Si(Z,206)] < QC’ml% , as desired. O

D.2 Proof of Lemmal[CJ3

Proof. The j-th row of W/, &a has distribution w], | ,&a ~ N ( & all? ) and hence

’ mL+1
gila,b) ~ ( , 2 | Gal ) Since [|&[|, < Cj for all [ with high probability, it is clear that

HflaHg < C2. Thus applying Hoeffding inequality gives a constant C5 > 0 such that we have for
fixed a and b, with probability at least 1 — 6,

1 1 1
og =.
410
Let M, be a fixed subspace of R with sparsity s, and let A, (M, 1/4) be a 1/4-net covering M,,.
There are (”Zl) choices of such M. Let N, = Upq, N, (M, 1/4) be the union of such spaces. By
Lemma 5.2 in Vershynin [23], for s larger than e.g. 15, we have

N < <”:l>9s < ms.

Similarly consider subspace M,;, C R™~+1 with sparsity level s and let N},(M,,, 1/4) be a 1/4-net
of R™:+1 with sparsity level s and define N}, = Uy, Ny (M, 1/4), so that [Ny < m7 ;. We apply
to every a € N, and be N and use a union bound to get a constant Cy > 0 such that with
probability at least 1 — &, for alla € N, b € N, and all [,

N 1 Na| - Vol L
|5TWE+1§la| < C'3\/ log Wal - N

"W, &al < Cs (44)

ML41 d
s ms- L
S 03 1 log mL+1 ml
mr4+1 0
1
= 03\/ (8 log(mp41m;) + log )
mr4+1 1)

L
< Cy °logm. (slogsz(log))
Mmr+1 0

For arbitrary a € S™ 1 and b € S™++1~1 with ||al|, , ||b]l, < s, there are @ € A, and b € N with

la —al,, ’b - BH < 1/4. Note that g is linear in a and b. Triangle inequality gives

l91(a,b)] < |gi(a, b)\ + |gi(a,b) — g1(@, b))

< Cs logmy 1 + |gi(a,b) — gu(@,0)| + 9@, b) — (@ b)| 45
mr+1
We have for any @,
. R ~ _ b—b
l91(@,b) — gi(@,b)| = Hb - bH g | a —=
2 b— bH
2
1 /
< 1 sup |91 (a,b)]. (46)
18" lo=llall,=1, llallg,l[b']lo<s
Similarly,
= 1
lgi1(a,b) — gi(@,b)| < ~ sup g1 (a,b)| . (47)

4 jpll,=llall,=1, lalle,l1bllo<s

Taking supremum over the left hand side of [(45)]and using the bounds in [(46)] and [(47)] completes the
proof. O
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D.3 Proof of Lemmal[C.4|

Proof. We notice that sincev = (1,...,1,—1,...,—1) T, we can write g;(a) as a sum of independent
random variables in the following form:

mr41/2

gi(a) = /mri1 Z

[U(wzﬂ,jglﬂa) - U(wz+1,j+m“1/2§l+1a) .

VIML4+1

Since [|£;+1al|, is uniformly bounded by a constant, Hoeffding inequality yields a constant C's > 0
such that for fixed a, with probability at least 1 — §, we have

1. 1
gi(a) < C3y/my/ —log —.
m 0

Let M be a fixed subspace of R™ with sparsity s, and let N = U N (M, 1/2) be the union of all
1/2-nets covering each M so that [N| < m;. Using a union bound over all @ € N and [, we get that
with probability at least 1 — §, foralla € N and all | < L,

1 - L
gi(@) < Cs3y/m -4/ —log Al < C54/slogm.
m

)
For arbitrary a € S™ " satisfying ||a||, < s, there is @ € N with [la — @||, < 1/2. Since g is linear,
91(a)| < lgi(@)] + |g1(a — @) < Cs5v/slogm + |gi(a — a)|. (48)

For the second term, we have

l91(a — @) = [la =@l

a—a 1
gl 1< 3 sup lgi(a)l-
la —all, 2 Jlally=1, llally<s

Substituting this into and taking supremums completes the proof. O
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