
A Proof of Theorem 1410

Theorem 1 (DG and JSD). Consider the GAN objective in Eq. [1], and assume that the generator411

and discriminator networks have unbounded capacity. Then the duality gap of a given fixed solution412

(G

u

, D

v

) is lower bounded by the Jensen-Shannon divergence between the true distribution p

data

413

and the fake distribution q

u

generated by G

u

, i.e. DG(u,v) � JSD(p

data

|| q
u

). Moreover, if G

u

414

outputs the true distribution, then there exists a discriminator D

v

such that DG(G

u

,D

v

) = 0.415

Proof. Let us denote by p(x) the distribution over true samples and by q

u

(x) the distribution over416

fake samples generated by the generator G
u

. Let us also denote the output of the discriminator417

by D

v

(x). For simplicity, we will also slightly abuse notation and denote the GAN objective by418

M(q

u

, D

v

). Thus, the GAN objective reads as follows,419

M(q

u

, D

v

) :=

1

2

Z
p(x) logD

v

(x)dx+

1

2

Z
q

u

(x) log(1�D

v

(x))dx . (5)

First we prove the first part of the proposition: Let us first recall the definition of the Jensen-420

Shannon divergence of two distributions p(·), q
u

(·),421

JSD(p || q
u

) :=

1

2

KL

✓
p || p + q

u

2

◆
+

1

2

KL

✓
q

u

|| p + q

u

2

◆
. (6)

where the KL divergence is defined as,

KL(p || q
u

) :=

Z
p(x) log

✓
p(x)

q

u

(x)

◆
dx .

Now given a fixed solution (q

u

, D

v

) we will show that the duality gap of this pair is bounded by the422

Jensen-Shannon divergence. It is well known that this divergence equals zero if both distributions are423

equal5, and is otherwise strictly positive. To do so, we will first bound the minimax/maximin values424

for q
u

/D

v

.425

(a) Upper Bounding Minimax Value: Given q

u

(x), the worst case discriminator is obtained by taking
the derivative of the objective in Equation (5) with respect to D

v

(x) separately for every x (this can
be done since we assume the capacity of D

v

to be unbounded). This gives the following worst case
discriminator (see similar derivation in [9]),

D

max

v

(x) :=

p(x)

p(x) + q

u

(x)

.

Plugging the above value into Equation (5) gives the following minimax value,426

max

Dv

M(q

u

, D

v

) = M(q

u

, D

max

v

)

=

1

2

Z
p(x) log

✓
p(x)

q

u

(x) + p(x)

◆
dx+

1

2

Z
q

u

(x) log

✓
q

u

(x)

q

u

(x) + p(x)

◆
dx

= � log 2 + JSD(p || q
u

) (7)

(b) Lower Bounding Maximin Value: Here we lower bound the maximin value for a given q

u

(x),427

min

qu

M(q

u

, D

v

)  M(p,D

v

) =

1

2

Z
p(x) logD

v

(x)dx+

1

2

Z
p(x) log(1�D

v

(x))dx . (8)

Maximizing the last expression separately for every x gives

max

Dv(x)2[0,1]

1

2

p(x) logD

v

(x)dx+

1

2

p(x) log(1�D

v

(x))dx = � log 2

Plugging the above into Equation (8) gives,428

min

qu

M(q

u

, D

v

)  � log 2 . (9)

5We mean equal up to sets of measure zero.
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(c) Upper bound on Duality Gap: Recall the definition of Duality gap,
DG(q

u

,D

v

) := max

Dv

M(q

u

,D

v

)�min

qu

M(q

u

,D

v

) .

Using Equation (7) together with Equation (9) immediately shows that429

DG(q

u

,D

v

) � JSD(p || q
u

) (10)

Therefore the duality gap is lower bounded by the Jensen-Shannon divergence between true and fake430

distributions, which concludes the first part of the proof.431

Next we prove the second part of the proposition: Recall that we assume q

u

(x) = p(x). And
let us take,

D

v

(x) =

1

2

, 8x
Next we show that the Duality gap of (G

u

, D

v

) is zero.432

(a) Let us first compute the minimax value: Similarly to Equation (7) the following can be shown,433

M(q

u

, D

max

v

) =

1

2

Z
p(x) log

✓
p(x)
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u
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◆
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1
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Z
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(x)

q

u
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◆
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= � log 2 · 1
2

Z
(q

u

(x) + p(x))dx

= � log 2 . (11)
where we used p(x)/(p(x) + q

u

(x)) =

1

2

.434

(b) Let us now compute the maximin value. Since D

v

(x) =

1

2

the following holds for any q

0

u

(x),

M(q

0

u

, D

v

) =

1

2

Z
p(x) logD

v

(x)dx+

1

2

Z
q

0

u

(x) log(1�D

v

(x))dx = � log 2 ,

which immediately implies,435

min

qu

M(q

u

, D

v

) = � log 2 . (12)

Combining Equation (11) with Equation (12), with the definition of the Duality gap implies,
DG(q

u

,D

v

) = 0 .

which concludes the second part of the proof.436

437

Approximate computation of the duality gap Note that the computation of the duality gap
requires finding the exact solution for min

qu M(q

u

, D

v

), and max

Dv M(q

u

, D

v

). In practice it
is reasonable to assume that we may solve these two optimization problems only up to some
approximation ", i.e., that we may compute q

⇤,"
u

and D

⇤,"
v

such that,
M(q

⇤,"
u

, D

v

)  min
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M(q

u

, D

v

) + ", & M(q

u

, D

⇤,"
v
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Dv

M(q

u

, D

v

)� "

In this case, a simple adaptation to the derivation above shows that the approximate duality gap
computed using q

⇤,"
u

and D

⇤,"
v

gives us an upper bound on the approximate JS divergence as follows,
DG

"

(q

u

,D

v

) := M(q

u

,D

⇤,"
v

)�M(q

⇤,"
u

,D

v

) � JSD(p || q
u

)� 2" .

B Non-negativity of the practical duality gap.438

While the DG is guaranteed to be non-negative in theory, this might not hold in practice since we439

do not have access to the exact argmin and argmax but instead optimize for a fixed number of440

steps. Therefore, a question that arises is whether the non-negativity property is affected by practical441

approximations of DG. First, note that negative DG values occur if at some step t, M(u

t

,v

worst

) <442

M(u

worst

,v

t

). However, the optimization algorithm yields M(u

t

,v

worst

) > M(u

t

,v

t

) since v
worst

443

is initialized using v

t

and optimized to maximize the objective. Similarly, we expect M(u

t

,v

t

) >444

M(u

worst

,v

t

), and DG is therefore non-negative. This of course assumes that the optimizer uses445

an appropriate set of parameters that guarantee successful decrease/increase of the objective. In446

Appendix D, we investigate the impact of the practical approximation of DG in lieu of the exact447

computation. In particular, we find that - both in theory and in practice - DG is not affected by the448

presence of mode collapse in u

worst

.449
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stable unstable
lr G lr D lr G lr D

RING 1e-3 1e-4 1e-4 2e-4
SPIRAL 1e-3 2e-3 1e-4 2e-3
GRID 1e-3 2e-3 1e-4 2e-3

Table 5: Learning rates used for the toy experiments.

Duality Gap Modes Std

stable
RING 0.04 8 2375
SPIRAL 0.14 20 1999
GRID 0.03 25 2370

unstable
RING 13 2 152
SPIRAL 1.22 1 1724
GRID 12.09 3 37

Table 6: Final results for DG, number of covered modes and number of generated samples (out of 2400) that
fall within 3 standard deviations of the means.

C Experiments450

C.1 Toy Dataset: Mixture of Gaussians451

The toy datasets consist of a mixture of 8, 20 and 25 Gaussians for each of the models (RING,452

SPIRAL, GRID), respectfully. The standard deviation is set to 0.05 for all models except for the453

RING where the std is 0.01. Depending on the dataset, the means are spaced equally around a unit454

circle, a spiral or a grid.455

The architecture of the generator consists of two fully connected layers (of size 128) and a linear456

projection to the dimensionality of the data (i.e. 2). The activation functions for the fully connected457

layers are relu. The discriminator is symmetric and hence, composed of two fully connected layers458

(of size 128) followed by a linear layer of size 1. The activation functions for the fully connected459

layers are relu, whereas the final layer uses sigmoid as an activation function.460

461

Adam was used as an optimizer for both the discriminator and the generator with beta

1

= 0.5 and a462

batch size of 100. The latent dimensionality z is 100. The learning rates for the reported models are463

given as follows in Table 5. The optimizer used for training the worst D/G is Adam and is set to the464

default parameters.465

Plots of DG during training are given in Table 2. Table 6 lists the obtained results for the methods in466

terms of their final duality gap, number of modes they have covered and the number of generated467

points that fall within three standard deviations of one of the means. The heatmaps of the final468

generated distributions are given in Figure 9.469

We also plot generated samples from the worst case generator in Figure 10.470

Progress during training for Figure 12 is given in Figure 11.471

Finally, the progress of DG, minimax, number of modes, and generated samples close to modes472

across epochs is given in Figure 12. High correlation can be observed, which matches the quantitive473

results in Table 7.474

The correlation values are reported in Table 7. We observe significant anti-correlation (especially for475

minimax loss), which indicates that both metrics capture changes in the number of modes and hence476

the minimax loss can be used as a proxy to determining the overall sample quality.477

C.1.1 Loss Curves478

A common problem practitioners face is when to stop training, i.e. understanding whether the model479

is still improving or not. See for example Figure 13, which shows the discriminator and generator480

losses during training of a DCGAN model on CIFAR10 [1]. The training curves are oscillating and481

13



(a) Unstable
ring

(b) Stable ring (c) Unstable
spiral

(d) Stable spi-
ral

(e) Unstable
grid

(f) Stable grid

Figure 9: Heatmaps of the generated distributions at the final steps. On top: trained model (stable or unstable),
on bottom: p

data

(a) Unstable ring (b) Stable ring

(c) Unstable spiral (d) Stable spiral

(e) Unstable grid (f) Stable grid

Figure 10: Generated samples (in blue) from the worst generator for the discriminator for both the stable and
unstable models. (ground truth in green color).
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(a) Step0 (b) Step5 (c) Step10 (d) Step15 (e) Step20 (f) Step25

Figure 11: Generated samples (blue) and real samples (green) throughout training steps

(a) DG (b) Minimax (c) Modes (d) Std

Figure 12: DG, minimax, number of modes, and generated samples close to modes across epochs

DG Minimax

Modes
-0.63 -0.97 ring
-0.59 -0.93 spiral
-0.71 -0.95 grid

Std
-0.64 -0.94 ring
-0.64 -0.58 spiral
-0.7 -0.93 grid

Table 7: Pearson product-moment correlation coefficients for an average of 10 stable rounds. Progress throughout
the training of the individual metrics can be seen in Figure 12

hence are very non-intuitive. A practitioner needs to most often rely on visual inspection or some482

performance metric as a proxy as a stopping criteria.483

The generator and discriminator losses for our 2D ring problem are shown in Figure 14. Based on484

the curves it is hard to determine when the model stops improving. As this is a 2D problem one can485

visually observe when the model has converged through the heatmaps of the generated samples (see486

Table 2). However in higher-dimensional problems (like the one discussed above on CIFAR10) one487

cannot do the same. Figure 15 showcases the progression of the duality gap throughout the training.488

Contrary to the discriminator/generator losses, this curve is meaningful and clearly shows the model489

has converged and when one can stop training, which coincides with what is shown on the heatmaps.490

C.2 Other hyperparameters491

C.2.1 Stable Mode Collapse492

The architecture of the generator consists of 5 fully connected layers of size 128 with leaky relu as an493

activation unit, followed by a projection layer with tanh activation. The discriminator consists of 2494

dense layers of size 128 and a projection layer. The activation function used for the dense layers of495

the discriminator is leaky relu as well, while the final layer uses a sigmoid. The value ↵ for leaky relu496

is set to 0.3.497

The optimizer we use is Adam with default parameters for both the generator, discriminator, as well498

as the optimizers for training the worst generator and discriminator. The dimensionality of the latent499

space z is set to 100 and we use a batch size of 100 as well. We train for 10K steps. The number of500

steps for training the worst case generator/discriminator is 400.501

We use the training, validation and test split of MNIST [6] for training the GAN, training the worst502

case generator/discriminator, and estimating the duality gap (as discussed in Section 3).503
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Figure 13: Discriminator and generator loss curves for a DCGAN model trained on CIFAR10. The curves are
oscillating and it is hard to determine when to stop the training.

(a) Generator loss (b) Discriminator loss

Figure 14: Discriminator and generator loss curves for the 2D ring problems. The curves are oscillating and it is
hard to determine when to stop the training and when the model stops improving.

Figure 15: Curve of the progression of the duality gap during training.
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Figure 16: Spikes in the DG progression curve reflect the quality of the generated samples

C.3 3D GAN experiment504

We train a simple GAN on a 2D submanifold mixture of seven Gaussians arranged in a circle and505

embedded in 3D space following the setup by [29]. The strength of the regularizer � is set to 0.1, and506

respectively, to 0 for the unregularized version.507

Figure 16 shows a duality gap progression curve for a regularized GAN. It can be observed that the508

the spikes that occur are due to the training properties, i.e. at the particular step when there is an509

apparent spike, the quality of the generated samples worsens.510

C.3.1 Minimax experiment on Cifar10511

Here we describe hyperaparameters for the experiment on Cifar10 [15]. The worst case discriminator512

we train is using the commonly used DCGAN architecture [27]. We again use Adam with the default513

parameters as the optimizer and the batch size is 100. We update the worst case classifier for 1K514

steps.515

The hyperparameters used for the distortion in the experiment for visual sample quality are:516

1. Gaussian noise517

(a) level 1: sigma = 5518

(b) level 2: sigma = 10519

(c) level 3: sigma = 20520

2. Gaussian blur521

(a) level 1: ksize = 2522

(b) level 2: ksize = 5523

(c) level 3: ksize = 7524

3. Gaussian swirl with strength 5525

(a) level 1: radius = 1526

(b) level 2: radius = 2527

(c) level 3: radius = 20528

Mode sensitivity and sample quality detection. Fig. 17 shows the ability of the three metrics529

(INC, FID and minimax) to detect mode dropping, mode invention and intra-mode collapse. We530

simulate mode dropping by using the class labels as modes. The input is a set of 5K images containing531

all 10 classes as ’real’ images, and another set of 5K images composed of only subset of the modes532

(subset of 2, 4 and 8) as ’generated’ images (Figure 17 a).533

We then turn to mode invention where the generator creates non-existent modes. For this setting, the534

set of ’real’ images contains only 5 classes, whereas the sets of ’generated’ images are supersets of 5,535

7 and 10 classes (Figure 17 b). Intra-mode collapse is another common issue that occurs when the536

generator is generating from all modes, but there is no variety within a mode. The ’generated’ sets537

consist of images from all 10 classes, but contain only 1, 50 and 500 unique images within a class.538
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Figure 17 shows the trends for all metrics for the various degrees of mode dropping, invention and539

intra-class collapse. INC is unable to detect both intra-mode collapse and invented modes. On the540

other hand, both FID and minimax loss exhibit desirable sensitivity to various mode changing.541

The ability of the metrics to react to distortion at an increasing intensity is in Fig. 18.542
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Figure 17: INC, FID and minimax loss for a) mode collapse (x-axis: how many modes out of 10 are generated);
b) mode invention (x-axis: how many invented modes are generated) and c) intra-mode collapse (x-axis: number
of unique images within a class). For INC higher is better; for FID and minimax lower is better.
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Figure 18: INC, FID and minimax loss on samples at increasing intensity of disturbance

Efficiency. A metric needs to be computationally efficient in order to be used in practice to both543

track the progress during training and as a final metric to rank various models. Figure 19 shows the544

wall clock time in terms of seconds for all three metrics. We keep the number of update steps fixed to545

1K which makes the computation of the minimax loss efficient, as are the other two metrics. The546

computation of DG takes twice the time of the computation of the minimax loss.547

We also test the variance across rounds due to randomness in the seed and how this affects the final548

metric and overall ranking, on a simple mode collapse task. Table 8 summarizes the average of 5549

rounds showing that the variance is negligible and does not affect the effectiveness of the metric.550

C.3.2 Experiment on cosmology dataset551

Following the approach of [11], we used a Wasserstein loss with a gradient penalty of 10. Both the552

generator and the discriminator were optimized with an "RMSprop" optimizer and a learning rate of553

3 · 10�5. The discriminator was optimized 5 times more often than the generator.554
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Figure 19: Wall clock time (in log-scale) for the calculation of INC, FID and minimax loss for increasing number
of samples to be processed

classes INC FID Minimax
2 classes 4.94±0.13 63 -1.69±0.06
4 classes 7.84±0.3 25.85 -2.53±0.04
6 classes 9.88±0.18 18.39 -3.14±0.03
Table 8: Metrics on a simple mode dropping task

Real and generated samples are given side-by-side in Figure 20, showcasing the quality of the trained555

model.556

C.3.3 Experiment on text generation557

For the implementation of SeqGAN, we used the TexyGen framework [35] and their preselected558

hyperparameters and metrics. Some generated samples are available in Tab9.559

C.4 Experiment on CIFAR10 for comparison of different GAN variants560

We follow the setup and best hyperparameters reported in [16]. In particular, we train every model561

for 200K training steps and evaluate using 10K samples. For the computation of DG and minimax,562

we use 150 training steps and a train/test split of 9600/400 samples.563

Figures 21, 22 and 23 show samples generated from the worst generator at various steps throughout564

training.565

C.5 Approximating the duality gap566

We explored variants in which we are circumventing the optimization in order to find the worst case567

generator/discriminator by using a set of discriminators/generators out of which we choose the most568

adversarial one. The sets are created by saving snapshots of the parameters of the two networks569

during training. We explored variants where the snapshots come a) only from past models and b) a570

mix of previous and future models, and generally found b) to perform better. This setting is similar571

to the models proposed in [26], except they use skill rating systems to infer a latent variable for the572

a man on his cell phone on ita cat is taking a picture of the door to the dark open sits .
a white bathroom with a black tub and a urinal and a toilet and a toilet .
a motorcycle parked on the sidewalk .
a motorcycle parked on a street looking up the street .
a living area is full wooden floor with plants growing fly to the toilet and a sinkairplane is , parked in a parking lot .

Table 9: Generated samples from SeqGAN.
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Figure 20: Real and generated cosmological images, representing slices of mass density of the universe. The
yellow coefficient implies a high mass concentration

(a) Step 0 (b) Step 2K (c) Step 4K (d) Step 6K (e) 8K

Figure 21: a-e: Generated samples at different training steps from the worst generator

successfulness of a generator. On the other hand, we compute the duality gap and the minimax loss573

to infer the successfulness of the entire GAN and of the generator, respectfully.574

Table 10 gives the progression of the approximated duality gap for four various scenarios: stable575

model, unstable mode collapse and stable mode collapse. The duality gap was approximated using576

10 models that spanned accross 2 epochs.577

D Analysis of the quality of the empirical DG578

The theoretical assumption appearing in the proof in Appendix A is that the discriminator and579

generator have unbounded capacity and we can obtain the true minimizer and maximizer when580

computing u

worst

and v

worst

, respectively. This, however, is not tractable in practice. Furthermore, it581

is well known that one common problem in GANs is mode collapse. This raises the question of how582

(a) Step 10K (b) Step 12K (c) Step 14K (d) Step 16K (e) 18K

Figure 22: a-e: Generated samples at different training steps from the worst generator
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(a) Step 20K

Figure 23: a: Generated samples at the final step from the worst generator

Table 10: Progression of DG throughout training and heatmaps of the generator distribution. A1: stable ring, A2:
unstable ring, B1: mode collapse, B2: stable mode collapse

1 2

A
B

the duality gap metric would be affected if the worst generator that we compute is collapsed itself. In583

the following we address this both empirically and from a theoretical perspective.584

We use the same experimental setup as described in Appendix C.1. We focus on a GAN that has585

converged such that the generator covers all modes uniformly i.e. p
g

= p

data

(Figure 24 a)). The586

discriminator outputs 0.5 for real and fake samples (Figure 24 b)). This means that the model has587

reached the equilibrium and the duality gap -in theory- is zero.588

Collapsed worst case generator. Now we focus on the calculation of the duality gap. Let us con-589

sider the case of a mode collapsed worst case generator. In particular, when computing the maximin590

part of the duality gap i.e. M(u

worst,v

), let us assume the solution was such that G
u

worst

only covers591

one mode of the true distribution (Figure 24 d)). Then M(u

worst,v

) = log(0.5) + log(1� 0.5). The592

minmax calculation is: M(u,v

worst

) = log(0.5) + log(1 � 0.5). Hence, the value of DG is zero,593

despite the collapse in the calculation for the u

worst

. The generator has no incentive to spread its594

mass due to the objective. While this is a problem for the original GAN that is being trained, it is not595

an issue for the calculation of the duality gap metric.596

597

Figure 25 b) shows samples generated from G

u

worst

when the experiment is performed in practice.598

We do observe that in this case, there is indeed a collapse that happened in the worst generator for599
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(a) GAN generator (b) GAN discriminator

(c) DG: v
worst

(d) DG: u
worst

Figure 24: Analysis of a GAN that has reached the equilibrium for the mixture of 8 Gaussians problem. a)
Samples generated from the GAN generator cover all 8 modes uniformly; b) Probabilities for a sample being
real. The GAN discriminator assigns 0.5 probability to data points from the 8 modes and 0 everywhere else; c)
For the computation of the duality gap, the theoretical v

worst

assigns 0.5 to fake/real samples for the fixed GAN
generator; d) We assume there was mode collapse when computing u

worst

for the fixed GAN discriminator and
samples from Gu

worst

lie only on a single mode.

the fixed GAN discriminator. Yet, D(G

u

worst

) = 0.489 and DG = 0.002 confirming the previous600

thought experiment. A heatmap with generated samples from the GAN generator are given in Fig.601

25.602

603

Hence, mode collapse for the computation of DG is not an issue. Note though that when there is604

mode collapse in the GAN itself that is being evaluated, the DG detects this. In particular, this is605

supported by the high anti-correlation between DG and the number of covered modes and sample606

quality as shown in Table 7.607

Suboptimal solutions due to the optimization. We now investigate the effect of the number of608

optimization steps used for the calculation of the duality gap on the quality of the solution. We run 5609

different models with different hyperparameters with the goal to find the best setting. As suggested,610

we want to use the duality gap as the metric for this. Table 11 gives the results. The ranking of the611

models is the same for various numbers of optimization steps and corresponds to the ranking obtained612

by taking into consideration the number of covered modes and the number of generated samples that613

fall within 3 standard deviations of one of the modes.614

This suggests that as long as one uses the same number of optimization steps when comparing615

different models, the suboptimality of the solution is empirically not an issue.616
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(a) GAN discriminator (b) GAN generator

Figure 25: a) A heatmap of generated samples from the GAN generator (up) and the true data distribution
(below). The generator is able to cover the true data distribution; b) Generated samples from Gu

worst

.

hyperparameters quality of GAN DG for # optimization steps

lr_D lr_G #modes
(out of 8)

# quality samples
(out of 2500) 500 1000 1500 2000

2e-3 1e-4 8 2414 0.014 0.03 0.04 0.06
1e-4 1e-4 1 1119 10.02 11.3 12.23 12.3
1e-3 1e-4 8 2440 0.009 0.01 0.006 0.02
5e-3 1e-4 8 2478 0.008 0.002 0.002 0.001
1e-4 1e-5 1 501 10.84 12.37 13.25 13.7

Table 11: DG for various number of optimization steps and GAN hyperparameters. The set of the best
hyperparameters is the same no matter the number of optimization steps are used for the calculation of the
duality gap.
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