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Abstract

We consider differentially private algorithms for reinforcement learning in contin-
uous spaces, such that neighboring reward functions are indistinguishable. This
protects the reward information from being exploited by methods such as inverse
reinforcement learning. Existing studies that guarantee differential privacy are
not extendable to infinite state spaces, as the noise level to ensure privacy will
scale accordingly to infinity. Our aim is to protect the value function approximator,
without regard to the number of states queried to the function. It is achieved by
adding functional noise to the value function iteratively in the training. We show
rigorous privacy guarantees by a series of analyses on the kernel of the noise
space, the probabilistic bound of such noise samples, and the composition over
the iterations. We gain insight into the utility analysis by proving the algorithm’s
approximate optimality when the state space is discrete. Experiments corroborate
our theoretical findings and show improvement over existing approaches.

1 Introduction

Increasing interest in reinforcement learning (RL) and deep reinforcement learning has led to recent
advances in a wide range of algorithms [SB18]. While a large part of the advancement has been in
the space of games, the applicability of RL extends to other practical cases such as recommendation
systems [ZZZ+18, LSTS15] and search engines [RJG+18, HDZ+18]. With the popularity of the
RL algorithms increasing, so have concerns about their privacy. Namely, the released value (or
policy) function are trained based on the reward signal and other inputs, which commonly rely on
sensitive data. For example, an RL recommendation system may use the reward signals simulated by
users’ historical records. This historical information can thus be inferred by recursively querying
the released functions. We consider differentially privacy [DMNS06, DR14], a natural and standard
privacy notion, to protect such information in the RL methods.

RL methods learn by carrying out actions, receiving rewards observed for that action in a given state,
and transitioning to the next states. Observation of the learned value function can reveal sensitive
information: the reward function is a succinct description of the task. It is also connected to the users’
preferences and the criteria of their decision-making; the visited states carry important contextual
information on the users, such as age, gender, occupation, and etc.; the transition function includes
the dynamics of the system and the impact of the actions on the environment. Among those, the
reward function is the most vulnerable and valuable component, and studies have been conducted
to infer this information [AN04, NR00]. In this paper, our aim is to design differentially private
algorithms for RL, such that neighboring reward functions are indistinguishable.

There is a recent line of research on privacy-preserving algorithms by protecting the reward function.
Balle et al. [BGP16] train the private value function using a fixed set of trajectories. However when
a new state is queried this privacy guarantee will not hold. Similar results are also considered in
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contextual multi-arm bandits [SS18, SS19, PFW+18], where the context vector is analogous to the
state. The gap that these works leave lead us to design a private algorithm that is not dependent on
the number of states queried to the value function.

In order to achieve this under continuous space settings, we investigate the Gaussian process mecha-
nism proposed by Hall et al. [HRW13]. The mechanism adds functional noise to the value function
approximation hence the function can be evaluated at arbitrarily many states while preserving pri-
vacy. We show that our choice of the reproducing kernel Hilbert space (RKHS) embeds common
neural networks, hence a nonlinear value function can also be used. We therefore adapt Q-learning
[MKS+15, WD92, Bai95] so that the value function is protected after each update, even when new
states are visited.

We rigorously show differential privacy guarantees of our algorithm with a series of techniques.
Notably, we derive a probabilistic bound of the sample paths thus ensuring that the RKHS norm
of the noised function can be bounded. This bound is significantly better than a union bound of
all noise samples. Further, we analyze the composition of the privacy costs of the mechanism.
There is no known composition result of the functional mechanism, other than the general theorems
that apply to any mechanism [KOV13, DRV10, BKN10]. Inspired by these theorems, we derive a
privacy guarantee which is better than existing results. On the utility analysis, though there is no
known performance analysis on deep reinforcement learning, we gain insights by proving the utility
guarantee under the tractable discrete state space settings. Empirically, experiments corroborate our
theoretical findings and show improvement over existing methods.

Related Works. There is a recent line of research that discusses privacy-preserving approaches
on online learning and stochastic multi-armed bandit problems [SB18, Sze10]. The algorithms
protect neighboring reward sequences from being distinguished, which is related to our definition of
neighboring reward functions. In bandit problems, the algorithms preserve the privacy via mechanisms
that add noise to the estimates of the reward distribution [TD17, TD16, MT15, TS13, KGGW15].
This line of work shares similar motivations as our work, but they do not scale to the continuous
space because of the

√
N or

√
N lnN factor involved where N is the number of arms. Similarly,

in the online learning settings, the algorithms preserve the privacy evaluated sequence of the oracle
[GUK17, ALMT17, AS17, JKT12]. Their analyses are based on optimizing a fixed objective thus do
not apply to our setting.

More closely related are privacy studies on contextual bandits [SS19, SS18], where there is a
contextual vector that is analogous to the states in reinforcement learning. Equivalently, differentially
private policy evaluation [BGP16] considers a similar setting where the value function is learned on
a one-step MDP. It worth note that they also consider the privacy with respect to the state and the
actions, though in this paper we will focus only on the rewards. The major challenge to extend these
works is that reinforcement learning requires an iterative process of policy evaluation and policy
improvement. The additional states that are queried to the value function are not guaranteed to be
visited and protected by previous iterations. We propose an approach for both the evaluation and the
improvement, while also extending the algorithm to nonlinear approximations like neural networks.

Differential privacy in a Markov decision process (MDP) has been discussed [Ven13] via the input
perturbation technique. In the work, the reward is reformulated as a weighted sum of the utility and
the privacy measure. With this formulation, it amounts to learn the MDP under this weighted reward.
Essentially, input perturbation will cause relatively large utility loss and is therefore less preferred.
Similarly, output perturbation can be used to preserve privacy, as shown in our analysis. It is though
obvious that the necessary noise level is relatively larger and also depends on more factors than our
algorithm does. Therefore, more subtle techniques will be required to improve the methods by input
and output perturbation.

A general approach that can be applied to continuous spaces is the differentially private deep learning
framework [ACG+16, CBK+19]. The method perturbs the gradient estimator in the updates of the
neural network parameters to preserve privacy. In our problem, applying the method will require
large noise levels. In fact, the algorithm considers neighboring inputs that at most one data point
can be different, therefore benefits from a 1/B factor via privacy amplification [KLN+11, BKN10]
where B is the batch size. This no longer holds in reinforcement learning, as all reward signals can
be different for neighboring reward functions, causing the noise level to scale B times back.
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2 Preliminaries

2.1 Markov Decision Process and Reinforcement Learning

Markov decision process (MDP) is a framework to model decisions in an environment. We use
canonical settings of the discrete-time Markov decision process. An MDP is denoted by the tuple
(S,A, T , r, ρ0, γ) which includes the state space S , the action space A = {1, . . . ,m}, the stochastic
transition kernel T : S × A × S → R+, the reward function r : S × A → R, the initial state
distribution ρ0 : S → R+ and the discount factor γ ∈ [0, 1). Denote m in the above as the number of
actions in the action space. The objective is to maximize the expected discounted cumulative reward.
Further define the policy function π : S,A → R+ and the corresponding action-state value function
as

Qπ(s, a) = Eπ[

∞∑
t≥0

γtr(st, at)|s0 = s, a0 = a,π].

When the context is clear, we omit π and write Q(s, a) instead.

We use the continuous state space setting for this paper, except in Appendix D. We investigate
bounded and continuous state space S ⊆ R and without loss of generality assume that S = [0, 1].
The value function Q(s, a) is treated as a set of m functions Qa(s), where each function is defined
on [0, 1]. The reward function is similarly written as a set of m functions, each defined on [0, 1]. We
do not impose any particular assumptions on the reward function.

Our algorithm is based on deep Q-learning [MKS+15, Bai95, WD92], which solves the Bellman
equation. Our differential privacy guarantee can also be generalized to other Q-learning algorithms.
The objective of deep Q-learning is to minimize the Bellman error

1

2
(Q(s, a)− E[r + γmax

a′
Q(s′, a′)])2,

where s′ ∼ T (s, a, s′) denotes the consecutive state after executing action a at state s. Similar to
[MKS+15], we use a neural network to parametrize Q(s, a). We will focus on output a learned value
function where the reward function r(·) and r′(·) cannot be distinguished by observing Q(s, a), as
long as ‖r − r′‖∞ ≤ 1. Here without ambiguity we write r(·), r′(·) as r, r′, and the infinity norm
‖f(s)‖∞ is defined as sups |f(s)|.

2.2 Differential Privacy

Differential privacy [DKM+06, DMNS06] has developed into a strong standard for privacy guarantees
in data analysis. It provides a rigorous framework for privacy guarantees under various adversarial
attacks.

The definition of differential privacy is based on the notion that in order to preserve privacy, data
analysis should not differ at the aggregate level whether any given user is present in the input or not.
This latter condition on the presence of any user is formalized through the notion of neighboring
inputs. The definition of neighboring inputs will vary according to the problem settings.

Let d, d′ ∈ D be neighboring inputs.
Definition 1. A randomized mechanismM : D → U satisfies (ε, δ)-differential privacy if for any
two neighboring inputs d and d′ and for any subset of outputs Z ⊆ U it holds that

P(M(d) ∈ Z) ≤ exp(ε)P(M(d′) ∈ Z) + δ.

An important parameter of a mechanism is the (global) sensitivity of the output.
Definition 2. For all pairs d, d′ ∈ D of neighboring inputs, the sensitivity of a mechanismM is
defined as

∆M = sup
d,d′∈D

‖M(d)−M(d′)‖, (1)

where ‖ · ‖ is a norm function defined on U .

Vector-output mechanisms. For converting vector-valued functions into a (ε, δ)-DP mechanism,
one of the standard approaches is the Gaussian mechanism. This mechanism adds N (0,σ2I) to the
outputM(d). In this case U = Rn and ‖ · ‖ in (1) is the `2-norm ‖ · ‖2.
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Proposition 3 (Vector-output Gaussian mechanism; Theorem A.1 of [DR14]). If 0 < ε < 1 and
σ ≥

√
2 ln(1.25/δ)∆M/ε, thenM(d) + y is (ε,δ)-differentially private, where y is drawn from

N (0,σ2I).

Function-output mechanisms. In this setting the output of the function is a function, which means
the mechanism is a functional. We consider the case where U is an RKHS and ‖ · ‖ in (1) is the RKHS
norm ‖ · ‖H. Hall et al. [HRW13] have shown that adding a Gaussian process noise G(0,σ2K) to the
outputM(d) is differentially private, when K is the RKHS kernel of U . Let G denote the Gaussian
process distribution.

Proposition 4 (Function-output Gaussian process mechanism [HRW13]). If 0 < ε < 1 and σ ≥√
2 ln(1.25/δ)∆M/ε, thenM(d)+g is (ε,δ)-differentially private, where g is drawn from G(0,σ2K)

and U is an RKHS with kernel function K.

Note that in [HRW13] the stated condition was σ ≥
√

2 ln(2/δ)∆M/ε. The improvement from
constant 2 to 1.25 is natural but for the completeness we include a proof in Appendix B.

3 Differentially Private Q-Learning

3.1 Our Algorithm

We present our algorithm for privacy-preserving Q-learning under the setting of continuous state
space in Algorithm 1. The algorithm is based on deep Q-learning proposed by Mnih et al. [MKS+15].
We achieve privacy by perturbing the learned value function at each iteration, by adding a Gaussian
process noise. The noise-adding is described by line 19-20 of the algorithm, where ĝ is the noise.
This noise is a discrete estimate of the continuous sample path, evaluated at the states st visited in
the trajectories. Intuitively, when (s, z) is an element of the list ĝ, it implies g(s) = z for the sample
path g. Line 14-18 describes the necessary maintenance of ĝ to simulate the Gaussian process. Line
7-9 samples a new Gaussian process sample path for every J iterations, which controls the balance
between the approximation factor of privacy and the utility. The other steps are similar to [MKS+15].

Algorithm 1 Differentially Private Q-Learning with Functional Noise

1: Input: the environment and the reward function r(·)
2: Parameters: target privacy (ε, δ), time horizon T , batch size B, action space size m, learning

rate α, reset factor J
3: Output: trained value function Qθ(s, a)
4: Initialization: s0 ∈ [0, 1] uniformly, Qθ(s, a) for each a ∈ [m], linked list ĝk[B][2] = {}
5: Compute noise level σ =

√
2(T/B) ln(e+ ε/δ)C(α, k,L,B)/ε;

6: for j in [T/B] do
7: if j ≡ 0 mod T/JB then
8: ĝk[B][2]← {};
9: end if

10: for b in [B] do
11: t← jT/B + b;
12: Execute at = arg maxaQθ(st, a) + ĝa(st);
13: Receive rt and st+1, s← st+1;
14: for a ∈ [m] do
15: Insert s to ĝa[:][1] such that the list remains monotonically increasing;
16: Sample zat ∼ N (µat,σdat)), according to Equation (2), Appendix A;
17: Update the list ĝa(s)← zat;
18: end for
19: yt ← rt + γmaxaQθ(st+1, a) + ĝa(st+1);
20: lt ← 1

2 (Qθ(st, at) + ĝa(st)− yt)2;
21: end for
22: Run one step SGD θ ← θ + α 1

B∇θ
∑(j+1)B
t=jB lt;

23: end for
24: Return the trained Qθ(s, a) function;
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Insight into the algorithm design. To satisfy differential privacy guarantees, we require two reward
functions r and r′ to be indistinguishable upon observation of the learned functions, as long as
‖r − r′‖∞ ≤ 1. The major difficulty is that the reward signal r(s, a) can appear at any s, and all
the reward signals can be different under r and r′. Therefore, we will need a stronger mechanism
of privacy that does not rely on the finite setting where at most one data point in a (finite) dataset is
different, like in [ACG+16] and [BGP16]. This is also the major challenge in extending [BGP16]
from policy evaluation to policy improvement. The natural approach to address the challenge is to
treat a function as one “data point”, which leads to our utilization of the techniques studied by Hall et
al. [HRW13].

3.2 Privacy, Efficiency, and Utility of the Algorithm

Privacy analysis. There are three main components in the privacy analysis. First, we have to define
the RKHS to invoke the Gaussian process mechanism in Proposition 4. This RKHS should also
include the value function approximation we used in the algorithm, namely, neural networks. Second,
we give a privacy guarantee of composing the mechanism for T/B iterations. There is not a known
composition result of such a functional mechanism, other than the general theorems that apply to any
mechanism [KOV13, DRV10, BKN10]. But we derive such a privacy guarantee which is better than
existing results. Third, as the sample path is evaluated on multiple different states, the updated value
function can be unbounded, which subsequently induces the RKHS norm to be unbounded. This is
addressed by showing a probabilistic uniform bound of the sample path over the state space.

Our privacy guarantee is shown in the following theorem.
Theorem 5. The Q-learning algorithm in Algorithm 1 is (ε, δ + J exp(−(2k − 8.68

√
βσ)2/2))-DP

with respect to two neighboring reward functions ‖r − r′‖∞ ≤ 1, provided that 2k > 8.68
√
βσ, and

σ ≥
√

2(T/B) ln(e+ ε/δ)C(α, k,L,B)/ε,

where C(α, k,L,B) = ((4α(k + 1)/B)2 + 4α(k + 1)/B)L2, β = (4α(k + 1)/B)−1, L is the
Lipschitz constant of the value function approximation, B is the batch size, T is the number of
iterations, and α is the learning rate.

Theorem 5 provides a rigorous guarantee on the privacy of the reward function. We now present three
statements to address the challenges mentioned above and support the theorem.

Lemma 6 and its corollary, informally stated below and formally stated in Appendix C, describe
the RKHS that is necessary to both embedded the function approximators we use and invoke the
mechanism in Proposition 4.
Lemma 6 (Informal statement). The Sobolev space H1 with order 1 and the `2-norm is defined as

H1 = {f ∈ C[0, 1] : ∂f(x) exists;
∫ 1

0

(∂f(x))2dx <∞},

where ∂f(x) denotes weak derivatives and the RKHS kernel is K(x, y) = exp(−β|x− y|).

Immediately following Lemma 6, we show that the common neural networks are in the Sobolev
space. That includes neural networks with nonlinear activation layers such as a ReLU function, a
sigmoid function, or the tanh function. The proof of the following corollary is also in Appendix C.

Corollary 7. Let f̂W (x) denote the neural network with finitely many finite parameters W . For
f̂W (x) with finitely many layers, if the gradient of the activation function is bounded, then f̂W (x) ∈
H1.

By the corollary f̂W (x) is Lipschitz continuous. Denote L as the Lipschitz constant which only
depends on the network architecture. It follows from Lemma 6 immediately that, in the algorithm
for any Q(s, a) and Q′(s, a), ‖Q(·, a)−Q′(·, a)‖2H ≤ 2r2

0(1 + β/2)/(1− γ)2 + L2/β, for each a,
where it assumes bounded reward |r(s, a)| ≤ r0. This will lead to an alternative privacy guarantee,
but less preferred than in Theorem 5 due to the 1/(1− γ)2 and the r0 factor.

Line 19 and 20 use ĝ, which is the list of Gaussian random variables evaluated at the Gaussian process
sample paths. Using a union tail bound we can derive a probabilistic bound of these variables, but it
will cause the approximation factor to be δ+O(1− (1− exp(2k−

√
βσ))T ), which is unrealistically
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large. We show in the lemma below that with high probability the entire sample path is uniformly
bounded over any state st. We can then calibrate the δ to cover the exponentially small tail bound
O(exp(−u2)) of the noise. The proof is in Appendix A.
Lemma 8. Let P the probability measure over H1 of the sample path f generated by G(0,σ2K).
Then almost surely maxx∈[0,1] f(x) exists, and for any u > 0

P( max
x∈[0,1]

f(x) ≥ 8.68
√
βσ + u) ≤ exp(−u2/2).

Proof of Theorem 5. Let Q and Q′ denote the learned value function of the algorithm given r and r′,
respectively, where ‖r − r′‖∞ ≤ 1. To make Q and Q′ indistinguishable, we inspect the update step
in line 21. Let Q0 denote the value function after and before the update, we have

‖Q−Q0‖∞ ≤ αL(2 + ĝa(st+1)− ĝa(st))/B.

As per Lemma 8, with probability at least 1 − exp(−(2k − 8.68
√
βσ)2/2), we have |Q − Q0| ≤

2αL(k + 1)/B. By the triangle inequality, for any ‖r − r′‖∞ ≤ 1, the corresponding Q and Q′
satisfies ‖Q−Q′‖∞ ≤ 4αL(k+ 1)/B, given that Q0 is fixed by the previous step. Let f = Q−Q′,
we have

‖f‖2H ≤ (1 + β/2)(4αL(k + 1)/B)2 + L2/2β

by the formal statement Lemma 6, Appendix C. We choose 1/β = 4α(k + 1)/B and have ‖f‖2H ≤
((4α(k + 1)/B)2 + 4α(k + 1)/B)L2. Now by Proposition 4, adding g ∼ G(0,σ2K) to Q will
make the update step (ε′, δ′ + exp(−(2k − 8.68

√
βσ)2/2)-differentially private, given that σ ≥√

2 ln(1.25/δ′)‖f‖H/ε′, where K(x, y) = exp(−4αL(k+ 1)|x− y|/B) is our choice of the kernel
function. Thus each iteration of update has a privacy guarantee.

It amounts to analyze the composition of T/B many iterations. It is shown by the composition
theorem [KOV13, Mir17] that any σ ≥

√
2(T/B) ln(1.25/δ) ln(e+ ε/δ)‖f‖H/ε is sufficient. This

is the best known bound, but we continue to derive the specific bound for our algorithm. Let z (a
function, either Q or Q′) be the output of a single update of the algorithm. Denote v = 4α(k+ 1)/B
and T ′ = T/B for simplicity. By Lemma 11, Appendix A, we have

E0[(P1(z ∈ S)/P0(z ∈ S))λ] ≤ exp(
(λ2 + λ)(v2 + v)L2

2σ2
),

where P0 and P1 are the probability distribution of z given r and r′, respectively. This moment
generating function will scale exponentially if multiple independent instances of z are drawn. Namely,
let z be the vector of T ′ many independent z, and PT ′0 and PT ′1 be its probability distribution under r
and r′. We have for λ > 0, E0[(PT ′1 (z ∈ S)/PT ′0 (z ∈ S))λ] ≤ exp( (λ2+λ)(v2+v)L2

2σ2 T ′). Thus,

exp(λ(ln(PT
′

1 (z)/PT
′

0 (z))− ε) = exp(
T ′‖f‖2H

2σ2
(λ+

1

2
(1− 2εσ2

T ′‖f‖2H
))2 − 1

4
(1− 2εσ2

T ′‖f‖2H
)2).

Since the argument holds for any λ > 0, let λ = − 1
2 (1− 2εσ2

T ′‖f‖2H
) > 0, then

PT
′

1 (z)− exp(ε)PT
′

0 (z) ≤ E0[exp(λ(ln(PT
′

1 (z)/PT
′

0 (z))− ε) + λ lnλ− (λ+ 1) ln(λ+ 1))]

= exp(−T
′‖f‖2H
2σ2

(1− 2σ2

T ′‖f‖2H
ε)2 + λ lnλ− (λ+ 1) ln(λ+ 1))

≤ exp(−T
′‖f‖2H
2σ2

(1− 2σ2

T ′‖f‖2H
ε)2)(λ+ 1)

= exp(− σ2

2T ′‖f‖2H
(ε− T ′‖f‖2H

2σ2
)2)

1

1 + σ2

T ′∆2 (ε− T ′‖f‖2H
2σ2 )

.

We desire to find ε and δ so that this difference PT ′1 (z)− exp(ε)PT ′0 (z) is less than δ. We use similar
techniques as is in the proof Theorem 4.3 of [KOV13]. We choose

ε =
T ′‖f‖2H

2σ2
+

√
2T ′‖f‖2Hw

σ2
,
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where w = ln(e+
√
T ′‖f‖2H/σ2/δ). Thus the first term is e−w and the second term is 1

1+

√
2σ2w

T ′‖f‖2H

.

This ensures that e−w ≤ δ/
√
T ′‖f‖2H/σ2 and 1

1+

√
2σ2w

T ′‖f‖2H

≤ 1

1+

√
2σ2

T ′‖f‖2H

, thereby guaranteeing

that PT ′1 (z)− exp(ε)PT ′0 (z) ≤ δ for differential privacy. We solve ε =
T ′‖f‖2H

2σ2 +

√
2T ′‖f‖2Hw

σ2 and
find the sufficient condition that

σ =
√

(2T ′‖f‖2H/ε2) ln(e+ ε/δ)

≤
√

2(T/B)((4α(k + 1)/B)2 + 4α(k + 1)/B)L2 ln(e+ ε/δ)/ε,

as desired. When this sufficient condition is satisfied, the approximation factor will be no larger
than δ plus J times the uniform bound derived above by Lemma 8. Namely, it achieves (ε, δ +
J exp(−(2k − 8.68

√
βσ)2/2))-DP.

Time complexity. We show that the noise adding mechanism in our algorithm is efficient. In fact, the
most complex step introduced by the noise-adding is the insertion in line 15. This can be negligible
compared with the steps such as computing gradients and executing actions. A complete proof of the
below proposition is given in Appendix A.
Proposition 9. The noised value function (during either training or released) in Algorithm 1 can
respond to Nq queries in O(Nq ln(Nq)) time.

Utility analysis. To the best of our knowledge, there has not been a study to rigorously analyze the
utility of deep reinforcement learning. In fact, in the continuous state space setting, the solution of the
Bellman equation is not unique in general. Hence, it is unlikely for Q-learning to achieve a guaranteed
performance, even if it converges. However, we gain insights by analyzing the algorithm’s learning
error in the discrete state space setting. The learning error is defined by the discrepancy between the
learned state value function and the ground truth of the optimal state value function. We consider
the worst case J = 1 for utility (which is the best case for (ε, δ + exp(−(2k − 8.68

√
βσ)2/2))-

differential privacy) where the noise is the most correlated through the iterations. We show the upper
bound of the utility loss, which has a limit of zero as the number of states approaches infinity. The
proof involves the linear program formulation of MDP, which is given in Appendix D.
Proposition 10. Let v′ and v∗ be the value function learned by our algorithm and the optimal value
function, respectively. In the case J = 1, |S| = n <∞, and γ < 1, the utility loss of the algorithm
satisfies

E[
1

n
‖v′ − v∗‖1] ≤ 2

√
2σ√

nπ(1− γ)
.

3.3 Discussion

Extending to other RL algorithms. Our algorithm can be extended to the case where it learns both
a policy function and a value function coordinately, like the actor-critic method [MBM+16]. If in
the updates of the policy function, only the Q function is used in the policy gradient estimation,
for example ∇θπ lnπ(a|s)Q(s, a), then the algorithm has the same privacy guarantee. Also, any
post-processing of the private Q function will not break the privacy guarantee. This also includes
experience replay and ε-greedy policies [MKS+15].

However, consider the case where the reward is directly accessed in the policy gradient estimation, for
example∇θπ lnπ(a|s)A(s, a) in [DWS12, SML+15] where A(s, a) =

∑T
t=0(λγ)t(rt + v(st+1)−

v(st)). In this setting, the privacy guarantee no longer holds. To extend the privacy guarantee to this
case, one should add noise to the policy function as well.

Extending to high-dimensional tasks. We assumed in our analysis S = [0, 1] for simplicity. The
setting extends to any bounded S ⊆ R by scaling the interval. Our approach can also be extended to
high-dimensional spaces by choosing a high-dimensional RKHS and kernel. For example, the kernel
function exp(−β|x− y|) where x and y now belongs to Rn and | · | is the Manhattan distance. It is
also possible to use other RKHS and kernels for the Gaussian process noise, such as the space of
band-limited functions. Other than the re-calibration of the noise level to the new kernel, the privacy
guarantee in the theorem holds in general for the respective definition of ‖ · ‖H. We note that the time
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Figure 1: Empirical results of Algorithm 1 on different noise levels. The y-axis denotes the return.
The x-axis is the number of samples the agent has trained on. Each episode has 50 samples. The
shadow denotes 1-std. The learning curves are averaged over 10 random seeds. The curves are
generated without smoothing.

complexity derived in Proposition 9 does not extend to other kernel functions, which requires the
algorithm to take O(N2

q ) in the noise generating process.

4 Experiments

We present empirical results to corroborate our theoretical guarantees and to demonstrate the per-
formance of the proposed algorithm on a small example. The exact MDP we use is described in
Appendix E.1. The implementation is attached along with the manuscript submission.

We first plot the learning curve with a variety of noise levels and J values in Figure 1. With the
increase of the noise level, the algorithm requires more samples to achieve the same return than
the non-private version. This demonstrates the empirical privacy-utility tradeoff. We observe that
with the noise being reset every round (J = T/B), the algorithm is likely to converge with limited
sub-optimality as desired, especially when σ < 0.4. Therefore, as J exp(−(2k − 8.68

√
βσ)2/2) is

exponentially small, we suggest using J = T/B in practice to achieve a better utility.

The algorithm is then compared with a variety of baseline methods where they target the same (ε, δ)
privacy guarantee, as shown in Figure 2(a) and 2(b). The policy evaluation method proposed by
Balle, Gomrokchi and Precup [BGP16] is not differentially private under our context (while it is
(ε, δ)-DP with respect to the reward sequences). We compare with it to illustrative the utility, where it
is observed that their approach shares similar performance with ours. Note that studies on contextual
bandits by Sajed and Sheffet [SS19] and by Shariff and Sheffet [SS18] consider an equivalently
one-step MDP as [BGP16] and thus will yield the same method. We also compared our approach
with the input perturbation method proposed by Venkitasubramaniam [Ven13] and the differentially
private deep learning framework by Abadi et al. [ACG+16]. Both the approaches are differentially
private under our setting, while our algorithm significantly outperforms them. Especially, on the
higher privacy regime ε = 0.45, both the baseline methods do not improve over the training due
the the large noise level needed. The baseline implementations and the exact calculation of the
parameters are detailed in Appendix E.2 and E.3, respectively.

5 Conclusion

We have developed a rigorous and efficient algorithm for differentially private Q-learning in con-
tinuous state space settings. Releasing and querying the algorithm’s output value function will not
distinguish two neighboring reward functions. To achieve this, our method applies functional noise
taken from sample paths of a Gaussian process calibrated appropriately according to sensitivity
calculated under the RKHS measure. Theoretically, we show the privacy guarantee and insights
into the utility analysis. Empirically, experiments corroborate our theoretical findings and show
improvement over existing methods. Our approach is general enough to be extended to other domains
beyond reinforcement learning.
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(a) Target ε = 0.9, δ = 1 · 10−4 (b) Target ε = 0.45, δ = 1 · 10−4

Figure 2: Empirical comparisons with other methods. Same configurations as Figure 1.
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A Proof of Lemma 8, Lemma 11 and Proposition 9

In the proofs, we will refer to some properties of the Gaussian process and its sample paths. We put
those properties in Claim 12, at the end of this section. The claim and the notation used in the claim
are reused in the proof of Lemma 8, Lemma 11, and Proposition 9. For simplicity, when the result
can be verified immediately, such as calculating an inverse matrix, we will omit the steps.

Notations for this section. We investigate a dyadic rational. For a sample path f and
n ≥ 1, define fn0 = {f(x0), f(x2), . . . , f(x2n)} and fn1 = {f(x1), f(x3), . . . f(x2n−1)},
where xi = i/2n, i = 0, . . . , 2n. For a deterministic function g defined on [0, 1], define
gn0 and gn1 similarly as gn0 = (limx→x0 g(x), limx→x2 g(x), . . . , limx→x2n g(x))T and gn1 =
(limx→x1

g(x), limx→x3
g(x), . . . limx→x2n−1

g(x))T . Also define βn = β/2n. Our goal is to
investigate the desired properties when limn→∞.

By the definition of the Gaussian process,(
fn1

fn0

)
∼ N

(
0,σ2

[
K11 K10

KT
10 K00

])
,

where K11, K10, and K00 are depending on n. If f ∼ G(0,σ2K), the conditional distribution
fn1|fn0 ∼ N (K10K

−1
00 fn0,σ2(K11 − K10K

−1
00 K

T
10)). If f ∼ G(g,σ2K), fn1|fn0 ∼ N (gn1 +

K10K
−1
00 (fn0 − gn0),σ2(K11 −K10K

−1
00 K

T
10)).

We restate Lemma 8 and prove it. Recall that the lemma proves a tail bound for the maximum of a
GP sample path.

Lemma 8. Let P the probability measure over H1 of the sample path f generated by G(0,σ2K).
Then almost surely maxx∈[0,1] f(x) exists, and for any u > 0

P( max
x∈[0,1]

f(x) ≥ 8.68
√
βσ + u) ≤ exp(−u2/2).

Proof. We start with the base case that f10 = {f(0), f(1)}. E[max f10] = 1
2E[|f(0) − f(1)|] =√

(1− exp(−β))/πσ ≤
√
β/πσ, where the second equation is due to f(0)− f(1) ∼ N (0, 2(1−

exp(−β))σ2).

We desire to bound the expectation E[max fn0] for all n > 1. To complete this, we first prove
a general result on the expectation of the maximum of the Gaussian variables. Let z1, . . . , zn ∼
N (0,σ2

z) be n independent Gaussian random variables, by the Chernoff bound we have

exp(tE[max
i
zi]) ≤ E[exp(tmax

i
zi)] = E[max

i
exp(tzi)] ≤ n exp(t2σ2

z/2).

By choosing t =
√

2 lnn/σz , we conclude that E[maxi zi] ≤
√

2 lnnσz . Meanwhile, it is obvious
that Var[maxi zi] ≤ σz .

Denote µn = E[max f2n0]. As f2n0 ⊂ f2n+10, the series µn is non-decreasing. We derive an
upperbound of µn+1−µn. Let xi = i/2n+1 and ξi,n = f(x2i−1)− exp(−β2n )

1+exp(−2β2n ) (f(x2i−2)+f(x2i)),

we have that ξi,n ∼ N (0,σ2 1−exp(−2β2n )
1+exp(−2β2n ) ). Further, ξi,n and ξj,n are independent. It is true as

K10K
−1
00 is nonzero only at its two diagonals, which indicates that f(x2j−1) is not depending on

other point if f(x2j−2) + f(x2j) is given. Thus, we have ξi,n i.i.d. for i = 1, . . . , 2n.

As we shown before the upper bound E[maxi zi] ≤ 2
√

lnnσz , the expectation is monotonically
increasing on the variance σz . In general, we have (1− exp(cx))/(1 + exp(cx)) < x for all positive
x, if and only if c ≤ 2. Thus 1−exp(−2β2n )

1+exp(−2β2n ) < β2n , and consequently we have E[maxi ξi,n] ≤
E[maxi ξ

′
i,n], for ξ′i,n ∼ N (0,σ2β2n).

By the inequality exp(−x)/(1 + exp(−2x)) < 1
2 for x > 0, we relax that exp(−βn)

1+exp(−2βn) <
1
2 . Thus,

f(x2i−1) ≤ ξi,n + 1
2 (f(x2i−2) + f(x2i)). Taking maximum and expectation on both sides, we have

E[ max
1≤i≤2n

f(x2i−1)] ≤ E[ max
1≤i≤2n

ξi,n +
1

2
(f(x2i−2) + f(x2i))]
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≤ E[ max
1≤i≤2n

ξ′i,n] +
1

2
E[ max

1≤i≤2n
f(x2i−2)] +

1

2
E[ max

1≤i≤2n
f(x2i)]

≤
√

2 ln 2n
√
σ2β2n +

1

2
µn +

1

2
µn

= µn +
√
nβ/2nσ.

Thus, E[max f2n1 − max f2n0] ≤
√
nβ/2nσ. Meanwhile, we have that Var[max f2n1 −

max f2n0] ≤ Var[max f2n1] + Var[max f2n0] ≤ 2(β/2n)σ2. Let z be a random variable subject
to E[z] =

√
nβ/2nσ, Var[z] = 2(β/2n)σ2, then there exists a z such that E[max(0, max f2n1 −

max f2n0)] ≤ E[max(0, z)]. We will bound this value. Denote c =
√
β/2nσ for simplicity. Then

we have

exp(
1

c
E[max(z, 0)]) ≤ E[exp(

1

c
max(z, 0))]

≤ E[max(exp(
z

c
), exp(0))]

≤ E[exp(
z

c
+ 1)]

≤ exp(
√
n+ 1) + 1.

Consequently,

E[max(z, 0)] ≤ (
√
n+ 1 +

1

exp(
√
n+ 1)

)
√
β/2nσ.

Hence we have

µn+1 − µn = E[max(0, max f2n1 −max f2n0)] ≤ (
√
n+ 1 +

1

exp(
√
n+ 1)

)
√
β/2nσ.

By induction, we have µn ≤
√
β/πσ +

∑∞
i=0(
√
i+ 1 + 1

exp(
√
i+1)

)
√
β/2iσ < 8.68

√
βσ, for any

integer n. Since the dyadic rational ∪∞i=0f2i0 is dense and compact on [0, 1] and f is continuous with
probability one, E[max f ] shares the same upper bound of µn almost surely. It is shown in Theorem
3 of [Lal13], that if the expectation E[max f ] is bounded then max f is sub-Gaussian. The lemma
follows.

The following Lemma 11 shows an upper bound of the moment generating function of the Gaussian
process with the kernel introduced in Lemma 6. The lemma will be used to compose the Gaussian
process mechanisms in Theorem 5.
Lemma 11. Let g ∈ H1 be continuous almost everywhere. Denote P0(f) and P1(f) be the
probability measure overH1 of the sample path generated by G(0,σ2K) and G(g,σ2K), respectively.
The sample path f ∼ P0 satisfies, for any λ > 0 and any set S of sample paths,

E0[(P1(f ∈ S)/P0(f ∈ S))λ] ≤ exp((λ2 + λ)‖g‖2H/2σ2).

Proof. By the conditional distribution fn1|fn0 in Claim 12, we have the ratio of the probability
density

ln
P1(fn1|fn0)

P0(fn1|fn0)
= − (gn1 −K10K

−1
00 gn0)T (K11 −K10K

−1
00 K

T
10)−1(gn1 −K10K

−1
00 gn0)

2σ2

+
2(gn1 −K10K

−1
00 gn0)T (K11 −K10K

−1
00 K

T
10)−1(fn1 −K10K

−1
00 fn0)

2σ2

= − 1 + exp(−2βn)

2σ2(1− exp(−2βn))

n∑
i=1

(g(x2i−1)− exp(−βn)

1 + exp(−2βn)
(g(x2i−2) + g(x2i)))

2

+
1 + exp(−2βn)

σ2(1− exp(−2βn))

n∑
i=1

(g(x2i−1)− exp(−βn)

1 + exp(−2βn)
(g(x2i−2) + g(x2i)))

× (f(x2i−1)− exp(−βn)

1 + exp(−2βn)
(f(x2i−2) + f(x2i))).
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Note that in the equation above f(x2i−1) − exp(−βn)
1+exp(−2βn) (f(x2i−2) + f(x2i)) and f(x2j−1) −

exp(−βn)
1+exp(−2βn) (f(x2j−2) + f(x2j)) are i.i.d. with the distribution N (0,σ2 1−exp(−2βn)

1+exp(−2βn) ). Hence, We
have

E0[exp(λ ln
P1(fn1|fn0)

P0(fn1|fn0)
)]

= exp(−λ 1 + exp(−2βn)

2σ2(1− exp(−2βn))

n∑
i=1

(g(x2i−1)− exp(−βn)

1 + exp(−2βn)
(g(x2i−2) + g(x2i)))

2)

+

n∑
i=1

(
λ2(1 + exp(−2βn))2

2σ4(1− exp(−2βn))2
(g(x2i−1)− exp(−βn)

1 + exp(−2βn)
(g(x2i−2) + g(x2i)))

2

× σ2 1− exp(−2βn)

1 + exp(−2βn)
)

= exp((λ2 − λ)
1 + exp(−2βn)

2σ2(1− exp(−2βn))

n∑
i=1

(g(x2i−1)− exp(−βn)

1 + exp(−2βn)
(g(x2i−2) + g(x2i)))

2).

Meanwhile,

E0[exp(λ ln
P1(f10)

P0(f10)
)] = E0[exp(2λ

f(0)g(0) + f(1)g(1)− exp(−β)(f(0)g(1) + f(1)g(0))

2σ2(1− exp(−2β))

− λg(0)2 + g(1)2 − 2 exp(−β)g(0)g(1)

2σ2(1− exp(−2β))
)]

= E0[exp(2λ
(g(0)− exp(−β)g(1))f(0) + (g(1)− exp(−β)g(0))f(1)

2σ2(1− exp(−2β))

− λg(0)2 + g(1)2 − 2 exp(−β)g(0)g(1)

2σ2(1− exp(−2β))
)]

= exp(
4λ2

8σ4(1− exp(−2β))2
Var ((g(0)− exp(−β)g(1))f(0) + (g(1)− exp(−β)g(0))f(1)))

− λg(0)2 + g(1)2 − 2 exp(−β)g(0)g(1)

2σ2(1− exp(−2β))
)

= exp(
4λ2

8σ4(1− exp(−2β))2
(σ2(g(0)− exp(−β)g(1))2 + σ2(g(1)− exp(−β)g(0))2

+ 2 exp(−β)σ2(g(0)− exp(−β)g(1))(g(1)− exp(−β)g(0)))

− λg(0)2 + g(1)2 − 2 exp(−β)g(0)g(1)

2σ2(1− exp(−2β))
)

= exp((λ2 − λ)
g(0)2 + g(1)2 − 2 exp(−β)g(0)g(1)

2σ2(1− exp(−2β))
)).

Finally, with (♥) follows by cancelling the g(i−1)g(i) terms, (♦) by relaxing the exponential terms,
and z(i) indicating number of bits before the i’s last 1-bit, we have

E0[exp(λ ln
P1(f2n0)

P0(f2n0)
)] = E0(exp(λ ln

P1(f2n−11|f2n−10) · · · · · ×P1(f201|f200)P1(f200)

P0(f2n−11|f2n−10) · · · · · ×P0(f201|f200)P0(f200)
))

= E0[exp(λ ln
P1(f10)

P0(f10)
)]

n−1∏
k=0

E0[exp(λ ln
P1(f2k1|f2k0)

P0(f2k1|f2k0)
)]

= exp(
λ2 − λ

2σ2

n−1∑
k=0

2k∑
i=1

1 + exp(−2β/2k)

1− exp(−2β/2k)
(g((2i− 1)2−(k+1))
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− exp(−β/2k)

1 + exp(−2β/2k)
(g((2i− 2)2−(k+1)) + g((2i)2−(k+1)))2

+
(λ2 − λ)

2σ2

1

1− exp(−2β)
(g(0)2 + g(1)2 − 2 exp(−β)g(0)g(1)))

(♥)
= exp(

λ2 − λ
2σ2

(
g(0)2 + g(1)2

1− exp(−2β)
+

n−1∑
k=0

2k∑
i=1

1 + exp(−2β/2k)

1− exp(−2β/2k)
(g((2i− 1)2−(k+1))2

+
exp(−2β/2k)

(1 + exp(−2β/2k))2
(g((2i− 2)2−(k+1))2 + g((2i)2−(k+1))2))

−
2n∑
i=1

2 exp(−β/2n−1)

1− exp(−2β/2n−1)
g((i− 1)2−n)g(i2−n)))

= exp(
λ2 − λ

2σ2
(

2n∑
i=0

(
1 + exp(−2β/2z(i))

1− exp(−2β/2z(i))
+ 2

n−1∑
k=z(i)+1

exp(−2β/2k)

1− exp(−4β/2k)
− exp(−β/2n−1)

1− exp(−2β/2n−1)
)g(i2−n)2

+

2n∑
i=1

exp(−β/2n−1)

1− exp(−2β/2n−1)
g(((i− 1)2−n)− g(i2−n))2) +

g(0)2 + g(1)2

1− exp(−2β)
)

(♦)

≤ exp(
λ2 − λ

2σ2
(

2n∑
i=0

(
1 + exp(−2β/2z(i))

1− exp(−2β/2z(i))
+

n−1∑
k=z(i)+1

2k/2β − 2n−1/2β)g(i2−n)2

+ 2n/2β × (g(((i− 1)2−n)− g(i2−n))2) +
1

2
(g(0)2 + g(1)2))

≤ exp(
λ2 − λ

2σ2
(

2n∑
i=0

β22−ng(i2−n)2 +
1

2β
2−n((g((i− 1)2−n)− g(i2−n))/2−n)2 +

1

2
(g(0)2 + g(1)2)).

The lemma follows immediately by letting limn→∞.

We restate Proposition 9 and prove it. Recall that g is the sample path and ĝ the linked list to estimate
its evaluations.

Proposition 9. The noised value function (during either training or released) in Algorithm 1 can
respond to Nq queries in O(Nq ln(Nq)) time.

Proof. The value function Q(·) is deterministic. It amounts to show that there is an approach to
efficiently estimate the Gaussian process sample path g.

We consider the n-th query, where the previous n− 1 queries have been computed and stored. Let
x1, . . . ,xn−1 be the previous queries and g(x1), . . . , g(xn−1) the known value on the sample path.
When x1 ≤, . . . ,≤ xn−1, K10K

−1
00 has only two non-zero elements in each row, where the two

elements are consecutive. This property holds per the computation in Claim 12, even if xi 6= i/2n.
In this case, the two elements need not to be one, but other elements must be zero.

Therefore, the mean µat = K10K
−1
00 and the variance dat = K11 −K10K

−1
00 K

T
10 can be computed

using these two elements in constant time. The exact calculation is shown below. Thus the noised
value function can be calculated in O(ln(Nq)) time, which is the time complexity of inserting xn
into sorted list x1 ≤, . . . ,≤ xn−1. The proposition follows.

They exact value of µat and dat can be verified immediately so we omit the steps of the derivation.
Denote, in the linked list ĝ in the algorithm, s+ as the element s links to and s− as the element that
links to s. Treat s+ = 1 and s− = 0 for non-existence. When ĝk[b] = (s, z), denote ĝk(s) = z.
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Using the arguments above, we have

µat =
(exp(β(s− s−))− exp(−β(s− s−)))ĝ(s−)

exp(β(s+ − s−))− exp(−β(s+ − s−))
+

(exp(β(s+ − s))− exp(−β(s+ − s)))ĝ(s+)

exp(β(s+ − s−))− exp(−β(s+ − s−))

dat = − (exp(β(s− s−))− exp(−β(s− s−))) exp(β(s− s−))

exp(β(s+ − s−))− exp(−β(s+ − s−))

− (exp(β(s+ − s))− exp(−β(s+ − s))) exp(β(s+ − s))

exp(β(s+ − s−))− exp(−β(s+ − s−))
+ 1.

(2)

Claim 12. The following equations hold.

K11 =


1 exp(−2βn) · · · exp(−(2n− 2)βn)

exp(−2βn) 1 · · · exp(−(2n− 4)βn)
...

...
. . .

...
exp(−(2n− 2)βn) exp(−(2n− 4)βn) · · · 1

 ,

K10 =


exp(−βn) exp(−βn) · · · exp(−(2n− 1)βn)
exp(−3βn) exp(−βn) · · · exp(−(2n− 3)βn)

...
...

. . .
...

exp(−(2n− 1)βn) exp(−(2n− 3)βn) · · · exp(−βn)

 ,

K00 =


1 exp(−2βn) · · · exp(−2nβn)

exp(−2βn) 1 · · · exp(−(2n− 2)βn)
...

...
. . .

...
exp(−2nβn) exp(−(2n− 2)βn) · · · 1

 .

K−1
00 =

1

1− exp(−4βn)



1 − exp(−2βn) 0 · · · 0
− exp(−2βn) 1 + exp(−4βn) − exp(−2βn) · · · 0

0 − exp(−2βn) 1 + exp(−4βn) · · · 0
...

...
...

. . .
...

0 0 0 · · · − exp(−2βn)
0 0 0 · · · 1

 ,

K10K
−1
00 =

exp(−βn)
1 + exp(−2βn)


1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 1 1

 ,

K10K
−1
00 K

T
10 =

exp(−βn)

1 + exp(−2βn)
·

2z(1) z(1) + z(3) · · · z(2n− 1) + z(2n− 3)
z(1) + z(3) 2z(1) · · · z(2n− 3) + z(2n− 5)

...
...

. . .
...

z(2n− 3) + z(2n− 5) z(2n− 5) + z(2n− 7) · · · z(1) + z(3)
z(2n− 1) + z(2n− 3) z(2n− 3) + z(2n− 5) · · · 2z(1)

 ,

where we write z(x) = exp(−xβn) for simplicity.

K11 −K10K
−1
00 K

T
10 =

1− exp(−2βn)

1 + exp(−2βn)
I.

Proof. The claim may not be obvious, but it can be verified immediately.
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B Proof of Proposition 4

The following claim improves Proposition 3 of [HRW13], from the constant 2 to constant 1.25. The
claim investigates the anisotropic Gaussian noise mechanism, which can be regarded as a discrete
version of the Gaussian process mechanism.
Claim 13. Let f be an vector-input vector-output function. Define the sensitivity under the Maha-
lanobis distance as ∆ = maxx,x′ ‖M−1/2(f(x)− f(x′))‖2 where M is positive definite symmetric.
Then if 0 < ε < 1 and σ ≥

√
2 ln(1.25/δ)∆/ε, f(x) + σM1/2y is (ε,δ)-DP, where y is drawn from

N (0,σ2I).

Proof. Let z ∈ Rd and c = ln(P(f(x) + σM1/2y = z)/P(f(x′) + σM1/2y = z)),

c(z) = ln
P(f(x) = z)

P(f(x′) = z)

=
(z − f(x))TM−1(z − f(x))

2σ2
− (z − f(x′))TM−1(z − f(x′))

2σ2

=
‖f(x)− f(x′)‖2M − 2yTM−1/2(f(x)− f(x′))

2σ2
.

Hence, when y ∼ N (0, 1),

c(z) ∼ N (‖f(x)− f(x′)‖2M/2σ2, 2‖f(x)− f(x′)‖2M/2σ2).

The rest of the argument follows the approach in [DR14] page 261, which is described in the setting
of one-dimensional random variables and isotropic M . We show the argument in our setting for
completeness. For δ-approximation privacy we would like to have P(c < ε) > 1− δ/2. We consider
the following tail bound of the Gaussian distribution: ∀t,

P(c ≥ E[c] + t) ≤ exp(−t2/2 Var(c))
√

Var(c)/2t2π,

which indicates that it is sufficient if both ln(
√

2/πδ2) ≤ ln(tσ/‖f(x)−f(x′)‖M )+t2σ2/2‖f(x)−
f(x′)‖2M and ‖f(x) − f(x′)‖2M/2σ2 + t ≤ ε are satisfied for some t. The conditions are further
reduced to ln(

√
2/πδ2) ≤ ln(tσ/∆) + t2σ2/2∆2 and t ≤ ε − ∆2/2σ2, respectively. We insert

t = ε−∆2/2σ2 to the first inequality and derive:

ln(
εσ

∆
− ∆

2σ
) + (

ε2σ2

2∆2
+

∆2

8σ2
− ε

2
) ≥ ln(

√
2/πδ2).

With ε ≤ 1 we have εσ
∆ −

∆
2σ ≥ 1 whenever σε/∆ ≥ 3/2. With σε/∆ ≥ 3/2 we have ε2σ2

2∆2 +
∆2

8σ2 − ε
2 ≥ σ2ε2/2∆2 − 4/9 per the monotonicity with respect to σε/∆. Hence, it is sufficient

that both σε/∆ ≥ 3/2 and σ2ε2/2∆2 − 4/9 are satisfied. The choice σ ≥
√

2 ln(1.25/δ)∆/ε the
immediately follows, as desired.

Now Proposition 4 of this paper follows the Claim 13 above, and Proposition 7 and Proposition 8 of
[HRW13].

C Proofs of Lemma 6 and Corollary 7

Recall that Lemma 6 finds the desired RKHS and kernel and Corollary 7 is an immediate result that
neural networks belong to this RKHS. The key observation is that we cannot restrict the value of f(0)
and f(1) to be zero (which is common in some analysis of RKHS), as the value function should not
be assumed to have zero value at the boundary.
Lemma 6. We consider the one-dimensional function with bounded variable x ∈ R, which, without
loss of generality, can be treated as x ∈ [0, 1]. The Sobolev space H1 with order 1 and the `2-norm
(also written as W 1,2 conventionally) is defined as

H1 = {f ∈ C[0, 1] : ∂f(x) exists;
∫ 1

0

(∂f(x))2dx <∞},
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where ∂f(x) denotes weak derivatives and
∫

(·)dx denotes the Lebesgue integration. If H1 is
equipped with inner product

〈f , g〉 =
1

2
(f(0)g(0) + f(1)g(1)) +

1

2β

∫ 1

0

∂f(x)∂g(x) + β2f(x)g(x)dx

where β > 0, it is an RKHS with kernel K(x, y) = exp(−β|x− y|).

Note that a function being differentiable almost everywhere does not imply that the function has a
weak derivative. A counterexample is the Cantor function, which is thus excluded from H1. Any
function equal to ∂f(x) almost everywhere is considered identical to ∂f(x) in H1.

Proof. The Sobolev space defined in the lemma does not constrain the value to be zero on its border
{0, 1}, hence standard arguments do not apply. However the arguments will be similar. It suffices to
show that f(x)2 ≤ c〈f , f〉 for some c and that H1 is complete. The former can be seen by showing
that for any nonzero f , 〈f , g〉 = 0 if and only if g = 0. By the Cauchy-Schwartz inequality,

〈f , f〉 ≥ 1

2β

∫ 1

0

(∂f(x))2dx ≥ 1

2β

∫ x

0

(∂f(z))2dz

≥ 1

2β
(

∫ x

0

∂f(z)dt)2 =
1

2β
f(x)2.

We set c = 2β as desired. For the completeness of H1, we show that for any sequence {fn}
with 〈fn − fn+1, fn − fn+1〉 converging to zero, the limit of the sequence is in H1. In fact,
〈fn− fn+1, fn− fn+1〉 converging to zero indicates that

∫ 1

0
(fn− fn+1)dx converges to zero, which

then indicates that {fn(x)} converges pointwise for any x. The first part of the lemma follows. We
then verify that f(y) = 〈f ,Ky〉 for any function f(y) ∈ H1. In fact,

〈f ,Ky〉 =
1

2
(f(0)Ky(0) + f(1)Ky(1)) +

β

2

∫ 1

0

f(x)Ky(x)dx

+
1

2β
(f(x)∂Ky(x)

∣∣1
0
−
∫ 1

0

f(x)∂2Ky(x)dx)

=
1

2
(f(0)Ky(0) + f(1)Ky(1)) +

β

2

∫ 1

0

f(x)Ky(x)dx+
1

2β
f(x)(−βu(x− y)Ky(x))

∣∣1
0

− 1

2β

∫ 1

0

f(x)((−βu(x− y))2Ky(x)− 2βδ(x)Ky(x))dx)

= − 1

2β

∫ 1

0

−f(x)2βδ(x− y)Ky(x)dx = f(y),

where u(x) is the sign function and δ(x) is the impulse function. By the Riesz representation theorem,
K(x, y) is the unique kernel of H1 equipped with the inner product 〈f , g〉 defined above.

Corollary 7. Let f̂W (x) denote the neural network with finite many finite parameters W . For f̂W (x)

with finite many layers, if the gradient of the activation function is bounded, then f̂W (x) ∈ H1.

Proof. Let ψi(·) be the activation function so the i-th layer is represented by the function f̂i(x) =
ψ(wix+ bi). Let the gradient of ψi(·) be bounded by c. As per the chain rule we have∫ 1

0

(∂f̂W (x))2dx ≤
Nc∏
i=1

(f1(. . . fi−1(x))∂fi|x=xi)
2 <∞

for some xi. Hence f̂W (x) ∈ H1.
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D Proof of Proposition 10

As the proposition is under the finite state space setting, the context in this section will be different
from the rest of the paper. We first restate the proposition and define the notations and preliminaries
needed in the analysis. We then show some intermediate claims before we give the final proof.

In the discrete state space setting, we have S = {1, . . . ,n}. The stochastic transition kernel is the
probability distribution P(s′|s, a), denoted as the matrices Pa ∈ Rn×n (each row sums up to one),
a = 1, . . . ,m. We write the reward function as ra ∈ Rn, a = 1, . . . ,m. In this setting, finding
the optimal action-state value function is equivalent to finding the optimal state value function v(s),
denoted as a vector v ∈ Rn. The Bellman equation for the optimal value function is given by

v ≥ γPiv + ri, (3)

for each i = 1, . . . ,m.
Proposition 10. Let v′ and v∗ be the value function learned by our algorithm and the optimal value
function, respectively. In the case J = 1, |S| = n <∞, and γ < 1, the utility loss of the algorithm
satisfies

E[
1

n
‖v′ − v∗‖1] ≤ 2

√
2σ√

nπ(1− γ)
.

Our utility analysis is based on the linear program formulation under discrete state spaces [DFVR02,
CW16] and the sensitivity of linear programs [HRRU14]. In the discrete setting, v is optimal if and
only if the Bellman equation (3) is satisfied. In fact, the ‘if’ relation is immediate, and the ‘only
if’ relation is shown in [SB18] page 64. By exhausting the action set under the max operator and
numbering the actions from 1 to m, the Bellman equation is formulated into the below linear program:

minimize
v

eT v

subject to (I− γPi)v − ri ≥ 0, i = 1, . . . ,m,
(4)

where e is the all-one vector and eT v is the dummy objective. The dual of the linear program (4) is

maximize
λ1,...,λm

∑
i

λTi ri

subject to
∑
i

(I− γPTi )λi = e,

λi ≥ 0, i = 1, . . . ,m.

We consider the discrete version of Algorithm 1. The Gaussian process noise degenerates to multi-
variate Gaussian noise. It is also observed that adding noise to the value function is equivalent to
adding noise to the reward function, as they are additive in the update. With J = 1, it uses the same
sample of noise through the training process.

The convergence of the algorithm is guaranteed. In fact, per [SB18] Section 4.4, the value iteration
algorithm will converge to the optimal value function of the noised reward function. Formally,
given the transition matrices and the noised reward signal r′i = ri + zi for i = 1, . . . ,m where
zi ∼ N (0,σ2I), Algorithm 1 is guaranteed to converge to a value function v′. We desire to show that

E[
1

n
‖v′ − v∗‖1] ≤ 2

√
2σ√

nπ(1− γ)
,

where v′ and v∗ are the optimal value function under the reward r′ and r, respectively. v′ and v∗ are
therefore the solution of the system (4) under the reward signal r′ and r, respectively.
Lemma 14 ([DFVR02] and [CW16]). There exists an optimal dual solution λ∗i , i = 1, . . . ,m, an
optimal deterministic policy π∗(·), and the corresponding transition matrix P ∗, such that∑

i

λ∗i = (I− γP ∗T )−1e,

and the k-th entry of λ∗i equals to the k-th entry of
∑
i λ
∗
i if π∗(k) = i, and zero otherwise.
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Proof. Similar proofs are presented in [DFVR02] and [CW16]. For the completeness of our paper
we prove the claim under our context and notations. Denote the superscript (k) as the k-th element
for a vector and as the k-th row for a matrix. Specify ξ∗i to be any dual optimal solution and construct
the policy π∗(k) = arg maxi ξ

∗(k)
i . Then let

λ∗ = (I− γP ∗T )−1e,

where P ∗ is the transition matrix of π∗(·). The inversion exists since all the eigenvalues of the
Markov matrix P ∗ are smaller than one. Define λ∗i , i = 1, . . . ,m, such that λ∗(k)

i = λ∗(k) whenever
π∗(k) = i and zero otherwise. We have for λ∗i that∑

k

∑
i

λ
(k)
i (I− γPi)(k) = e,

which is a rewrite of the dual feasibility by summing over k. We also have λ∗(k)
i = 0 whenever

ξ
∗(k)
i = 0 for any i and k, and together with the slackness

ξ∗i
T ((I− γPi)v − ri) = 0,

we have λ∗i
T ((I− γPi)v − ri) = 0. The optimality of λ∗i , i = 1, . . . ,m follows.

Claim 15. The `1-norm of the dual optima ‖
∑
i λ
∗
i ‖1 is exactly n/(1− γ).

Proof. By definition we have ‖
∑
i λ
∗
i ‖1 = ‖λ∗‖1 and (I − γP ∗T )λ∗ = e. Since P ∗ is a Markov

matrix, we have ‖P ∗Tλ∗‖1 = ‖λ∗‖1. Taking `1-norm and we have ‖λ∗‖1 − γ‖λ∗‖1 = ‖e‖1. The
claim follows.

The following lemma justifies that there exists an algorithm to attain bounded suboptimality, given
only the noised reward signal. We regard this property as the robustness of the dual system.
Lemma 16. Let λ′i, i = 1, . . . ,m, be the optimal solution of the system

maximize
λ1,...,λm

∑
i

λTi r
′
i

subject to
∑
i

(I− γPTi )λi = e,∑
i

eTλi ≤
n

1− γ
,

λi ≥ 0, i = 1, . . . ,m,

(5)

we have

E[
∑
i

λ′Ti ri] ≥
∑
i

λ∗Ti ri −
2
√

2nσ√
π(1− γ)

.

Proof. With (♥) follows the strong duality and (♦) follows the non-negativity and the convexity, we
have

E[
∑
i

λ′Ti ri] = E[
∑
i

λ′Ti (r′i − zi)]

≥ E[
∑
i

λ∗Ti r′i −
∑
i

λ′Ti zi]

= E[
∑
i

λ∗Ti (ri + zi)−
∑
i

λ′Ti zi]

(♥)
=
∑
i

λ∗Ti ri + E[
∑
i

(λ∗i − λ′i)T zi]

(♦)

≥
∑
i

λ∗Ti ri −
2

m(1− γ)
E[
∑
i

‖zi‖1]

=
∑
i

λ∗Ti ri −
2
√

2nσ√
π(1− γ)

.

20



It suffices to discuss the connection between the robustness of the primal and the robustness of the
dual, which will help us to give a rigorous bound of the utility loss.

Intuitively, if we replace the maximum over λi by the fixed λ′i in the below derivation of the slackness
equation, the subsequent equations will yield E[

∑
i λ
′T
i ri] which is desired. We observe that relaxing

policy optimization (primal) side of the system at the saddle point results in an infeasible point at
the value learning (dual) system. It amounts to show that this infeasible point can be mapped to the
set of suboptimal values functions. Let A and B be the optimal value of the primal and the dual, the
derivation of the slackness equation can be written as

A = min
v

max
λ1,...,λm≥0

eT v − (λT1 ((I− γP1)v − r1) + · · ·+ λTm((I− γPm)v − rm))

≥ max
λ1,...,λm≥0

min
v

eT v − (λT1 ((I− γP1)v − r1) + · · ·+ λTm((I− γPm)v − rm))

= max
λ1,...,λm≥0

min
v

(λT1 r1 + . . . λTmrm)− (−eT + λT1 (I− γP1) + · · ·+ λTm(I− γPm))v = B.

Claim 17. The stochastic policy π′(i|k) = λ
′(k)
i /

∑
i′ λ
′(k)
i′ achieves the value v′ such that eT v′ =∑

i λ
′T
i ri.

Proof. With Lemma 14 showing the existence, specify λ′′ = (I − γP ′′T )−1e and λ′′i to be the
optimal solution of (5) where P ′′ is the corresponding transition matrix. The Bellman equation
indicates that ((I− γPi)v′− ri)(k) = 0 whenever λ′′(k)

i > 0. It is equivalent to (I− γP ′′)v′− r̃ = 0

where r̃(k) = r
(k)
π(k), k = 1, . . . ,n. Hence,

eT v′ = eT (I− γP ′′)−1r̃ = r̃T (I− γP ′′)−1e = r̃Tλ′′ =
∑
i

λ′Ti ri.

Armed with the above results, we prove the proposition of the utility guarantee.

Proof of Proposition 10. By Lemma 16, our algorithm finds λ′i by solving (5) which satisfies that∑
i λ
∗T
i ri − E[

∑
i λ
′T
i ri] ≤ 2

√
2nσ√

π(1−γ)
. By Claim 17 we have E[

∑
i λ
′T
i ri] = E[eT v′]. The strong

duality then suggests
∑
i λ
∗T
i ri = eT v∗. As E[‖v′ − v∗‖1] = eT v∗ − E[eT v′], the proposition

follows.

E Details of the Experiments

E.1 The Environment

The MDP environment is defined as follows: S = [0, 1] and the state s denotes the location of the
agent. s0 is uniformly distributed on S. A = {0, 1}. If the agent chooses action 1, the agent will
randomly move towards the right by a random amount sampled uniformly from [0, 0.25]. If after
the move s is greater than 1, it will be reset to 1. Respectively, if the agent chooses action 0, the
agent will randomly move towards the left by a random amount sampled uniformly from [0, 0.25]. If
after the move s is less than 0, it will be reset to 0. The reward 0.5− |s− 0.5| is given at each step,
which encourages the agent to move close to the middle of the state space. Each episode of the MDP
terminates at the 50th step. The algorithms are trained on 100 episodes or equivalently 5000 samples.
The code is available with this manuscript submission.

E.2 The Baseline Approaches

Balle, Gomrokchi and Precup [BGP16] consider differentially private policy evaluation, where the
value function is learned on a one-step MDP using a linear function approximator. This work protects
the reward sequence from being distinguishable, but does not ensure the privacy of newly visited
states when the value function is released. Thus we do not consider the work as differentially private
under our aim of protecting the reward function. Studies on differentially private contextual bandits by
Sajed and Sheffet [SS19] and by Shariff and Sheffet [SS18] are considering the equivalent problem,
while we use [BGP16] to represent these works.
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We also compare with the algorithm proposed by Venkitasubramaniam [Ven13], via input perturbation.
In the work, every reward signal is protected by a Gaussian noise thus making the algorithm
differentially private. The privacy guarantee is straightforwardly derived by the composition theory
by Kairouz, Oh, and Viswanath [KOV13].

We finally compare our algorithm with the differentially private deep learning by Abadi et al.
[ACG+16]. As we use a neural network, we can perturb the gradient estimator in the updates such
that all inputs are indistinguishable. We use the derived bound in Theorem 1 of [ACG+16]. The c2
constant in that theorem is assigned by

√
2 by following the proof of the theorem.

E.3 Parameters of Our Approach

We have demonstrated the algorithms on the target of ε = 0.9, δ = 1 · 10−4 for Figure 2(a) and
ε = 0.45, δ = 1 · 10−4 for Figure fig:empirical-compare(b), respectively. In this section we show
how exactly these privacy targets are achieved.

Theorem 5 indicates that our algorithm is (ε, δ + J exp(−(2k − 8.68
√
βσ)2/2))-DP when

σ ≥
√

2(T/B) ln(e+ ε/δ)C(α, k,L,B)/ε,

where C(α, k,L,B) = ((4α(k+ 1)/B)2 + 4α(k+ 1)/B)L2, β = (4α(k+ 1)/B)−1. We reset the
noise on every iteration, namely, let J = bT/Bc. We rewrite the term J exp(−(2k − 8.68

√
βσ)2/2)

as a tight bound 1− (1− exp(−(2k − 8.68
√
βσ)2/2))J , which is the probability that all J sample

paths are bounded by 2k. Now we derive the set of parameters.

Let δg = 1− (1− exp(−(2k− 8.68
√
βσ)2/2))J and v = (4α(k+ 1)/B). Then β = 1/v and C ≈

vL2. Plugging in both the values and T = 5000, B = 64 we have 2k−8.68
√
βσ ≈ 2k−8.6

√
k + 1.

Similar to [ACG+16] we target 1× 10−4-approximation, where it is sufficient if δ ≤ 5× 10−5 and
δg ≤ 5× 10−5. To satisfy δg ≤ 5× 10−5 we need 2k− 8.6

√
k + 1 = ln(1− exp(ln(1− δg)/J)) ≈

3.5, when J = 78. Thus k = 23 will be sufficient. Plugging this k value back to v we have
v = 6.19× 10−5, when α = 3× 10−4. Finally we target high-privacy regime ε = 0.9 and plug in
L2 = 16 and have σ ≈

√
2(T/B) ln(ε/δ)vL2/ε ≈ 0.313.

Approximations are made in the above arguments, but it is immediate to verify that when α =
3× 10−4, k = 2.3, L2 = 16, B = 64, T = 5× 103, and σ = 0.32 the algorithm is (0.9, 1× 10−4)-
differentially private. When σ = 0.74 the algorithm is (0.45, 1× 10−4)-differentially private. The
above parameters correspond to Figure 2(a) and 2(b), respectively.
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