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Abstract

We present a randomized primal-dual algorithm that solves the problem
minx maxy y

>Ax to additive error ε in time nnz(A) +
√

nnz(A)n/ε, for ma-
trix A with larger dimension n and nnz(A) nonzero entries. This improves the best
known exact gradient methods by a factor of

√
nnz(A)/n and is faster than fully

stochastic gradient methods in the accurate and/or sparse regime ε ≤
√
n/nnz(A).

Our results hold for x, y in the simplex (matrix games, linear programming) and
for x in an `2 ball and y in the simplex (perceptron / SVM, minimum enclosing
ball). Our algorithm combines the Nemirovski’s “conceptual prox-method” and a
novel reduced-variance gradient estimator based on “sampling from the difference”
between the current iterate and a reference point.

1 Introduction

Minimax problems—or games—of the form minx maxy f(x, y) are ubiquitous in economics, statis-
tics, optimization and machine learning. In recent years, minimax formulations for neural network
training rose to prominence [15, 23], leading to intense interest in algorithms for solving large scale
minimax games [10, 14, 20, 9, 18, 24]. However, the algorithmic toolbox for minimax optimization
is not as complete as the one for minimization. Variance reduction, a technique for improving
stochastic gradient estimators by introducing control variates, stands as a case in point. A multitude
of variance reduction schemes exist for finite-sum minimization [cf. 19, 34, 1, 4, 12], and their impact
on complexity is well-understood [43]. In contrast, only a few works apply variance reduction to
finite-sum minimax problems [3, 39, 5, 26], and the potential gains from variance reduction are not
well-understood.

We take a step towards closing this gap by designing variance-reduced minimax game solvers that
offer strict runtime improvements over non-stochastic gradient methods, similar to that of optimal
variance reduction methods for finite-sum minimization. To achieve this, we focus on the fundamental
class of bilinear minimax games,

min
x∈X

max
y∈Y

y>Ax, where A ∈ Rm×n.

In particular, we study the complexity of finding an ε-approximate saddle point (Nash equilibrium),
namely x, y with

max
y′∈Y

(y′)>Ax− min
x′∈X

y>Ax′ ≤ ε.

In the setting where X and Y are both probability simplices, the problem corresponds to finding an
approximate (mixed) equilbrium in a matrix game, a central object in game theory and economics.
Matrix games are also fundamental to algorithm design due in part to their equivalence to linear
programming [8]. Alternatively, when X is an `2 ball and Y is a simplex, solving the corresponding
problem finds a maximum-margin linear classifier (hard-margin SVM), a fundamental task in machine
learning and statistics [25]. We refer to the former as an `1-`1 game and the latter as an `2-`1 game;
our primary focus is to give improved algorithms for these domains.
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1.1 Our Approach

Our starting point is Nemirovski’s “conceptual prox-method” [28] for solving
minx∈X maxy∈Y f(x, y), where f : X × Y → R is convex in x and concave in y. The
method solves a sequence of subproblems parameterized by α > 0, each of the form

find x, y s.t. ∀x′, y′ 〈∇xf(x, y), x− x′〉 − 〈∇yf(x, y), y − y′〉 ≤ αVx0(x′) + αVy0(y′) (1)

for some (x0, y0) ∈ X ×Y , where Va(b) is a norm-suitable Bregman divergence from a to b: squared
Euclidean distance for `2 and KL divergence for `1. Combining each subproblem solution with an
extragradient step, the prox-method solves the original problem to ε accuracy by solving Õ(α/ε)
subproblems.1 (Solving (1) with α = 0 is equivalent to to solving minx∈X maxy∈Y f(x, y).)

Our first contribution is showing that if a stochastic unbiased gradient estimator g̃ satisfies the
“variance” bound

E ‖g̃(x, y)−∇f(x0, y0)‖2∗ ≤ L
2 ‖x− x0‖2 + L2 ‖y − y0‖2 (2)

for some L > 0, then O(L2/α2) regularized stochastic mirror descent steps using g̃ solve (1) in a
suitable probabilistic sense. We call unbiased gradient estimators that satisfy (2) “centered.”

Our second contribution is the construction of “centered” gradient estimators for `1-`1 and `2-`1
bilinear games, where f(x, y) = y>Ax. Our `1 estimator has the following form. Suppose we wish
to estimate gx = A>y (the gradient of f w.r.t. x), and we already have gx0 = A>y0. Let p ∈ ∆m be
some distribution over {1, . . . ,m}, draw i ∼ p and set

g̃x = gx0 +Ai:
[y]i − [y0]i

pi
,

where Ai: is the ith column of A>. This form is familiar from variance reduction techniques [19,
44, 1], that typically use a fixed distribution p. In our setting, however, a fixed p will not produce
sufficiently low variance. Departing from prior variance-reduction work and building on [16, 6], we
choose p based on y according to

pi(y) =

∣∣[y]i − [y0]i
∣∣

‖y − y0‖1
,

yielding exactly the variance bound we require. We call this technique “sampling from the difference.”

For our `2 gradient estimator, we sample from the squared difference, drawing X -block coordinate
j ∼ q, where qj(x) = ([x]j − [x0]j)

2/‖x− x0‖22. To strengthen our results for `2-`1 games, we
consider a refined version of the “centered” criterion (2) which allows regret analysis using local
norms [37, 6]. To further facilitate this analysis we follow [6] and introduce gradient clipping.
We extend our proofs to show that stochastic regularized mirror descent can solve (1) despite the
(distance-bounded) bias caused by gradient clipping.

Our gradient estimators attain the bound (2) with L equal to the Lipschitz constant of∇f . Specifically,

L =

{
maxij |Aij | in the `1-`1 setup
maxi ‖Ai:‖2 in the `2-`1 setup.

(3)

1.2 Method complexity compared with prior art

As per the discussion above, to achieve accuracy ε our algorithm solves Õ(α/ε) subproblems. Each
subproblem takes O(nnz(A)) time for computing two exact gradients (one for variance reduction and
one for an extragradient step), plus an additional (m+ n)L2/α2 time for the inner mirror descent
iterations, with L as in (3). The total runtime is therefore

Õ

((
nnz(A) +

(m+ n)L2

α2

)
α

ε

)
.

1 More precisely, the required number of subproblem solutions is at most Θ · α
ε

, where Θ is a “domain
size” parameter that depends on X , Y , and the Bregman divergence V (see Section 2). In the `1 and `2 settings
considered in this paper, we have the bound Θ ≤ log(nm) and we use the Õ notation to suppress terms
logarithmic in n and m. However, in other settings—e.g., `∞-`1 games [cf. 38, 40]—making the parameter Θ
scale logarithmically with the problem dimension is far more difficult.
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By setting α optimally to be max{ε, L
√

(m+ n)/nnz(A)}, we obtain the runtime

Õ(nnz(A) +
√

nnz(A) · (m+ n) · L · ε−1). (4)

Comparison with mirror-prox and dual extrapolation. Nemirovski [28] instantiates his concep-
tual prox-method by solving the relaxed proximal problem (1) with α = L in time O(nnz(A)), where
L is the Lipschitz constant of ∇f , as given in (3). The total complexity of the resulting method is
therefore

Õ(nnz(A) · L · ε−1). (5)
The closely related dual extrapolation method of Nesterov [31] attains the same rate of convergence.
We refer to the running time (5) as linear since it scales linearly with the problem description size
nnz(A). Our running time guarantee (4) is never worse than (5) by more than a constant factor, and
improves on (5) when nnz(A) = ω(n+m), i.e. whenever A is not extremely sparse. In that regime,
our method uses α� L, hence solving a harder version of (1) than possible for mirror-prox.

Comparison with sublinear-time methods Using a randomized algorithm, Grigoriadis and
Khachiyan [16] solve `1-`1 bilinear games in time

Õ((m+ n) · L2 · ε−2), (6)

and Clarkson et al. [6] extend this result to `2-`1 bilinear games, with the values of L as in (3). Since
these runtimes scale with n+m ≤ nnz(A), we refer to them as sublinear. Our guarantee improves
on the guarantee (6) when (m+ n) · L2 · ε−2 � nnz(A), i.e. whenever (6) is not truly sublinear.

Our method carefully balances linear-time extragradient steps with cheap sublinear-time stochastic
gradient steps. Consequently, our runtime guarantee (4) inherits strengths from both the linear and
sublinear runtimes. First, our runtime scales linearly with L/ε rather than quadratically, as does the
linear runtime (5). Second, while our runtime is not strictly sublinear, its component proportional to
L/ε is

√
nnz(A)(n+m), which is sublinear in nnz(A).

Overall, our method offers the best runtime guarantee in the literature in the regime√
nnz(A)(n+m)

min{n,m}ω
� ε

L
�
√
n+m

nnz(A)
,

where the lower bound on ε is due to the best known theoretical runtimes of interior point methods:
Õ(max{n,m}ω log(L/ε)) [7] and Õ(nnz(A) + min{n,m}2)

√
min{n,m} log(L/ε)) [21], where

ω is the (current) matrix multiplication exponent.

In the square dense case (i.e. nnz(A) ≈ n2 = m2), we improve on the accelerated runtime (5) by a
factor of

√
n, the same improvement that optimal variance-reduced finite-sum minimization methods

achieve over the fast gradient method [44, 1].

1.3 Related work

Matrix games, the canonical form of discrete zero-sum games, have long been studied in economics
[32]. The classical mirror descent (i.e. no-regret) method yields an algorithm with running time
Õ(nnz(A)L2ε−2) [30]. Subsequent work [16, 28, 31, 6] improve this runtime as described above.
Our work builds on the extragradient scheme of Nemirovski [28] as well as the gradient estimation
and clipping technique of Clarkson et al. [6].

Balamurugan and Bach [3] apply standard variance reduction [19] to bilinear `2-`2 games by sampling
elements proportional to squared matrix entries. Using proximal-point acceleration they obtain a
runtime of Õ(nnz(A)+‖A‖F

√
nnz(A) max{m,n}ε−1 log 1

ε ), a rate we recover using our algorithm
(Appendix E). However, in this setting the mirror-prox method has runtime Õ(‖A‖op nnz(A)ε−1),
which may be better than the result of [3] by a factor of

√
mn/nnz(A) due to the discrepancy in

the norm of A. Naive application of [3] to `1 domains results in even greater potential losses. Shi
et al. [39] extend the method of [3] to smooth functions using general Bregman divergences, but their
extension is unaccelerated and appears limited to a ε−2 rate.

Chavdarova et al. [5] propose a variance-reduced extragradient method with applications to generative
adversarial training. In contrast to our algorithm, which performs extragadient steps in the outer loop,
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the method of [5] performs stochastic extragradient steps in the inner loop, using finite-sum variance
reduction as in [19]. Chavdarova et al. [5] analyze their method in the convex-concave setting,
showing improved stability over direct application of the extragradient method to noisy gradients.
However, their complexity guarantees are worse than those of linear-time methods. Following up
on [5], Mishchenko et al. [26] propose to reduce the variance of the stochastic extragradient method
by using the same stochastic sample for both the gradient and extragradient steps. In the Euclidean
strongly convex case, they show a convergence guarantee with a relaxed variance assumption, and in
the noiseless full-rank bilinear case they recover the guarantees of [27]. In the general convex case,
however, they only show an ε−2 rate of convergence.

1.4 Paper outline and additional contributions

We define our notation in Section 2. In Section 3.1, we review Nemirovski’s conceptual prox-method
and introduce the notion of a relaxed proximal oracle; we implement such oracle using variance-
reduced gradient estimators in Section 3.2. In Section 4, we construct these gradient estimators for
the `1-`1 and `2-`1 domain settings, and complete the analyses of the corresponding algorithms; in
Appendix E we provide analogous treatment for the `2-`2 setting, recovering the results of [3].

In Appendix F we provide three additional contributions: variance-reduction-based computation of
proximal points for arbitrary convex-concave functions (Appendix F.1); extension of our results to
“composite” saddle point problems of the form minx∈X maxy∈Y {f(x, y) + φ(x)− ψ(y)}, where f
admits a centered gradient estimator and φ, ψ are “simple” convex functions (Appendix F.2); and a
number of alternative centered gradient estimators for the `2-`1 and `2-`2 settings (Appendix F.3).

2 Notation

Problem setup. A setup is the triplet (Z, ‖·‖ , r) where: (i) Z is a compact and convex subset of
Rn × Rm, (ii) ‖·‖ is a norm on Z and (iii) r is 1-strongly-convex w.r.t. Z and ‖·‖, i.e. such that
r(z′) ≥ r(z) + 〈∇r(z), z − z′〉+ 1

2 ‖z
′ − z‖2 for all z, z′ ∈ Z .2 We call r the distance generating

function and denote the Bregman divergence associated with it by

Vz(z
′) := r(z′)− r(z)− 〈∇r(z), z′ − z〉 ≥ 1

2
‖z′ − z‖2 .

We also denote Θ := maxz′ r(z
′)−minz r(z) and assume it is finite.

Norms and dual norms. We write S∗ for the set of linear functions on S . For ζ ∈ Z∗ we define the
dual norm of ‖·‖ as ‖ζ‖∗ := max‖z‖≤1 〈ζ, z〉. For p ≥ 1 we write the `p norm ‖z‖p = (

∑
i z
p
i )1/p

with ‖z‖∞ = maxi |zi|. The dual norm of `p is `q with q−1 = 1− p−1.

Domain components. We assume Z is of the form X × Y for convex and compact sets X ⊂ Rn
and Y ⊂ Rm. Particular sets of interest are the simplex ∆d = {v ∈ Rd | ‖v‖1 = 1, v ≥ 0} and the
Euclidean ball Bd = {v ∈ Rd | ‖v‖2 ≤ 1}. For any vector in z ∈ Rn × Rm,

we write zx and zy for the first n and last m coordinates of z, respectively.

When totally clear from context, we sometimes refer to the X and Y components of z directly as x
and y. We write the ith coordinate of vector v as [v]i.

Matrices. We consider a matrix A ∈ Rm×n and write nnz(A) for the number of its nonzero
entries. For i ∈ [n] and j ∈ [m] we write Ai:, A:j and Aij for the corresponding row, column
and entry, respectively.3 We consider the matrix norms ‖A‖max := maxij |Aij |, ‖A‖p→q :=

max‖x‖p≤1 ‖Ax‖q and ‖A‖F := (
∑
i,j A

2
ij)

1/2.

2 For non-differentiable r, let 〈∇r(z), w〉 := supγ∈∂r(z) 〈γ,w〉, where ∂r(z) is the subdifferential of r at z.
3 For k ∈ N, we let [k] := {1, . . . , k}.
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3 Primal-dual variance reduction framework

In this section, we establish a framework for solving the saddle point problem

min
x∈X

max
y∈Y

f(x, y),

where f is convex in x and concave y, and admits a (variance-reduced) stochastic estimator for the
continuous and monotone4 gradient mapping

g(z) = g(x, y) := (∇xf(x, y),−∇yf(x, y)) .

Our goal is to find an ε-approximate saddle point (Nash equilibrium), i.e. z ∈ Z := X × Y such that

Gap(z) := max
y′∈Y

f(zx, y′)− min
x′∈X

f(x′, zy) ≤ ε. (7)

We achieve this by generating a sequence z1, z2, . . . , zk such that 1
K

∑K
k=1 〈g(zk), zk − u〉 ≤ ε for

every u ∈ Z and using the fact that

Gap

(
1

K

K∑
k=1

zk

)
≤ max

u∈Z

1

K

K∑
k=1

〈g(zk), zk − u〉 (8)

due to convexity-concavity of f (see proof in Appendix A.1).

In Section 3.1 we define the notion of a (randomized) relaxed proximal oracle, and describe how
Nemirovski’s mirror-prox method leverages it to solve the problem (3). In Section 3.2 we define a
class of centered gradient estimators, whose variance is proportional to the squared distance from a
reference point. Given such a centered gradient estimator, we show that a regularized stochastic mirror
descent scheme constitutes a relaxed proximal oracle. For a technical reason, we limit our oracle
guarantee in Section 3.2 to the bilinear case f(x, y) = y>Ax, which suffices for the applications in
Section 4. We lift this limitation in Appendix F.1, where we show a different oracle implementation
that is valid for general convex-concave f , with only a logarithmic increase in complexity.

3.1 The mirror-prox method with a randomized oracle

Recall that we assume the space Z = X × Y is equipped with a norm ‖·‖ and distance generating
function r : Z → R that is 1-strongly-convex w.r.t. ‖·‖ and has range Θ. We write the induced
Bregman divergence as Vz(z′) = r(z′)−r(z)−〈∇r(z), z′ − z〉. We use the following fact throughout
the paper: by definition, the Bregman divergence satisfies, for any z, z′, u ∈ Z ,

− 〈∇Vz(z′), z′ − u〉 = Vz(u)− Vz′(u)− Vz(z′). (9)

For any α > 0 we define the α-proximal mapping Proxαz (g) to be the solution of the variational
inequality corresponding to the strongly monotone operator g + α∇Vz , i.e. the unique zα ∈ Z such
that 〈g(zα) + α∇Vz(zα), zα − u〉 ≤ 0 for all u ∈ Z [cf. 11]. Equivalently (by (9)),

Proxαz (g) := the unique zα ∈ Z s.t. 〈g(zα), zα − u〉 ≤ αVz(u)− αVzα(u)− αVz(zα) ∀u ∈ Z.
(10)

When Vz(z′) = V x
x (x′) + V y

y (y′), Proxαz (g) is also the unique solution of the saddle point problem

min
x′∈X

max
y′∈Y

{
f(x′, y′) + αV x

x (x′)− αV y
y (y′)

}
.

Consider iterations of the form zk = Proxαzk−1
(g), with z0 = arg minz r(z). Averaging the defini-

tion (10) over k, using the bound (8) and the nonnegativity of Bregman divergences gives

Gap

(
1

K

K∑
k=1

zk

)
≤ max

u∈Z

1

K

K∑
k=1

〈g(zk), zk − u〉 ≤ max
u∈Z

α (Vz0(u)− VzK (u))

K
≤ αΘ

K
.

Thus, we can find an ε-suboptimal point in K = αΘ/ε exact proximal steps. However, computing
Proxαz (g) exactly may be as difficult as solving the original problem. Nemirovski [28] proposes
a relaxation of the exact proximal mapping, which we slightly extend to include the possibility of
randomization, and formalize in the following.

4 A mapping q : Z → Z∗ is monotone if and only if 〈q(z′)− q(z), z′ − z〉 ≥ 0 for all z, z′ ∈ Z; g is
monotone due to convexity-concavity of f .
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Definition 1 ((α, ε)-relaxed proximal oracle). Let g be a monotone operator and α, ε > 0. An
(α, ε)-relaxed proximal oracle for g is a (possibly randomized) mapping O : Z → Z such that
z′ = O(z) satisfies

E
[
max
u∈Z

{
〈g(z′), z′ − u〉 − αVz(u)

}]
≤ ε.

Note that O(z) = Proxαz (g) is an (α, 0)-relaxed proximal oracle. Algorithm 1 describes the
“conceptual prox-method” of Nemirovski [28], which recovers the error guarantee of exact proximal
iterations. The kth iteration consists of (i) a relaxed proximal oracle call producing zk−1/2 =
O(zk−1), and (ii) a linearized proximal (mirror) step where we replace z 7→ g(z) with the constant
function z 7→ g(zk−1/2), producing zk = Proxαzk−1

(g(zk−1/2)). We now state the convergence
guarantee for the mirror-prox method, first shown in [28] (see Appendix B.1 for a simple proof).

Algorithm 1: OuterLoop(O) (Nemirovski [28])
Input: (α, ε)-relaxed proximal oracle O(z) for gradient mapping g, distance-generating r
Parameters :Number of iterations K
Output: Point z̄K with EGap(z̄) ≤ αΘ

K + ε
1 z0 ← arg minz∈Z r(z)
2 for k = 1, . . . ,K do
3 zk−1/2 ← O(zk−1) . We implement O(zk−1) by calling InnerLoop(zk−1, g̃zk−1

, α)

4 zk ← Proxαzk−1
(g(zk−1/2)) = arg minz∈Z

{〈
g
(
zk−1/2

)
, z
〉

+ αVzk−1
(z)
}

5 return z̄K = 1
K

∑K
k=1 zk−1/2

Proposition 1 (Mirror prox convergence via oracles). Let O be an (α,ε)-relaxed proximal oracle
with respect to gradient mapping g and distance-generating function r with range at most Θ. Let
z1/2, z3/2, . . . , zK−1/2 be the iterates of Algorithm 1 and let z̄K be its output. Then

EGap(z̄K) ≤ Emax
u∈Z

1

K

K∑
k=1

〈
g(zk−1/2), zk−1/2 − u

〉
≤ αΘ

K
+ ε.

3.2 Implementation of an (α, 0)-relaxed proximal oracle

We now explain how to use stochastic variance-reduced gradient estimators to design an efficient
(α, 0)-relaxed proximal oracle. We begin by introducing the bias and variance properties of the
estimators we require.

Definition 2. Let z0 ∈ Z and L > 0. A stochastic gradient estimator g̃z0 : Z → Z∗ is called
(z0, L)-centered for g if for all z ∈ Z

1. E [g̃z0(z)] = g(z),

2. E ‖g̃z0(z)− g(z0)‖2∗ ≤ L2 ‖z − z0‖2.

Lemma 1. A (z0, L)-centered estimator for g satisfies E ‖g̃z0(z)− g(z)‖2∗ ≤ (2L)2 ‖z − z0‖2.

Proof. Writing δ̃ = g̃z0(z) − g(z0), we have Eδ̃ = g(z) − g(z0) by the first centered estimator
property. Therefore,

E ‖g̃z0(z)− g(z)‖2∗ = E‖δ̃ − Eδ̃‖2∗
(i)

≤ 2E‖δ̃‖2∗ + 2‖Eδ̃‖2∗
(ii)

≤ 4E‖δ̃‖2∗
(iii)

≤ (2L)2 ‖z − z0‖2 ,

where the bounds follow from (i) the triangle inequality, (ii) Jensen’s inequality and (iii) the second
centered estimator property.

Remark 1. A gradient mapping that admits a (z, L)-centered gradient estimator for every z ∈ Z is
2L-Lipschitz, since by Jensen’s inequality and Lemma 1 we have for all w ∈ Z

‖g(w)− g(z)‖∗ = ‖Eg̃z(w)− g(z)‖∗ ≤ (E ‖g̃z(w)− g(z)‖2∗)
1/2 ≤ 2L ‖w − z‖ .
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Remark 2. Definition 2 bounds the gradient variance using the distance to the reference point. Similar
bounds are used in variance reduction for bilinear saddle-point problems with Euclidean norm [3],
as well as for finding stationary points in smooth nonconvex finite-sum problems [2, 33, 12, 45].
However, known variance reduction methods for smooth convex finite-sum minimization require
stronger bounds [cf. 1, Section 2.1].

With the variance bounds defined, we describe Algorithm 2 which (for the bilinear case) implements a
relaxed proximal oracle. The algorithm is stochastic mirror descent with an additional regularization
term around the initial point w0. Note that we do not perform extragradient steps in this stochastic
method. When combined with a centered gradient estimator, the iterates of Algorithm 2 provide the
following guarantee, which is one of our key technical contributions.

Algorithm 2: InnerLoop(w0, g̃w0
, α)

Input: Initial w0 ∈ Z , gradient estimator g̃w0
, oracle quality α > 0

Parameters :Step size η, number of iterations T
Output: Point w̄T satisfying Definition 1 (for appropriate g̃w0

, η, T )
1 for t = 1, . . . , T do
2 wt ← arg minw∈Z

{
〈g̃w0

(wt−1), w〉+ α
2 Vw0

(w) + 1
ηVwt−1

(w)
}

3 return w̄T = 1
T

∑T
t=1 wt

Proposition 2. Let α,L > 0, let w0 ∈ Z and let g̃w0 be (w0, L)-centered for monotone g. Then, for
η = α

10L2 and T ≥ 4
ηα = 40L2

α2 , the iterates of Algorithm 2 satisfy

Emax
u∈Z

 1

T

∑
t∈[T ]

〈g(wt), wt − u〉 − αVw0(u)

 ≤ 0. (11)

Before discussing the proof of Proposition 2, we state how it implies the relaxed proximal oracle
property for the bilinear case.
Corollary 1. Let A ∈ Rm×n and let g(z) = (A>zy,−Azx). Then, in the setting of Proposition 2,
O(w0) = InnerLoop(w0, g̃w0 , α) is an (α, 0)-relaxed proximal oracle.

Proof. Note that 〈g(z), w〉 = −〈g(w), z〉 for any z, w ∈ Z and consequently 〈g(z), z〉 = 0.
Therefore, the iterates w1, . . . , wT of Algorithm 2 and its output w̄T = 1

T

∑T
t=1 wt satisfy for every

u ∈ Z ,

1

T

∑
t∈[T ]

〈g(wt), wt − u〉 =
1

T

∑
t∈[T ]

〈g(u), wt〉 = 〈g(u), w̄T 〉 = 〈g(w̄T ), w̄T − u〉 .

Substituting into the bound (11) yields the (α, 0)-relaxed proximal oracle property in Definition 1.

More generally, the proof of Corollary 1 shows that Algorithm 2 implements a relaxed proximal oracle
whenever z 7→ 〈g(z), z − u〉 is convex for every u. In Appendix F.1 we implement an (α, ε)-relaxed
proximal oracle without such an assumption.

The proof of Proposition 2 is a somewhat lengthy application of existing techniques for stochastic
mirror descent analysis in conjunction with Definition 2. We give it in full in Appendix B.2 and sketch
it briefly here. We view Algorithm 2 as mirror descent with stochastic gradients δ̃t = g̃w0(wt)−g(w0)
and composite term 〈g(w0), z〉 + α

2 Vw0(z). For any u ∈ Z , the standard mirror descent analysis
(see Lemma 4 in Appendix A.2) bounds the regret

∑
t∈[T ]

〈
g̃w0

(wt) + α
2∇Vw0

(wt), wt − u
〉

in

terms of the distance to initialization Vw0
(u) and the stochastic gradient norms ‖δ̃t‖2∗ for t ∈ [T ].

Bounding these norms via Definition 2 and rearranging the 〈∇Vw0
(wt), wt − u〉 terms, we show that

E
[

1
T

∑
t∈[T ] 〈g(wt), wt − u〉 − αVw0

(u)
]
≤ 0 for all u ∈ Z . To reach our desired result we must

swap the order of the expectation and “for all.” We do so using the “ghost iterate” technique due
to Nemirovski et al. [29].

7



4 Application to bilinear saddle point problems

We now construct centered gradient estimators (as per Definition 2) for the linear gradient mapping

g(z) = (A>zy,−Azx) corresponding to the bilinear saddle point problem min
x∈X

max
y∈Y

y>Ax.

Sections 4.1 and 4.2 consider the `1-`1 and `2-`1 settings, respectively; in Appendix E we show
how our approach naturally extends to the `2-`2 setting as well. Throughout, we let w0 denote the
“center” (i.e. reference point) of our stochastic gradient estimator and consider a general query point
w ∈ Z = X × Y . We also recall the notation [v]i for the ith entry of vector v.

4.1 `1-`1 games

Setup. Denoting the d-dimensional simplex by ∆d, we let X = ∆n, Y = ∆m and Z = X × Y .
We take ‖·‖ to be the `1 norm with conjugate norm ‖·‖∗ = ‖·‖∞. We take the distance generating
function r to be the negative entropy, i.e. r(z) =

∑
i[z]i log[z]i. We note that both ‖·‖1 and r are

separable and in particular separate over the X and Y blocks of Z . Finally we set

‖A‖max := max
i,j
|Aij |

and note that this is the Lipschitz constant of the gradient mapping g under the chosen norm.

Gradient estimator. Given w0 = (wx
0, w

y
0) and g(w0) = (A>wy

0,−Awx
0), we describe the

reduced-variance gradient estimator g̃w0(w). First, we define the probabilities p(w) ∈ ∆m and
q(w) ∈ ∆n according to,

pi(w) :=
|[wy]i − [wy

0]i|
‖wy − wy

0‖1
and qj(w) :=

|[wx]j − [wx
0]j |

‖wx − wx
0‖1

. (12)

To compute g̃w0
we sample i ∼ p(w) and j ∼ q(w) independently, and set

g̃w0
(w) :=

(
A>wy

0 +Ai:
[wy]i − [wy

0]i
pi(w)

,−Awx
0 −A:j

[wx]j − [wx
0]j

qj(w)

)
, (13)

where Ai: and A:j are the ith row and jth column of A, respectively. Since the sampling distributions
p(w), q(w) are proportional to the absolute value of the difference between blocks of w and w0, we
call strategy (12) “sampling from the difference.” Substituting (12) into (13) gives the explicit form

g̃w0
(w) = g(w0) + (Ai:‖wy − wy

0‖1sign([wy − wy
0]i),−A:j‖wx − wx

0‖1sign([wx − wx
0]j)) . (14)

A straightforward calculation shows that this construction satisfies Definition 2.

Lemma 2. In the `1-`1 setup, the estimator (14) is (w0, L)-centered with L = ‖A‖max.

Proof. The first property (Eg̃w0
(w) = g(w)) follows immediately by inspection of (13). The second

property follows from (14) by noting that

‖g̃w0
(w)− g(w0)‖∞ = max

{
‖Ai:‖∞ ‖w

y − wy
0‖1 , ‖A:j‖∞ ‖w

x − wx
0‖1
}
≤ ‖A‖max ‖w − w0‖1

for all i, j, and therefore E ‖g̃w0
(w)− g(w0)‖2∞ ≤ ‖A‖

2
max ‖w − w0‖21.

The proof of Lemma 2 reveals that the proposed estimator satisfies a stronger version of Definition 2:
the last property and also Lemma 1 hold with probability 1 rather than in expectation.

Runtime bound. Combining the centered gradient estimator (13), the relaxed oracle implemen-
tation (Algorithm 2) and the extragradient outer loop (Algorithm 1), we obtain our main result for
`1-`1 games: an accelerated stochastic variance reduction algorithm. We write the resulting complete
method explicitly as Algorithm 3 in Appendix C.1. The algorithm enjoys the following runtime
guarantee (see proof in Appendix C.2).
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Theorem 1. Let A ∈ Rm×n, ε > 0, and α ≥ ε/ log(nm). Algorithm 3 outputs a point z = (zx, zy)

such that E
[
maxy∈∆m y>Azx −minx∈∆n(zy)>Ax

]
= E

[
maxi [Azx]i −minj [A>zy]j

]
≤ ε,

and runs in time

O

((
nnz(A) +

(m+ n) ‖A‖2max

α2

)
α log(mn)

ε

)
. (15)

Setting α optimally, the running time is

O

(
nnz(A) +

√
nnz(A)(m+ n) ‖A‖max log(mn)

ε

)
. (16)

4.2 `2-`1 games

Setup. We set X = Bn to be the n-dimensional Euclidean ball of radius 1, while Y = ∆m remains
the simplex. For z = (zx, zy) ∈ Z = X × Y we define a norm by

‖z‖2 = ‖zx‖22 + ‖zy‖21 with dual norm ‖g‖2∗ = ‖gx‖22 + ‖gy‖2∞ .

For distance generating function we take r(z) = rx(zx) + ry(zy) with rx(x) = 1
2 ‖x‖

2
2 and ry(y) =∑

i yi log yi; r is 1-strongly convex w.r.t. to ‖·‖ and has range 1
2 + logm ≤ log(2m). Finally, we

denote
‖A‖2→∞ = max

i∈[m]
‖Ai:‖2 ,

and note that this is the Lipschitz constant of g under ‖·‖.

Gradient estimator. To account for the fact that X is now the `2 unit ball, we modify the sampling
distribution q in (12) to qj(w) =

([wx]j−[wx
0]j)

2

‖wx−wx
0‖22

, and keep p the same. As we explain in detail

in Appendix D.1.1, substituting these probabilities into the expression (13) yields a centered gradient
estimator with a constant (

∑
j∈[n] ‖A:j‖2∞)1/2 that is larger than ‖A‖2→∞ by a factor of up to

√
n.

Using local norms analysis allows us to tighten these bounds whenever the stochastic steps have
bounded infinity norm. Following Clarkson et al. [6], we enforce such bound on the step norms via
gradient clipping. The final gradient estimator is

g̃w0(w) :=

(
A>wy

0 +Ai:
‖wy − wy

0‖1
sign([wy − wy

0]i)
,−Awx

0 − Tτ

(
A:j
‖wx − wx

0‖
2
2

[wx]j − [wx
0]j

))
,

where [Tτ (v)]i =


−τ [v]i < −τ
[v]i −τ ≤ [v]i ≤ τ
τ [v]i > τ,

The clipping operation Tτ introduces bias to the gradient estimator, which we account for by carefully
choosing a value of τ for which the bias is on the same order as the variance, and yet the resulting
steps are appropriately bounded; see Appendix D.1.2. In Appendix F.3.1 we describe an alternative
gradient estimator for which the distribution q does not depend on the current iterate w.

Runtime bound. Algorithm 4 in Appendix D.5 combines our clipped gradient estimator with our
general variance reduction framework. The analysis in Appendix D gives the following guarantee.
Theorem 2. Let A ∈ Rm×n, ε > 0, and any α ≥ ε/ log(2m). Algorithm 4 outputs a point z =
(zx, zy) such that E

[
maxy∈∆m y>Azx −minx∈Bn(zy)>Ax

]
= E

[
maxi [Azx]i + ‖A>zy‖2

]
≤ ε,

and runs in time

O

((
nnz(A) +

(m+ n) ‖A‖22→∞
α2

)
α log(2m)

ε

)
. (17)

Setting α optimally, the running time is

O

(
nnz(A) +

√
nnz(A)(m+ n) ‖A‖2→∞ log(2m)

ε

)
. (18)
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Appendix

A Standard results

Below we give two standard results in convex optimization: bounding suboptimality via regret
(Section A.1) and the mirror descent regret bound (Section A.2).

A.1 Duality gap bound

Let f : X × Y → R be convex in X , concave in Y and differentiable, and let g(z) = g(x, y) =
(∇xf(x, y),−∇yf(x, y)). For z, u ∈ Z define

gap(z;u) := f(zx, uy)− f(ux, zy) and Gap(z) := max
u∈Z

gap(z;u).

Lemma 3. For every z1, . . . , zK ∈ Z ,

Gap

(
1

K

K∑
k=1

zk

)
≤ max

u∈Z

1

K

K∑
k=1

〈g(zk), zk − u〉 .

Proof. Note that gap(z;u) is concave in u for every z, and that gap(z; z) = 0, therefore

gap(z;u) ≤ 〈∇ugap(z; z), u− z〉 = 〈g(z), z − u〉 .
Moreover, gap(z;u) is convex in z for every u. Therefore, for a sequence z1, . . . , zK and any u ∈ Z

gap
(

1

K

K∑
k=1

zk;u

)
≤ 1

K

K∑
k=1

gap(zk;u) ≤ 1

K

K∑
k=1

〈g(zk), zk − u〉 .

Maximizing the inequality over u yields the lemma.

A.2 The mirror descent regret bound

Recall that Vz(z′) = r(z′) − r(z) − 〈∇r(z), z′ − z〉 is the Bregman divergence induced by a
1-strongly-convex distance generating function r.
Lemma 4. Let Q : Z → R be convex, let T ∈ N and let w0 ∈ Z , γ0, γ1, . . . , γT ∈ Z∗. The
sequence w1, . . . , wT defined by

wt = arg min
w∈Z

{
〈γt−1, w〉+Q(w) + Vwt−1

(w)
}

satisfies for all u ∈ Z (denoting wT+1 := u),

T∑
t=1

〈γt +∇Q(wt), wt − u〉 ≤ Vw0(u) +

T∑
t=0

{〈γt, wt − wt+1〉 − Vwt(wt+1)}

≤ Vw0
(u) +

1

2

T∑
t=0

‖γt‖2∗ .

Proof. Fix u ≡ wT+1 ∈ Z . We note that by definition wt is the solution of a convex optimization
problem with (sub)gradient γt−1 +∇Q(·)+∇Vwt−1

(·), and therefore by by the first-order optimality
condition [cf. 17, Chapter VII] satisfies〈

γt−1 +∇Q(wt) +∇Vwt−1(wt), wt − wT+1

〉
≤ 0.

By the equality (9) we have −
〈
∇Vwt−1

(wt), wt − wT+1

〉
= Vwt−1

(wT+1) − Vwt(wT+1) −
Vwt−1(wt). Substituting and summing over t ∈ [T ] gives

T∑
t=1

〈γt−1 +∇Q(wt), wt − wT+1〉 ≤ Vw0
(wT+1)−

T∑
t=0

Vwt(wt+1).
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Rearranging the LHS and adding 〈γT , wT − wT+1〉 to both sides of the inequality gives

T∑
t=1

〈γt +∇Q(wt), wt − wT+1〉 ≤ Vw0
(wT+1) +

T∑
t=0

{〈γt, wt − wt+1〉 − Vwt(wt+1)} ,

which is the first bound stated in the lemma. The second bound follows since for every t we have

〈γt, wt − wt+1〉
(i)

≤ ‖γt‖∗ ‖wt − wt+1‖
(ii)

≤ 1

2
‖γt‖2∗ +

1

2
‖wt − wt+1‖2

(iii)

≤ 1

2
‖γt‖2∗ + Vwt(wt+1)

(19)
due to (i) Hölder’s inquality, (ii) Young’s inequality and (iii) strong convexity of r.

B Proofs from Section 3

B.1 Derivation of the Nemirovski’s conceptual prox-method

Proposition 1 (Mirror prox convergence via oracles). Let O be an (α,ε)-relaxed proximal oracle
with respect to gradient mapping g and distance-generating function r with range at most Θ. Let
z1/2, z3/2, . . . , zK−1/2 be the iterates of Algorithm 1 and let z̄K be its output. Then

EGap(z̄K) ≤ Emax
u∈Z

1

K

K∑
k=1

〈
g(zk−1/2), zk−1/2 − u

〉
≤ αΘ

K
+ ε.

Proof. Fix iteration k, and note that by the definition (10), zk = Proxαzk−1
(g(zk−1/2)) satisfies〈

g(zk−1/2), zk − u
〉
≤ α

(
Vzk−1

(u)− Vzk(u)− Vzk−1
(zk)

)
∀u ∈ Z.

Summing over k, writing〈
g(zk−1/2), zk − u

〉
=
〈
g(zk−1/2), zk−1/2 − u

〉
−
〈
g(zk−1/2), zk−1/2 − zk

〉
and rearranging yields

K∑
k=1

〈
g(zk−1/2), zk−1/2 − u

〉
≤ αVz0(u) +

K∑
k=1

[〈
g(zk−1/2), zk−1/2 − zk

〉
− αVzk−1

(zk)
]

for all u ∈ Z . Note that since z0 minimizes r, Vz0(u) = r(u) − r(z0) ≤ Θ for all u. Therefore,
maximizing the above display over u and afterwards taking expectation gives

Emax
u∈Z

K∑
k=1

〈
g(zk−1/2), zk−1/2 − u

〉
≤ αΘ +

K∑
k=1

E
[〈
g(zk−1/2), zk−1/2 − zk

〉
− αVzk−1

(zk)
]
.

Finally, by Definition 1, E
[〈
g(zk−1/2), zk−1/2 − zk

〉
− αVzk−1

(zk)
]
≤ ε for every k, and and the

result follows by dividing by K and using the bound (8).

B.2 Proof of Proposition 2

Proposition 2. Let α,L > 0, let w0 ∈ Z and let g̃w0 be (w0, L)-centered for monotone g. Then, for
η = α

10L2 and T ≥ 4
ηα = 40L2

α2 , the iterates of Algorithm 2 satisfy

Emax
u∈Z

 1

T

∑
t∈[T ]

〈g(wt), wt − u〉 − αVw0(u)

 ≤ 0. (11)

Proof. Recall the expression wt = arg minw∈Z
{
〈ηg̃w0

(wt−1), w〉+ ηα
2 Vw0

(w) + Vwt−1
(w)
}

for
the iterates of Algorithm 2. We apply Lemma 4 with Q(z) = 〈g(w0), z〉+ α

2 Vw0(z) and γt = ηδ̃t,
where

δ̃t = g̃w0
(wt)− g(w0).
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Dividing through by η, the resulting regret bound reads∑
t∈[T ]

〈
g̃w0

(wt) + α
2∇Vw0

(wt), wt − u
〉
≤ Vw0

(u)

η
+
η

2

∑
t∈[T ]

‖δ̃t‖2∗, (20)

where we used the fact that δ̃0 = 0 to drop the summation over t = 0 in the RHS. Now, let

∆̃t = g(wt)− g̃w0
(wt).

Rearranging the inequality (20), we may write it as∑
t∈[T ]

〈
g(wt) + α

2∇Vw0
(wt), wt − u

〉
≤ Vw0

(u)

η
+
η

2

∑
t∈[T ]

‖δ̃t‖2∗ +
∑
t∈[T ]

〈
∆̃t, wt − u

〉
. (21)

Define the “ghost iterate” sequence s1, s2, . . . , sT according to

st = arg min
s∈Z

{〈
η∆̃t−1, s

〉
+ Vst−1

(s)
}

with s0 = w0.

Applying Lemma 4 with Q = 0 and γt = η∆̃t, we have∑
t∈[T ]

〈
∆̃t, st − u

〉
≤ Vw0

(u)

η
+
η

2

∑
t∈[T ]

‖∆̃t‖2∗, (22)

where here too we used ∆̃0 = 0. Writing
〈
∆̃t, wt − u

〉
=
〈
∆̃t, wt − st

〉
+
〈
∆̃t, st − u

〉
and

substituting (22) into (21) we have∑
t∈[T ]

〈
g(wt) + α

2∇Vw0
(wt), wt − u

〉
≤ 2Vw0

(u)

η
+
η

2

∑
t∈[T ]

[
‖δ̃t‖2∗ + ‖∆̃t‖2∗

]
+
∑
t∈[T ]

〈
∆̃t, wt−st

〉
.

Substituting

−α2 〈∇Vw0
(wt), wt − u〉 = α

2 Vw0
(u)− α

2 Vwt(u)− α
2 Vw0

(wt) ≤ α
2 Vw0

(u)− α
2 Vw0

(wt)

and dividing by T , we have
1

T

∑
t∈[T ]

〈g(wt), wt − u〉 ≤
(

2
ηT + α

2

)
Vw0

(u)+
1

T

∑
t∈[T ]

[
η
2‖δ̃t‖

2
∗ + η

2‖∆̃t‖2∗ − α
2 Vw0

(wt) +
〈
∆̃t, wt − st

〉]
.

Subtracting αVw0
(u) from both sides and using 2

ηT −
α
2 ≤ 0 due to T ≥ 4

ηα , we obtain

1

T

∑
t∈[T ]

〈g(wt), wt − u〉−αVw0(u) ≤ 1

T

∑
t∈[T ]

[
η
2‖δ̃t‖

2
∗ + η

2‖∆̃t‖2∗ − α
2 Vw0(wt) +

〈
∆̃t, wt − st

〉]
.

Note that this inequality holds with probability 1 for all u. We may therefore maximize over u and
then take expectation, obtaining

Emax
u∈Z

{
1

T

∑
t∈[T ]

〈g(wt), wt − u〉 − αVw0(u)

}
≤ 1

T

∑
t∈[T ]

E
[
η
2‖δ̃t‖

2
∗ + η

2‖∆̃t‖2∗ − α
2 Vw0(wt) +

〈
∆̃t, wt − st

〉]
. (23)

It remains to argue the the RHS is nonpositive. By the first centered estimator property, we have

E
[
∆̃t | wt, st

]
= E

[
g(wt)− g̃w0(wt) | wt, st

]
= 0

and therefore E
〈
∆̃t, wt − st

〉
= 0 for all t. By the second property

E‖δ̃t‖2∗ = E‖g̃w0
(wt)− g(w0)‖2∗ ≤ L2 ‖wt − w0‖2 ≤ 2L2Vw0

(wt),

where the last transition used the strong convexity of r. Similarly, by Lemma 1 we have

E‖∆̃t‖2∗ = E‖g̃w0(wt)− g(w)‖2∗ ≤ 4L2 ‖wt − w0‖2 ≤ 8L2Vw0
(wt).

Therefore
E
[
η
2‖δ̃t‖

2
∗ + η

2‖∆̃t‖2∗ − α
2 Vw0

(wt)
]
≤ (5ηL2 − α

2 )EVw0
(wt) = 0,

using η = α
10L2 .
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C The `1-`1 setup

C.1 Complete pseudo-code

Algorithm 3: Variance reduction for `1-`1 games
Input: Matrix A ∈ Rm×n with ith row Ai: and jth column A:j , target accuracy ε
Output: A point with expected duality gap below ε

1 L← maxij |Aij |, α← L
√

n+m
nnz(A) , K ←

⌈
log(nm)α

ε

⌉
, η ← α

10L2 , T ←
⌈

4
ηα

⌉
, z0 ← ( 1

n1n, 1
m1m)

2 for k = 1, . . . ,K do
. Relaxed oracle query:

3 (x0, y0)← (zxk−1, z
y
k−1), (gx0, g

y
0)← (A>y0,−Ax0)

4 for t = 1, . . . , T do
. Gradient estimation:

5 Sample i ∼ p where pi =
|[yt−1]i − [y0]i|
‖yt−1 − y0‖1

, sample j ∼ q where qj =
|[xt−1]j − [x0]j |
‖xt−1 − x0‖1

6 Set g̃t−1 = g0 +

(
Ai:

[yt−1]i − [y0]i
pi

,−A:j
[xt−1]j − [x0]j

qj

)
. Mirror descent step:

7 xt ← ΠX

(
1

1 + ηα/2

(
log xt−1 +

ηα

2
log x0 − ηg̃xt−1

))
. ΠX (v) = ev

‖ev‖1

8 yt ← ΠY

(
1

1 + ηα/2

(
log yt−1 +

ηα

2
log y0 − ηg̃yt−1

))
. ΠY(v) = ev

‖ev‖1

9 zk−1/2 ←
1

T

T∑
t=1

(xt, yt)

. Extragradient step:

10 zxk ← ΠX

(
log zxk−1 − 1

αA
>zyk−1/2

)
11 zyk ← ΠY

(
log zyk−1 + 1

αAz
x
k−1/2

)
12 return

1

K

K∑
k=1

zk−1/2

C.2 Proof of runtime bound

Theorem 1. Let A ∈ Rm×n, ε > 0, and α ≥ ε/ log(nm). Algorithm 3 outputs a point z = (zx, zy)

such that E
[
maxy∈∆m y>Azx −minx∈∆n(zy)>Ax

]
= E

[
maxi [Azx]i −minj [A>zy]j

]
≤ ε,

and runs in time

O

((
nnz(A) +

(m+ n) ‖A‖2max

α2

)
α log(mn)

ε

)
. (15)

Setting α optimally, the running time is

O

(
nnz(A) +

√
nnz(A)(m+ n) ‖A‖max log(mn)

ε

)
. (16)

Proof. First, we prove the expected duality gap bound. By Lemma 2 and Corollary 1 (with L =
‖A‖max), InnerLoop is an (α, 0)-relaxed proximal oracle. On ∆d, negative entropy has minimum
value − log d and is non-positive, therefore for the `1-`1 domain we have Θ = maxz′ r(z

′) −
minz r(z) = log(nm). By Proposition 1, running K ≥ α log(nm)/ε iterations guarantees an
ε-approximate saddle point in expectation.
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Now, we prove the runtime bound. Lines 3, 10 and 11 of Algorithm 3 each take time O(nnz(A)), as
they involve matrix-vector products with A and A>. All other lines run in time O(n+m), as they
consist of sampling and vector arithmetic (the time to compute sampling probabilities dominates
the runtime of sampling). Therefore, the total runtime is O((nnz(A) + (n+m)T )K). Substituting
T ≤ 1 + 40L2

α2 and K ≤ 1 + log(nm)α
ε gives the bound (15). Setting

α = max

{
ε

log nm
, ‖A‖max

√
n+m

nnz(A)

}
gives the optimized bound (16).

Remark 3. We can improve the log(mn) factor in (15) and (16) to
√

logm log n by the transfor-

mation X → X
√

logm
logn and Y → Y

√
logn
logm . This transformation leaves the problem unchanged

and reduces Θ from log(mn) to 2
√

logm log n. It is also equivalent to proportionally using slightly
different step-sizes for the X and Y block.

D The `2-`1 setup

D.1 Derivation of gradient clipping

D.1.1 Basic gradient estimator

We first present a straightforward adaptation of the `1-`1 gradient estimator, which we subsequently
improve to obtain the optimal Lipschitz constant dependence. Following the “sampling from the
difference” strategy, consider a gradient estimator g̃w0 computed as in (13), but with the following
different choice of q(w):

pi(w) =
|[wy]i − [wy

0]i|
‖wy − wy

0‖1
and qj(w) =

([wx]j − [wx
0]j)

2

‖wx − wx
0‖

2
2

. (24)

The resulting gradient estimator has the explicit form

g̃w0
(w) = g(w0) +

(
Ai:

‖wy − wy
0‖1

sign([wy − wy
0]i)

,−A:j
‖wx − wx

0‖
2
2

[wx − wx
0]j

)
. (25)

(Note that g̃w0
of the form (13) is finite with probability 1.) Direct calculation shows it is centered.

Lemma 5. In the `2-`1 setup, the estimator (25) is (w0, L)-centered with L =
√∑

j∈[n] ‖A:j‖2∞.

Proof. The estimator is unbiased since it is of the form (13). To show the variance bound, first
consider the X -block. We have∥∥g̃xw0

(w)− gx(w0)
∥∥2

2
= ‖Ai:‖22 ‖w

y − wy
0‖21 ≤ ‖A‖

2
2→∞ ‖w

y − wy
0‖21 ≤ L2‖wy − wy

0‖21, (26)

where we used ‖A‖22→∞ = maxi∈[n] ‖Ai:‖
2
2 ≤

∑
j∈[m] ‖A:j‖2∞ = L2. Second, for the Y-block,

E
∥∥g̃yw0

(w)− gy(w0)
∥∥2

∞ =
∑
j∈[n]

‖A:j‖2∞ [wx − wx
0]2j

qj(w)
= L2 ‖wx − wx

0‖
2
2 . (27)

Combining (26) and (27), we have the second property E ‖g̃w0
(w)− g(w0)‖2∗ ≤ L2 ‖w − w0‖2.

D.1.2 Improved gradient estimator

The constant L in Lemma 5 is larger than the Lipschitz constant of g (i.e. ‖A‖2→∞) by a factor of
up to

√
n. Consequently, a variance reduction scheme based on the estimator (25) will not always

improve on the linear-time mirror prox method.
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Inspecting the proof of Lemma 5, we see that the cause for the inflated value of L is the bound (27)
on E

∥∥g̃yw0
(w)− gy(w0)

∥∥2

∞. We observe that swapping the order of expectation and maximization
would solve the problem, as

max
k∈[m]

E [g̃yw0
(w)− gy(w0)]2k = max

k∈[m]

∑
j∈[n]

A2
kj [w

x − wx
0]2j

qj(w)
= ‖A‖22→∞ ‖w

x − wx
0‖

2
2 . (28)

Moreover, inspecting the proof of Proposition 2 reveals that instead of bounding terms of the form
E
∥∥g̃yw0

(wt)− gy(w0)
∥∥2

∞ we may directly bound E
[
η
〈
g̃yw0

(wt)− gy(w0), yt − yt+1

〉
− Vyt(yt+1)

]
,

where we write wt = (xt, yt) and recall that η is the step-size in Algorithm 2. Suppose that
η
∥∥g̃yw0

(wt)− gy(w0)
∥∥
∞ ≤ 1 holds. In this case we may use a “local norms” bound (Lemma ?? in

Appendix D.2) to write

η
〈
g̃yw0

(wt)− gy(w0), yt − yt+1

〉
− Vyt(yt+1) ≤ η2

∑
k∈[m]

[yt]k[g̃yw0
(wt)− gy(w0)]2k

and bound the expectation of the RHS using (28) conditional on wt.

Unfortunately, the gradient estimator (25) does not always satisfy η
∥∥g̃yw0

(wt)− gy(w0)
∥∥
∞ ≤ 1.

Following Clarkson et al. [6], we enforce this bound by clipping the gradient estimates, yielding the
estimator

g̃w0
(w) :=

(
A>wy

0 +Ai:
[wy]i − [wy

0]i
pi(w)

,−Awx
0 − Tτ

(
A:j

[wx]j − [wx
0]j

qj(w)

))
,

where [Tτ (v)]i =


−τ [v]i < −τ
[v]i −τ ≤ [v]i ≤ τ
τ [v]i > τ,

(29)

where i ∼ p(w) and j ∼ q(w) with p, q as defined in (24). The clipping in (29) does not significantly
change the variance of the estimator, but it introduces some bias for which we must account. We
summarize the relevant properties of the clipped gradient estimator in the following.

Definition 3. Let w0 = (wx
0, w

y
0) ∈ Z and τ, L > 0. A stochastic gradient estimator g̃w0

: Z → Z∗
is called (w0, L, τ)-centered-bounded-biased (CBB) if it satisfies for all w = (wx, wy) ∈ Z ,

1. Eg̃xw0
(w) = gx(w) and

∥∥Eg̃yw0
(w)− gy(w)

∥∥
∗ ≤

L2

τ ‖w − w0‖2,

2.
∥∥g̃yw0

(w)− gy(w0)
∥∥
∗ ≤ τ and

∥∥g̃yw0
(w)− gy(w)

∥∥
∗ ≤ 2L+ τ ,

3. E
∥∥g̃xw0

(w)− gx(w0)
∥∥2

∗ + maxi∈[m] E [g̃yw0
(w)− gy(w0)]2i ≤ L2 ‖w − w0‖2.

Lemma 6. In the `2-`1 setup, the estimator (29) is (w0, L, τ)-CBB with L = ‖A‖2→∞.

Proof. The X component for the gradient estimator is unbiased. We bound the bias in the Y block as
follows. Fixing an index i ∈ [m], we have∣∣E [g̃yw0

(w)− gy (w)
]
i

∣∣ =

∣∣∣∣Ej [Aij [wx]j − [wx
0]j

qj
− Tτ

(
Aij

[wx]j − [wx
0]j

qj

)]∣∣∣∣
≤

∑
j∈Jτ (i)

qj

∣∣∣∣Aij [wx]j − [wx
0]j

qj
− Tτ

(
Aij

[wx]j − [wx
0]j

qj

)∣∣∣∣
≤

∑
j∈Jτ (i)

|Aij | |[wx]j − [wx
0]j |

where the last transition used |a− Tτ (a)| ≤ |a| for all a, and

Jτ (i) =

{
j ∈ [n] | Tτ

(
Aij

[wx]j − [wx
0]j

qj

)
6= Aij

[wx]j − [wx
0]j

qj

}
.
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Note that j ∈ Jτ (i) if and only if∣∣∣∣Aij [wx]j − [wx
0]j

qj

∣∣∣∣ =
‖wx − wx

0‖
2
2 |Aij |

|[wx]j − [wx
0]j |

> τ ⇒ |[wx]j − [wx
0]j | ≤

1

τ
‖wx − wx

0‖
2
2 |Aij | .

Therefore,∑
j∈Jτ (i)

|Aij | |[wx]j − [wx
0]j | ≤

1

τ
‖wx − wx

0‖
2
2

∑
j∈Jτ (i)

|Aij |2 ≤
1

τ
‖wx − wx

0‖
2
2 ‖Ai:‖

2
2

and
∥∥Eg̃yw0

(w)− gy(w)
∥∥
∞ ≤

L2

τ ‖w
x − wx

0‖
2
2 follows by taking the maximum over i ∈ [m].

By definition of Tτ we have
∥∥g̃yw0

(w)− gy(w0)
∥∥
∞ ≤ τ and by the triangle inequality and L-

Lipschitz continuity of g we have∥∥g̃yw0
(w)− gy(w)

∥∥
∞ ≤ ‖g

y(w)− gy(w0)‖∞+
∥∥g̃yw0

(w)− gy(w0)
∥∥
∞ ≤ L ‖w

x − wx
0‖2+τ ≤ 2L+τ,

since we assume X is the unit Euclidean ball.

Finally, we note that for all k, the addition of Tτ never increases [g̃yw0
(w) − gy(w0)]2k, and so the

third property follows from (28) and (26).

To guarantee η
∥∥g̃yw0

(wt)− gy(w0)
∥∥
∞ ≤ 1, we set the threshold τ to be 1/η. By the first property in

Definition 3, the bias caused by this choice of τ is of the order of the variance of the estimator, and
we may therefore cancel it with the regularizer by choosing η slightly smaller than in Proposition 2.
In Appendix D we prove (using the observations from the preceding discussion) that Algorithm 2
with a CBB gradient estimator implements a relaxed proximal oracle.

Proposition 3. In the `2-`1 setup, let α,L > 0, let w0 ∈ Z and let g̃w0
be (w0, L,

20L2

α )-CBB
for monotone g. Then, for α ≤ L, η = α

20L2 and T ≥ 4
ηα = 80L2

α2 , the iterates of Algorithm 2
satisfy the bound (11). Moreover, for g(z) = (A>zy,−Azx), O(w0) = InnerLoop(w0, g̃w0

, α) is
an (α, 0)-relaxed proximal oracle.

We remark that the proof of Proposition 3 relies on the structure of the simplex with negative entropy
as the distance generating function. For this reason, we state the proposition for the `2-`1 setup.
However, Proposition 3 would also hold for other setups where Y is the simplex and ry is the negative
entropy, provided a CBB gradient estimator is available.

With Proposition 3 in hand, the proof of Theorem 2 follows identically to that of Theorem 1, except
Proposition 3 replaces Corollary 1, L is now ‖A‖2→∞ instead of ‖A‖max, and Θ = maxz′ r(z

′)−
minz r(z) = 1

2 + logm ≤ log(2m) rather than log(mn).

Before giving the proof of Proposition 3 is Section D.4, we first collect some properties of the KL
divergence (Section D.2) and of centered-bounded-biased (CBB) gradient estimators (Section D.3).

D.2 Local norms bounds

For this subsection, let Y be the m dimensional simplex ∆m, and let r(y) =
∑m
i=1 yi log yi be the

negative entropy distance generating function. The corresponding Bregman divergence is the KL
divergence, which is well-defined for any y, y′ ∈ Rm≥0 and has the form

Vy(y′) =
∑
i∈[m]

[
y′i log

y′i
yi

+ yi − y′i
]

=

∫ 1

0

dt

∫ t

0

∑
i∈[m]

(yi − y′i)2

(1− τ)yi + τy′i
dτ. (30)

In the literature, “local norms” regret analysis [37, Section 2.8] relies on the fact that r∗(γ) =
log(

∑
i e
γi) (the conjugate of negative entropy in the simplex) is locally smooth with respect to a

Euclidean norm weighted by∇r∗(γ) = eγ

‖eγ‖1
. More precisely, the Bregman divergence V ∗γ (γ′) =

r∗(γ′)− r∗(γ)− 〈∇r∗(γ), γ′ − γ〉 satisfies

V ∗γ (γ + δ) ≤ ‖δ‖2∇r∗(γ) :=
∑
i

[∇r∗(γ)]i · δ2
i whenever δi ≤ 1.79 ∀i. (31)

Below, we state this bound in a form that is directly applicable to our analysis.
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Lemma 7. Let y, y′ ∈ ∆m and δ ∈ Rm. If δ satisfies δi ≤ 1.79 for all i ∈ [m] then the KL
divergence Vy(y′) satisfies

〈δ, y′ − y〉 − Vy(y′) ≤ ‖δ‖2y :=
∑
i∈[m]

yiδ
2
i

Proof. It suffices to consider y in the relative interior of the simplex where r is differentiable; the
final result will hold for any y in the simplex by continuity. Recall the following general facts
about convex conjugates:

〈
γ′, y′

〉
− r(y′) ≤ r∗(γ′) for any γ′ ∈ Rm, y = ∇r∗(∇r(y)) and

r∗(∇r(y)) = 〈∇r(y), y〉 − r(y). Therefore, we have for all y′ ∈ ∆m,

〈δ, y′ − y〉 − Vy(y′) = 〈∇r(y) + δ, y′〉 − r(y′)− [〈∇r(y), y〉 − r(y)]− 〈y, δ〉
≤ r∗(∇r(y) + δ)− r∗(∇r(y))− 〈∇r∗(∇r(y)), δ〉 = V ∗∇r(y)

(
∇r(y) + δ

)
.

The result follows from (31) with γ = ∇r(y), recalling again that y = ∇r∗(∇r(y)). For complete-
ness we prove (31) below, following [37]. We have

r∗(γ + δ)− r∗(γ) = log

(∑
i∈[m] e

γi+δi∑
i∈[m] e

γi

)
(i)

≤ log

(
1 +

∑
i∈[m] e

γi(δi + δ2
i )∑

i∈[m] e
γi

)

= log(1 +
〈
∇r∗(γ), δ + δ2

〉
)

(ii)

≤ 〈∇r∗(γ), δ〉+
〈
∇r∗(γ), δ2

〉
,

where (i) follows from ex ≤ 1 + x+ x2 for all x ≤ 1.79 and (ii) follows from log(1 + x) ≤ x for
all x. Therefore,

V ∗γ (γ + δ) = r∗(γ + δ)− r∗(γ)− 〈∇r∗(γ), δ〉 ≤
〈
∇r∗(γ), δ2

〉
= ‖δ‖2∇r∗(γ) ,

completing the proof.

D.3 Properties of CBB gradient estimators

We recall the definition of a centered-bounded-biased gradient estimator.

Definition 3. Let w0 = (wx
0, w

y
0) ∈ Z and τ, L > 0. A stochastic gradient estimator g̃w0

: Z → Z∗
is called (w0, L, τ)-centered-bounded-biased (CBB) if it satisfies for all w = (wx, wy) ∈ Z ,

1. Eg̃xw0
(w) = gx(w) and

∥∥Eg̃yw0
(w)− gy(w)

∥∥
∗ ≤

L2

τ ‖w − w0‖2,

2.
∥∥g̃yw0

(w)− gy(w0)
∥∥
∗ ≤ τ and

∥∥g̃yw0
(w)− gy(w)

∥∥
∗ ≤ 2L+ τ ,

3. E
∥∥g̃xw0

(w)− gx(w0)
∥∥2

∗ + maxi∈[m] E [g̃yw0
(w)− gy(w0)]2i ≤ L2 ‖w − w0‖2.

CBB estimators have the following additional property, analogous to Lemma 1.

Lemma 8. In the `2-`1 setup, a (w0, L, τ)-CBB estimator with for g with τ ≥ 2
√

2L also satisfies,
for all w ∈ Z ,

E
∥∥g̃xw0

(w)− gx(w)
∥∥2

2
+ max
i∈[m]

E [g̃yw0
(w)− gy(w)]2i ≤ 2L2 ‖w − w0‖2 .

Proof. We have E
∥∥g̃xw0

(w)− gx(w)
∥∥2

2
≤ E

∥∥g̃xw0
(w)− gx(w0)

∥∥2

2
since the X component is unbi-

ased. For the Y component, fix i ∈ [m] and write

E [g̃yw0
(w)− gy(w)]2i = E [g̃yw0

(w)− Eg̃yw0
(w)]2i + [Eg̃yw0

(w)− gy(w)]2i

≤ E [g̃yw0
(w)− g(w0)]2i +

(
L2

τ ‖w − w0‖2
)2
,

where the last inequality follows from the first CBB property and the fact that [v]2i ≤ ‖v‖
2
∞. Using

τ ≥ 2
√

2L and ‖w − w0‖ ≤ 2
√

2 for every w,w0 ∈ Bn ×∆m, we obtain the result.

20



D.4 Proof of Proposition 3

Proposition 3. In the `2-`1 setup, let α,L > 0, let w0 ∈ Z and let g̃w0
be (w0, L,

20L2

α )-CBB
for monotone g. Then, for α ≤ L, η = α

20L2 and T ≥ 4
ηα = 80L2

α2 , the iterates of Algorithm 2
satisfy the bound (11). Moreover, for g(z) = (A>zy,−Azx), O(w0) = InnerLoop(w0, g̃w0

, α) is
an (α, 0)-relaxed proximal oracle.

Proof. Let w1, ..., wT denote the iterates of Algorithm 2 and let wT+1 ≡ u. We recall the following
notation from the proof of Proposition 2: δ̃t = g̃w0

(wt) − g(w0), ∆̃t = g(wt) − g̃w0
(wt) and

st = arg mins∈Z

{〈
η∆̃t−1, s

〉
+ Vst−1

(s)
}

. Retracing the steps of the proof of Proposition 2
leading up to the bound (23), we observe that by using the first inequality in Lemma 4 rather than the
second, the bound (23) becomes

Emax
u∈Z

{
1

T

∑
t∈[T ]

〈g(wt), wt − u〉 − αVw0(u)

}
≤ 1

T

∑
t∈[T ]

E
[
−α2 Vw0(wt) +

〈
∆̃t, wt − st

〉]
+

1

ηT

∑
t∈[T ]

E
[〈
ηδ̃t, wt − wt+1

〉
− Vwt(wt+1) +

〈
η∆̃t, st − st+1

〉
− Vst(st+1)

]
. (32)

Let us bound the various expectations in the RHS of (32) one by one. By the first CBB property,
E
[
∆̃x
t | wt, st

]
= 0 and also

∥∥E[∆̃y
t | wt, st

]∥∥
∗ ≤

L2

τ ‖wt − w0‖2. Consequently,

E
〈
∆̃t, wt − st

〉
≤ L2

τ
E ‖wt − w0‖2 ‖wy

t − s
y
t‖1 .

Using ‖y − y′‖1 ≤ 2 for every y, y′ ∈ Y = ∆m as well as τ = 1
η , we obtain

E
〈
∆̃t, wt − st

〉
≤ 2ηL2E ‖wt − w0‖2 ≤ 4ηL2EVw0(wt). (33)

To bound the expectation of
〈
ηδ̃t, wt − wt+1

〉
− Vwt(wt+1), we write wt = (xt, yt), and note that

for the `2-`1 setup the Bregman divergence is separable, i.e. Vwt(wt+1) = Vxt(xt+1) + Vyt(yt+1).
For the X component, we proceed as in Lemma 4, and write〈

ηδ̃xt , xt − xt+1

〉
− Vxt(xt+1) ≤ η2

2 ‖δ̃
x
t‖

2

2.

For the Y component, we observe that

‖ηδ̃yt‖∞ = η‖g̃yw0
(wt)− gy(w0)‖∞ ≤ ητ = 1

by the second CBB property and τ = 1
η . Therefore, we may apply Lemma 7 with δ = −ηδ̃yt and

obtain 〈
ηδ̃yt , yt − yt+1

〉
− Vyt(yt+1) ≤ η2

∑
i∈[m]

[yt]i[δ̃
y
t ]

2
i .

Taking expectation and using the fact that yt is in the simplex gives

E
[〈
ηδ̃yt , yt − yt+1

〉
− Vyt(yt+1)

]
≤ η2E max

i∈[m]
E
[
[δ̃yt ]

2
i | wt

]
.

The third CBB property reads E
[
‖δ̃xt‖

2

2 | wt
]

+ maxi∈[m] E
[
[δ̃yt ]

2
i | wt

]
≤ L2 ‖wt − w0‖2. There-

fore, for t < T , the above discussion yields

E
[〈
ηδ̃t, wt − wt+1

〉
− Vwt(wt+1)

]
≤ η2E

[
1
2‖δ̃

x
t‖

2

2 + max
i∈[m]

E
[
[δ̃yt ]

2
i | wt

]]
≤ η2L2E ‖wt − w0‖2 ≤ 2η2L2EVw0(wt). (34)

To bound the expectation of
〈
η∆̃t, st − st+1

〉
− Vst(st+1) we proceed just as we had with δ̃t. By

the second CBB property,

‖η∆̃y
t‖∞ = η

∥∥g̃yw0
(wt)− gy(wt)

∥∥
∞ ≤ 2ηL+ ητ =

2α

20L
+ 1 ≤ 1.79,
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where we used η = α
20L2 , τ = 1

η , and α ≤ L. Therefore, Lemma 7 with δ = −η∆̃y
t gives

E
[〈
η∆̃t, st − st+1

〉
− Vst(st+1)

]
≤ η2E

∑
i∈[m]

[syt ]i[∆̃
y
t ]

2
i ≤ η2 E max

i∈[m]
E
[
[∆̃y

t ]
2
i | wt

]
,

where in the final transition we used the fact that ∆̃t conditioned on wt is independent of st.
Since α ≤ L, we have τ = 20L2

α ≥ 20L ≥ 2
√

2L. Therefore, by Lemma 8, E
[
‖∆̃x

t‖
2

2 | wt
]

+

maxi∈[m] E
[
[∆̃y

t ]
2
i | wt

]
≤ 2L2 ‖wt − w0‖2. Substituting back, this gives

E
[〈
η∆̃t, st − st+1

〉
− Vst(st+1)

]
≤ η2 E

[
1
2‖∆̃

x
t‖

2

2 + max
i∈[m]

E
[
[∆̃y

t ]
2
i | wt

]]
≤ 2η2L2E ‖wt − w0‖2 ≤ 4η2L2EVw0

(wt). (35)

Substituting (33), (34) and (35) back into (32), we have

Emax
u∈Z

{
1

T

∑
t∈[T ]

〈g(wt), wt − u〉 − αVw0(u)

}
≤ 1

T

∑
t∈[T ]

[
10ηL2 − α

2

]
EVw0(wt) = 0

where the last transition follows from η = α
20L2 ; this establishes the bound (11) for the iterates

of Algorithm 2 with a CBB gradient estimators. By the argument in the proof of Corollary 1,
for g(z) = (A>zy,−Azx), the average of those iterates constitutes an (α, 0)-relaxed proximal
oracle.

D.5 Complete pseudo-code

Algorithm 4: Variance reduction for `2-`1 games
Input: Matrix A ∈ Rm×n with ith row Ai: and jth column A:j , target accuracy ε
Output: A point with expected duality gap below ε

1 L← ‖A‖2→∞, α← L
√

n+m
nnz(A) , K ←

⌈
log(2m)α

ε

⌉
, η ← α

20L2 , τ ← 1
η , T ←

⌈
4
ηα

⌉
, (x0, y0)← (0n,

1
m1m)

2 for k = 1, . . . ,K do
. Relaxed oracle query:

3 (x0, y0)← (zxk−1, z
y
k−1), (gx0, g

y
0)← (A>y0,−Ax0)

4 for t = 1, . . . , T do
. Gradient estimation:

5 Sample i ∼ p where pi =
|[yt−1]i − [y0]i|
‖yt−1 − y0‖1

, sample j ∼ q where qj =
([xt−1]j − [x0]j)

2

‖xt−1 − x0‖22
6 Set g̃t−1 = g0 +

(
Ai:

[yt−1]i − [y0]i
pi

,−Tτ
(
A:j

[xt−1]j − [x0]j
qj

))
. [Tτ (v)]k := min{τ,max{−τ, [v]k}}

. Mirror descent step:

7 xt ← ΠX

(
1

1 + ηα/2

(
xt−1 +

ηα

2
x0 − ηg̃xt−1

))
. ΠX (v) = v

max{1,‖v‖2}

8 yt ← ΠY

(
1

1 + ηα/2

(
log yt−1 +

ηα

2
log y0 − ηg̃yt−1

))
. ΠY(v) = ev

‖ev‖1

9 zk−1/2 ←
1

T

T∑
t=1

(xt, yt)

. Extragradient step:

10 zxk ← ΠX

(
zxk−1 − 1

αA
>zyk−1/2

)
, zyk ← ΠY

(
log zyk−1 + 1

αAz
x
k−1/2

)
11 return

1

K

K∑
k=1

zk−1/2
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E The `2-`2 setup

Setup. In the `2-`2 setup, both X = Bn and Y = Bm are Euclidean unit balls, the norm over
Z = X × Y is the Euclidean norm (which is dual to itself), and the distance generating function
is r(z) = 1

2 ‖z‖
2
2. Under the Euclidean norm, the Lipschitz constant of g is ‖A‖2→2 (the largest

singular value of A), and we also consider the Frobenius norm ‖A‖F = (
∑
i,j A

2
ij)

1/2, i.e. the
Euclidean norm of the singular values of A.

Remark 4. In the `2-`2 setup, problems of the form minx∈Bn maxy∈Bm y
>Ax are trivial, since

the saddle point is always the origin. However, as we explain in Section F.2, our results extend to
problems of the form minx∈Bn maxy∈Bm

{
y>Ax+ φ(x)− ψ(y)

}
for convex functions φ, ψ, e.g.

minx∈Bn maxy∈Bm
{
y>Ax+ b>x+ c>y

}
, which are nontrivial.

Our centered gradient estimator for the `2-`2 setup is of the form (13), where we sample from

pi(w) =
([wy]i − [wy

0]i)
2

‖wy − wy
0‖

2
2

and qj(w) =
([wx]j − [wx

0]j)
2

‖wx − wx
0‖

2
2

. (36)

The resulting gradient estimator has the explicit form

g̃w0
(w) = g(w0) +

(
Ai:
‖wy − wy

0‖
2
2

[wy − wy
0]i

,−A:j
‖wx − wx

0‖
2
2

[wx − wx
0]j

)
. (37)

Lemma 9. In the `2-`2 setup, the estimator (37) is (w0, L)-centered with L = ‖A‖F.

Proof. Unbiasedness follows from the estimator definition. The second property follows from

E ‖g̃w0
(w)− g(w0)‖22 =

∑
i∈[m]

‖Ai:‖22
pi

([wy]i − [wy
0]i)

2 +
∑
j∈[n]

‖A:j‖22
qj

([wx]j − [wx
0]j)

2

= ‖A‖2F ‖w − w0‖22 .

In Appendix F.3.2 we provide two additional sampling distribution that yield estimators with the same
guarantee. We may use these gradient estimator to build an algorithm with a convergence guarantee
similar to Theorem 2, except with ‖A‖F instead of ‖A‖2→∞ and 1 instead of log(2m). This result
improves the runtime of Balamurugan and Bach [3] by a log(1/ε) factor. However, as we discuss
in Section 1.3, unlike our `1-`1 and `2-`1 results, it is not a strict improvement over the linear-time
mirror-prox method, which in the `2-`2 setting achieves running time O(‖A‖2→2 nnz(A)ε−1). The
regime in which our variance-reduced method has a stronger guarantee than mirror-prox is

srank(A) :=
‖A‖2F
‖A‖22→2

� nnz(A)

n+m
,

i.e. when the spectral sparsity of A is significantly greater than its spatial sparsity.

We remark that `2-`2 games are closely related to linear regression, as

min
x∈Bn

‖Ax− b‖22 =

(
min
x∈Bn

max
y∈Bm

{
y>Ax− y>b

})2

.

The smoothness of the objective ‖Ax− b‖22 is ‖A‖22→2, but runtimes of stochastic linear regression
solvers typically depend on ‖A‖2F instead [41, 19, 35, 13, 22, 36, 34, 1]. Viewed in this context, it is
not surprising that our `2-`2 runtime scales as it does.
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F Extensions

In this section we collect a number of results that extend our framework and its applications. In
Appendix F.1 we show how to use variance reduction to solve the proximal subproblem to high
accuracy. This allows us to implement a relaxed gradient oracle for any monotone operator that admits
an appropriate gradient estimator, overcoming a technical limitation in the analysis of Algorithm 2
(see discussion following Corollary 1). In Section F.2 we explain how to extend our results to
composite saddle point problems of the form minx∈X maxy∈Y {f(x, y) + φ(x)− ψ(y)}, where f
admits a centered gradient estimator and φ, ψ are convex functions. Finally, in Section F.3 we return
to the bilinear case and provide a number of alternative gradient estimators for the `2-`1 and `2-`2
settings.

F.1 High precision proximal mappings via variance reduction

Here we describe how to use gradient estimators that satisfy Definition 2 to obtain high precision
approximations to the exact proximal mapping, as well as a relaxed proximal oracle valid beyond
the bilinear case. Algorithm 5 is a modification of Algorithm 2, where we restart the mirror-descent
iteration N times, with each restarting constituting a phase. In each phase, we re-center the gradient
estimator g, but regularize towards the original initial point w0. To analyze the performance of the
algorithm, we require two properties of proximal mappings with general Bregman divergences (10).

Lemma 10. Let g by a monotone operator, let z ∈ Z and let α > 0. Then, for every w ∈ Z ,
zα = Proxαz (g) satisfies

〈g(w) + α∇Vz(w), w − zα〉 ≥ αVzα(w) + αVw(zα).

Proof. By definition of zα, 〈g(zα) + α∇Vz(zα), zα − w〉 ≤ 0 for all w ∈ Z . Therefore

〈g(w) + α∇Vz(w), w − zα〉 ≥ 〈g(w) + α∇Vz(w), w − zα〉+ 〈g(zα) + α∇Vz(zα), zα − w〉
= 〈g(w)− g(zα), w − zα〉+ α 〈∇Vz(w)−∇Vz(zα), w − zα〉
≥
(i)
α 〈∇Vz(w)−∇Vz(zα), w − zα〉 =

(ii)
αVzα(w) + αVw(zα),

where (i) follows from monotonicity of g and (ii) holds by definition of the Bregman divergence.

Lemma 11. Let g be a monotone operator and let α > 0. Then, for every z ∈ Z , zα = Proxαz (g)
satisfies

Vzα(z) + Vz(zα) ≤
‖g(z)‖∗ ‖z − zα‖

α
≤
‖g(z)‖2∗
α2

.

Proof. Using Lemma 10 with w = z gives

αVzα(z) + αVz(zα) ≤ 〈g(z) + α∇Vz(z), z − zα〉 ≤ 〈g(z), z − zα〉 ,

where we used the fact that z minimizes the convex function Vz(·) and therefore 〈∇Vz(z), z − u〉 ≤ 0
for all u ∈ Z . Writing 〈g(z), z − zα〉 ≤ ‖g(z)‖∗ ‖z − zα‖ gives the first bound in the lemma. Next,
strong convexity of r implies

‖z − zα‖2 ≤ Vzα(z) + Vz(zα) ≤
‖g(z)‖∗ ‖z − zα‖

α
,

and the second bound follows from dividing by ‖z − zα‖.

We now state the main convergence result for Algorithm 5.

Proposition 4. Let α,L > 0, let w0 ∈ Z , let g̃z be (z, L)-centered for monotone g and every z ∈ Z
and let zα = Proxαw0

(g). Then, for η = α
8L2 , T ≥ 4

ηα = 32L2

α2 , and any N ∈ N the output ŵN of
Algorithm 5 satisfies

EVŵN (zα) ≤ 2−NVw0
(zα). (38)
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Algorithm 5: RestartedInnerLoop(w0, z 7→ g̃z, α)

Input: Initial w0 ∈ Z , centered gradient estimator g̃z ∀z ∈ Z , oracle quality α > 0
Parameters :Step size η, inner iteration count T , phase count N
Output: Point ŵN satisfying EVŵN (zα) ≤ 2−NVw0(zα) where zα = Proxαw0

(g) (for appropriate g̃,
η, T )

1 Set ŵ0 ← w0

2 for n = 1, . . . , N do
3 Prepare centered gradient estimator g̃ŵn−1

. e.g. by computing g(ŵn−1)

4 Draw T̂ uniformly from [T ]

5 w
(n)
0 ← ŵn−1

6 for t = 1, . . . , T̂ do
7 w

(n)
t ← arg minw∈Z

{〈
g̃ŵn−1

(
w

(n)
t−1

)
, w
〉

+ αVw0
(w) + 1

ηVw(n)
t−1

(w)
}

8 ŵn ← w
(n)

T̂

9 return ŵN

Proof. Fix a phase n ∈ [N ]. For every u ∈ Z we have the mirror descent regret bound∑
t∈[T ]

〈
g̃ŵn−1

(
w

(n)
t

)
+ α∇Vw0

(
w

(n)
t

)
, w

(n)
t − u

〉
≤
Vŵn−1

(u)

η
+
η

2

∑
t∈[T ]

∥∥∥g̃ŵn−1

(
w

(n)
t

)
− g(ŵn−1)

∥∥∥2

∗
;

see Lemma 4 in Appendix A.2, with Q(z) = η 〈g(ŵn−1), z〉+ ηαVw0(z). Choosing u = zα, taking
expectation and using Definition 2 gives

E
∑
t∈[T ]

〈
g
(
w

(n)
t

)
+ α∇Vw0

(
w

(n)
t

)
, w

(n)
t − zα

〉
≤

EVŵn−1(zα)

η
+
ηL2

2

∑
t∈[T ]

E
∥∥∥w(n)

t − ŵn−1

∥∥∥2

.

(39)
(Note that zα is a function of w0 and hence independent of stochastic gradient estimates.) By the
triangle inequality and strong convexity of r,

‖w(n)
t − ŵn−1‖2 ≤ 2‖zα − ŵn−1‖2 + 2‖w(n)

t − zα‖2 ≤ 4Vŵn−1(zα) + 4Vzα
(
w

(n)
t

)
. (40)

By Lemma 10 we have that for every t ∈ [T ]〈
g
(
w

(n)
t

)
+ α∇Vw0

(
w

(n)
t

)
, w

(n)
t − zα

〉
≥ αV

w
(n)
t

(zα) + αVzα
(
w

(n)
t

)
. (41)

Substituting the bounds (40) and (41) into the expected regret bound (39) and rearranging gives

1

T

∑
t∈[T ]

EV
w

(n)
t

(zα) ≤
(

1

ηαT
+

2ηL2

α

)
EVŵn−1(zα)+

2ηL2 − α
αT

∑
t∈[T ]

EVzα
(
w

(n)
t

)
≤ 1

2
EV

w
(n−1)
t

(zα),

where in the last transition we substituted η = α
8L2 and T ≥ 4

ηα . Noting that 1
T

∑
t∈[T ] EVw(n)

t
(zα) =

EVŵn(zα) and recursing on n completes the proof.

The linear convergence bound (38) combined with Lemma 11 implies that Algorithm 5 implements a
relaxed proximal oracle.
Corollary 2. Let G,D > 0 be such that ‖g(z)‖∗ ≤ G and ‖z − z′‖ ≤ D for every z, z′ ∈ Z and

let ε > 0. Then, in the setting of Proposition 4 with N ≥ 1 + 2 log2

(
G(G+2LD)

αε

)
, we have that

O(w0) = RestartedInnerLoop(w0, g̃, α) is an (α, ε)-relaxed proximal oracle.

Proof. Let ŵ = RestartedInnerLoop(w0, g̃, α) and let zα = Proxαw0
(g). For every u ∈ Z , we

have

〈g(ŵ), ŵ − u〉 = 〈g(zα), zα − u〉+ 〈g(zα), ŵ − zα〉+ 〈g(ŵ)− g(zα), ŵ − u〉 .
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By the definition (10) of zα we have 〈g(zα), zα − u〉 ≤ αVw0(u). By Hölder’s inequality and
the assumption that g is bounded, we have 〈g(zα), ŵ − zα〉 ≤ G ‖ŵ − zα‖. Finally, since g is
2L-Lipschitz (see Remark 1) and ‖ŵ − u‖ ≤ D by assumption, we have 〈g(ŵ)− g(zα), ŵ − u〉 ≤
2LD ‖ŵ − zα‖. Substituting back these three bounds and rearranging yields

〈g(ŵ), ŵ − u〉 − αVw0
(u) ≤ (G+ 2LD) ‖ŵ − zα‖ ≤ (G+ 2LD)

√
2Vŵ(zα),

where the last bound is due to strong convexity of r. Maximizing over u and taking expectation, we
have by Jensen’s inequality and Proposition 4,

Emax
u∈Z
{〈g(ŵ), ŵ − u〉 − αVw0

(u)} ≤ (G+2LD)
√

2EVŵ(zα) ≤ 2−(N−1)/2(G+2LD)
√
Vw0

(zα).

Lemma 11 gives us
√
Vw0

(zα) ≤
√
‖g(w0)‖2∗ /α2 ≤ G/α, and therefore N ≥ 1 +

2 log2

(
G(G+2LD)

αε

)
establishes the oracle property Emaxu∈Z {〈g(ŵ), ŵ − u〉 − αVw0(u)} ≤

ε.

Remark 5. In the `2-`1 setup of Section 4.2, Proposition 4 and Corollary 2 extend straightforwardly
to centered-bounded-biased gradient estimators (Definition 3) using arguments from the proof of
Proposition 3.

Since Algorithm 5 computes a highly accurate approximation of the proximal mapping, it is reasonable
to expect that directly iterating zk = RestartedInnerLoop(zk−1, g̃, α) for k ∈ [K] would yield an
O(αΘ/K) error bound, without requiring the extragradient step in Algorithm 1. However, we could
not show such a bound without additionally requiring uniform smoothness of the distance generating
function r, which does not hold for the negative entropy we use in the `1 setting.

F.2 Composite saddle point problems

Consider the “composite” saddle point problem of the form

min
x∈X

max
y∈Y
{f(x, y) + φ(x)− ψ(y)} ,

where ∇f admits a centered gradient estimator and φ, ψ are “simple” convex functions in the
sense they have efficiently-computable proximal mappings. As usual in convex optimization, it is
straightforward to extend our framework to this setting. Let Υ(z) := φ(zx) + ψ(zy) so that g(z) +
∇Υ(z) denotes the (sub-)gradient mapping for the composite problem at point z. Algorithmically,
the extension consists of changing Line 4 of Algorithm 1 to

zk ← arg min
z∈Z

{〈
g
(
zk−1/2

)
+∇Υ(zk−1/2), z

〉
+ αVzk−1

(z)
}
,

changing line 2 of Algorithm 2 to

wt ← arg min
w∈Z

{
〈g̃w0

(wt−1), w〉+ Υ(w) +
α

2
Vw0

(w) +
1

η
Vwt−1

(w)

}
,

and similarly adding Υ(w) to the minimization in line 7 of Algorithm 5.

Analytically, we replace g with g +∇Υ in the duality gap bound (8), Definition 1 (relaxed proximal
oracle), and Proposition 1 and its proof, which holds without further change. To implement the
composite relaxed proximal oracle we still assume a centered gradient estimator for g only. However,
with the algorithmic modifications described above, the guarantee (11) of Proposition 2 now has
g+∇Υ instead of g; the only change to the proof is that we now invoke Lemma 4 (in Appendix A.2)
with the composite term η

[
〈g(w0), z〉+ Υ(z) + α

2 Vw0
(z)
]
, and the bound (20) becomes∑

t∈[T ]

〈
g̃w0(wt) +∇Υ(wt) + α

2∇Vw0(wt), wt − u
〉
≤ Vw0(u)

η
+
η

2

∑
t∈[T ]

‖δ̃t‖2∗.

Proposition 3, Proposition 4 and Corollary 2 similarly extend to the composite setup.

The only point in our development that does not immediately extend to the composite setting is
Corollary 1 and its subsequent discussion. There, we argue that Algorithm 2 implements a relaxed
proximal oracle only when 〈g(z), z − u〉 is convex in z for all u, which is the case for bilinear f .
However, this condition might fail for g+∇Υ even when it holds for g. In this case, we may still use
the oracle implementation guaranteed by Corollary 2 for any convex Υ.
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F.3 Additional gradient estimators

We revisit the bilinear setting studied in Section 4 and provide additional gradient estimators that meet
our variance requirements. In Section F.3.1 we consider `2-`1 games and construct an “oblivious”
estimator for the Y component of the gradient that involves sampling from a distribution independent
of the query point. In Section F.3.2 we describe two additional centered gradient estimators for `2-`2
games; one of them is the “factored splits” estimator proposed in [3].

F.3.1 `2-`1 games

Consider the `2-`1 setup described in the beginning of Section 4.2. We describe an alternative for the
Y component of (29), that is “oblivious” in the sense that it involves sampling from distributions that
do not depend on the current iterate. The estimator generates each coordinate of g̃yw0

independently
in the following way: for every i ∈ [m] we define the probability q(i) ∈ ∆n by

q
(i)
j = A2

ij/‖Ai:‖
2
2, ∀j ∈ [n].

Then, independently for every i ∈ [m], draw j(i) ∼ q(i) and set

[g̃yw0
(w)]i = −[Awx

0]i − Tτ

Aij(i) [wx]j(i) − [wx
0]j(i)

q
(i)
j(i)

 , (42)

where Tτ is the clipping operator defined in (29). Note that despite requiring m independent samples
from different distributions over n elements, g̃yw0

still admits efficient evaluation. This is because
the distributions q(i) are fixed in advance, and we can pre-process them to perform each of the m
samples in time O(1) [42]. However, the oblivious gradient estimator produces fully dense estimates
regardless of the sparsity of A, which limits its running time guarantees to terms proportional to m
rather than the maximum number of nonzero elements in columns of A.

The oblivious estimator has the same “centered-bounded-biased” properties (Definition 3) as the
“dynamic” estimator (29).

Lemma 12. In the `2-`1 setup, a gradient estimator with X block as in (29) and Y block as in (42)
is (w0, L, τ)-CBB with L = ‖A‖2→∞.

Proof. We show the bias bound similarly to the proof of Lemma 6,∣∣E [g̃yw0
(w)− gy (w)

]
i

∣∣ ≤ ∑
j∈Jτ (i)

|Aij | |[wx]j − [wx
0]j |

for all i ∈ [m], where

Jτ (i) =

{
j ∈ [n] | Tτ

(
Aij

q
(i)
j

([wx]j − [wx
0]j)

)
6= Aij

q
(i)
j

([wx]j − [wx
0]j)

}
.

Note that j ∈ Jτ (i) if and only if∣∣∣∣∣Aijq
(i)
j

([wx]j − [wx
0]j)

∣∣∣∣∣ =
‖Ai:‖22 |[wx]j − [wx

0]j |
|Aij |

> τ ⇒ |Aij | ≤
1

τ
‖Ai:‖22 |[w

x]j − [wx
0]j | .

Therefore,∑
j∈Jτ (i)

|Aij | |[wx]j − [wx
0]j | ≤

1

τ
‖Ai:‖22

∑
j∈Jτ

|[wx]j − [wx
0]j |2 =

1

τ
‖Ai:‖22 ‖w

x − wx
0‖

2
2

and
∥∥Eg̃yw0

(w)− gy(w)
∥∥
∞ ≤

L2

τ ‖w
x − wx

0‖
2
2 follows by taking the maximum over i ∈ [m].
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The second property follows exactly as in the proof of Lemma 6. For the third property, note that the
bound (26) on the X component still holds, and that for each i ∈ [m] we have q(i)

j = A2
ij/‖Ai:‖

2
2 and

E
[
g̃yw0

(w)− gy (w)
]2
i

=
∑
j∈[n]

q
(i)
j

(
Tτ

(
Aij

q
(i)
j

([wx]j − [wx
0]j)

))2

≤
∑
j∈[n]

q
(i)
j

(
Aij

q
(i)
j

([wx]j − [wx
0]j)

)2

= ‖Ai:‖22 ‖w
x − wx

0‖
2
2 .

F.3.2 `2-`2 games

In the `2-`2 setup described in Section E it is possible to use a completely oblivious gradient estimator.
It has the form (13) with the following sampling distributions that do not depend on w0, w,

pi =
‖Ai:‖22
‖A‖2F

and qj =
‖A:j‖22
‖A‖2F

. (43)

Balamurugan and Bach [3] use these sampling distributions, referring to them as “factored splits.”
Another option is to use the dynamic sampling probabilities

pi(w) =
‖Ai:‖2 |[wy]i − [wy

0]i|∑
i′∈[m] ‖Ai′:‖2 |[wy]i′ − [wy

0]i′ |
and qj(w) =

‖A:j‖2 |[w
x]j − [wx

0]j |∑
j′∈[n] ‖A:j′‖2 |[wx]j′ − [wx

0]j′ |
. (44)

Both the distributions above yield centered gradient estimators.
Lemma 13. In the `2-`2 setup, the estimator (13) with either sampling probabilities (43) or (44) is
(w0, L)-centered for L = ‖A‖F.

Proof. Unbiasedness follows from the estimator definition. For the oblivious sampling strategy (43)
the second property follows from

E ‖g̃w0
(w)− g(w0)‖22 =

∑
i∈[m]

‖Ai:‖22
pi

([wy]i − [wy
0]i)

2 +
∑
j∈[n]

‖A:j‖22
qj

([wx]j − [wx
0]j)

2

= ‖A‖2F ‖w − w0‖22 .

For the dynamic sampling strategy (44), we have

E ‖g̃w0(w)− g(w0)‖22 =

( ∑
i′∈[m]

‖Ai′:‖2 |[w
y]i′ − [wy

0]i′ |

)2

+

( ∑
j′∈[n]

‖A:j′‖2 |[w
x]j′ − [wx

0]j′ |

)2

≤ ‖A‖2F ‖w − w0‖22 ,

where the inequality is due to Cauchy–Schwarz.

We remark that out of the three sampling strategies (36), (43) and (44), only for (44) the bound
E ‖g̃w0(w)− g(w0)‖22 ≤ ‖A‖

2
F ‖w − w0‖22 is an inequality, whereas for the other two it holds with

equality. Consequently, the dynamic sampling probabilities (44) might be preferable in certain cases.
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