
On Making Stochastic Classifiers Deterministic
Appendix

Table 3: Datasets Used in Experiments.
Dataset No. of instances No. of features No. of classes

COMPAS 4,073 31 2
Communities & Crime 1,495 135 2

Law School 15,388 36 2
Adult 32,561 122 2

Wiki Toxicity 95,692 100 2
Business 11,560 36 2
Abalone 4,177 12 10

A Additional Experimental Details and Results

A.1 Datasets and Setup

The datasets used in our experiments are listed in Table 3. Wiki Toxicity alone is a text dataset, where
we use an embedding [33] to convert the text to numerical features. All datasets were split randomly
into train-validation-test sets in the ratio 4/9:2/9:1/3, except WikiToxicity where we used the splits
made available by the authors [28].

We used the open-source TensorFlow Constrained Optimization library of Cotter et al. [5] to solve
the constrained training tasks.§ Specifically, we use the proxy-Lagrangian solver they provide, with
Adam optimizer for the inner gradient updates. The solver has two hyper-parameters: a step-size for
updates on the model parameters and a step-size for updates on the Lagrange multipliers associated
with the constraints. These were chosen from the range {0.001, 0.01, 0.1, 1.0} using the validation
set. The solver was run for 5000 iterations, with a snapshot of the iterate recorded every 10 iterations.
We then use the shrinking procedure proposed [5] (and implemented in their library) to form a
sparse stochastic ensemble from the iterates. The library also implements a heuristic to pick the best
deterministic classifier from the iterates. All experiments were run on a compute cluster.

A.2 Additional Results

We present additional results for the ROC matching task in Table 4. We provide additional results for
the histogram matching task in Table 5.

A.3 Optimizing a Complex Multiclass Metric

The third task that we consider is an unconstrained multiclass learning problem from Narasimhan
et al. [12], where the goal is to optimize the G-mean evaluation metric, given by the geometric mean

of the accuracy of a classifier on different classes: 1�
⇣Qm

j=1 accj(f)
⌘1/m

, where m is the number
of classes and accj is the accuracy of the classifier on class j. Higher values are better for this metric,
with the metric evaluating to 0 even if the accuracy on one of the classes is 0.

Narasimhan et al. provide a training approach based on the Frank-Wolfe (F-W) algorithm that trains
a stochastic classifier to optimize this evaluation metric. For a multiclass problem, a stochastic
classifier can be defined as f : X ! �m�1

⇢ Rm, which takes an instance x and predicts class
j with probability fj(x). The F-W approach trains a stochastic ensemble supported on multiple
deterministic multiclass classifiers.

§
https://github.com/google-research/tensorflow_constrained_

optimization/

12

https://github.com/google-research/tensorflow_constrained_optimization/
https://github.com/google-research/tensorflow_constrained_optimization/

Table 4: Comparison of de-randomization strategies on ROC matching tasks. For each method, we
report the SumTPR objective:

P
t2T

TPRt (higher is better) and the maximum constraint violation
maxt2T |TPRt � TPRptr

t | (within parenthesis). Unconstrained refers to a deterministic classifier
trained to optimize the error rate with no constraints. Best iterate is the deterministic classifier chosen
heuristically by the constrained optimization solver from its iterates. The number of base models in
the support of the stochastic model is shown within parenthesis against the dataset names.

Crime (4) COMPAS (5) Law School (5)

Train Test Train Test Train Test
Unconstrained 0.917 (0.14) 0.893 (0.13) 0.585 (0.06) 0.586 (0.07) 0.805 (0.22) 0.784 (0.26)
Stochastic 0.863 (0.01) 0.834 (0.10) 0.584 (0.01) 0.583 (0.06) 0.684 (0.02) 0.675 (0.06)

Majority 0.870 (0.02) 0.846 (0.12) 0.585 (0.02) 0.586 (0.05) 0.802 (0.14) 0.773 (0.17)
Hashing 0.862 (0.01) 0.830 (0.09) 0.585 (0.01) 0.588 (0.09) 0.680 (0.02) 0.673 (0.03)
VarBin 0.861 (0.01) 0.833 (0.11) 0.583 (0.02) 0.582 (0.07) 0.684 (0.02) 0.675 (0.05)

Best Iterate 0.871 (0.02) 0.843 (0.12) 0.591 (0.03) 0.585 (0.07) 0.761 (0.11) 0.730 (0.10)

Adult (3) Wiki Toxicity (4) Business (3)

Train Test Train Test Train Test
Unconstrained 0.866 (0.11) 0.858 (0.08) 0.842 (0.07) 0.840 (0.06) 0.863 (0.03) 0.865 (0.06)
Stochastic 0.829 (0.01) 0.826 (0.03) 0.867 (0.01) 0.860 (0.03) 0.846 (0.01) 0.843 (0.04)

Majority 0.831 (0.04) 0.831 (0.06) 0.892 (0.04) 0.883 (0.06) 0.861 (0.02) 0.857 (0.05)
Hashing 0.825 (0.02) 0.824 (0.04) 0.867 (0.01) 0.863 (0.04) 0.846 (0.01) 0.844 (0.04)
VarBin 0.829 (0.02) 0.828 (0.05) 0.881 (0.02) 0.873 (0.03) 0.846 (0.02) 0.842 (0.05)

Best Iterate 0.831 (0.04) 0.831 (0.06) 0.898 (0.04) 0.891 (0.05) 0.861 (0.02) 0.857 (0.05)

We conduct experiments on the UCI abalone dataset [25] used in their paper, which has 4177
examples, 10 classes and 12 features. Here the F-W approach generates a stochastic ensemble of
100 classifiers. Table 6 presents a comparison of different de-randomization approaches to replace
this stochastic ensemble with a deterministic multiclass classifier. We also include as a baseline, a
classifier that optimizes the standard classification error. This classifier has zero accuracy on at least
one of the classes, and hence yields zero G-mean. So does the best deterministic iterate provided
by F-W. The thresholding approach (which amounts to predicting the class that receives the highest
probability from the stochastic classifier) fairs poorly on the test set. Hashing and VarBin yield
performance close to the stochastic classifier, with VarBin being the closest.

B Proofs

B.1 Lower Bound

Theorem 1. For a given instance space X , data distribution Dx, metric subset X` ✓ X and
stochastic classifier f , there exists a metric loss ` and conditional label distribution Dy|x such that:

���E`(f)� E`(f̂)
��� � max

x2X`

n
Prx0⇠Dx|X`

{x0 = x} ·min {f(x), 1� f(x)}
o

for all deterministic classifiers f̂ , where Dx|X` is the data distribution Dx restricted to X`.

Proof. Fix some x 2 X`, define `(0, 0) = `(1, 0) = `(0, 1) = 0 and `(1, 1) = 1, and Dy|x such that
all x0

6= x have label 0 and x has label 1. Then:
E`(f) = Prx0⇠Dx|X`

{x0 = x} f(x)

For any deterministic f̂ , either f̂(x) = 0 or f̂(x) = 1. Therefore:

E`(f̂) 2
n
0,Prx0⇠Dx|X`

{x0 = x}
o

Hence: ���E`(f)� E`(f̂)
��� � Prx0⇠Dx|X`

{x0 = x}min {f(x), 1� f(x)}

13

Table 5: Comparison of de-randomization strategies on histogram matching regression tasks. For
each method, we report the squared error objective (lower is better) and the maximum constraint
violation across the bins (within parenthesis). Unconstrained refers to a deterministic classifier
trained to optimize the error rate with no constraints. Best iterate is the deterministic classifier chosen
heuristically by the constrained optimization solver from its iterates. The number of base models in
the support of the stochastic model is shown within parenthesis against the dataset names.

Crime (5) COMPAS (4) Law School (5)

Train Test Train Test Train Test
Unconstrained 0.016 (0.57) 0.020 (0.57) 0.202 (0.14) 0.203 (0.15) 0.014 (0.00) 0.014 (0.04)
Stochastic 0.041 (0.02) 0.046 (0.07) 0.300 (0.01) 0.299 (0.02) 0.325 (0.01) 0.323 (0.01)

Average 0.041 (0.03) 0.045 (0.08) 0.232 (0.02) 0.231 (0.06) 0.061 (0.01) 0.061 (0.02)
Hashing 0.041 (0.03) 0.046 (0.07) 0.298 (0.03) 0.303 (0.06) 0.323 (0.01) 0.320 (0.02)
VarBin 0.041 (0.03) 0.047 (0.07) 0.300 (0.06) 0.293 (0.05) 0.327 (0.02) 0.325 (0.05)

Best Iterate 0.037 (0.09) 0.042 (0.11) 0.337 (0.06) 0.335 (0.07) 0.517 (0.03) 0.518 (0.03)

Adult (4) Wiki Toxicity (5) Business (8)

Train Test Train Test Train Test
Unconstrained 0.106 (0.35) 0.107 (0.34) 0.057 (0.15) 0.058 (0.15) 0.127 (0.35) 0.129 (0.31)
Stochastic 0.125 (0.02) 0.127 (0.02) 0.091 (0.07) 0.090 (0.09) 0.327 (0.01) 0.329 (0.02)

Average 0.122 (0.02) 0.124 (0.02) 0.068 (0.16) 0.067 (0.18) 0.236 (0.06) 0.239 (0.06)
Hashing 0.126 (0.02) 0.127 (0.01) 0.090 (0.07) 0.089 (0.08) 0.337 (0.03) 0.342 (0.07)
VarBin 0.125 (0.02) 0.128 (0.02) 0.093 (0.06) 0.093 (0.09) 0.328 (0.05) 0.324 (0.05)

Best Iterate 0.120 (0.05) 0.122 (0.05) 0.072 (0.08) 0.071 (0.10) 0.407 (0.13) 0.412 (0.11)

Table 6: Comparison of de-randomization strategies for optimizing the multiclass G-mean metric
(higher is better) on the Abalone dataset. The trained stochastic classifier has 100 base classifiers.

OptError Stochastic Threshold Hashing VarBin Best Iterate
Train 0.0 0.252 0.247 0.264 0.257 0.0
Test 0.0 0.257 0.0 0.293 0.267 0.0

Since Dx|X` is a probability distribution and the min is bounded, the RHS of the above expression
must have a maximum (this maximum is not necessarily unique, nor is it necessarily greater than
zero). Choosing x to be a maximizer completes the proof.

B.2 Thresholding

Theorem 2. Let f : X ! [0, 1] be a stochastic classifier, and Dx a data distribution on X . Define
the thresholded stochastic classifier f̂(x) := 1{f(x) > 1/2}. Then for any metric (`,X`) and
associated conditional label distribution Dy|x:

���E`(f)� E`(f̂)
��� Ex⇠Dx|X`

[min {f(x), 1� f(x)}]

where Dx|X` is the data distribution Dx restricted to X`.

Proof. Suppose that we sample a classification according to f(x), with the result being the random
variable ỹ 2 {0, 1}. Then:

Pr
n
ỹ 6= f̂(x)

o
 min {f(x), 1� f(x)}

Hence, Eỹ

h���`(ỹ, y)� `(f̂(x), y)
���
i
 min{f(x), 1�f(x)}. The claim then follows from the triangle

inequality.

14

B.3 Hashing

Claim 1. Suppose that |C| and k are each a power of two, and sample a binary matrix B 2

{0, 1}log2|C|⇥log2 k with i.i.d. uniform Bernoulli elements. Based upon this B, we’ll define the hash
function h as follows. Let ci be the ith element of C (one-indexed), and take a(i)1 , . . . , a(i)log2|C|

2 {0, 1}

to be the binary expansion of i� 1. Define b(i)1 , . . . , b(i)log2 k 2 {0, 1} such that:

b(i)j0 :=

log2|C|O

j=1

ajBj,j0

where ⌦ is the XOR operator. Then, if we define h(ci) � 1 such that b(i)1 , . . . , b(i)log2 k is its binary
expansion, we will have that the resulting H is a pairwise independent set of hash functions over the
sampling of the matrix B.

Proof. This is a common example of a pairwise independent hash function, and a proof can be found
in a multitude of online course materials (e.g. Rubinfeld [34], Claims 2 and 3).

Lemma 1. Let f be a stochastic classifier, (`,X`) a metric, H a pairwise independent set of hash
functions h : C ! [k], and ⇡ : X ! C a function that pre-assigns instances to “buckets” before
hashing. For each h 2 H, define the deterministic classifier:

f̂h(x) = 1

⇢
f(x) �

2h(⇡(x))� 1)

2k

�
(1)

where the expression (2h(⇡(x))� 1)/2k maps [k] (the range of h) into [0, 1].

Further define the bias and variance of this deterministic classifier, interpreted as a random variable
over the choice of hash function:

bias(`, f, f̂) :=
���Ef (`)� Eh⇠Unif(H)

h
Ef̂h

(`)
i���

variance(`, f̂) :=Varh⇠Unif(H)

⇣
Ef̂h

(`)
⌘

Then:

bias(`, f, f̂)
1

2k

variance(`, f̂)
X

c2C

⇣
Prx⇠Dx|X`

{⇡(x) = c}
⌘2

Ex⇠Dx|X`

1

2k
+ f(x) (1� f(x)) | ⇡(x) = c

�

where Dx|X` is the data distribution Dx restricted to X`. Notice that these bounds do not depend on
the loss ` or conditional label distribution Dy|x (but the variance bound does depend on X`).

Proof. We’ll begin by defining a new stochastic classifier g based on f :

g(x) =
1

k

kX

i=1

1{f(x) � (2i� 1)/2k}

Notice that g is “consistent” with k, in the sense that g(x) 2 {i/k : i 2 {0, 1, 2, . . . , k}} for all x, but
is close to f , in that |g(x)� f(x)| 1/2k for all x. Furthermore, if we define ĝh from g according
to Equation 1, then we’ll have that ĝh = f̂h for all h.

Notice that a pairwise independent hash (Definition 1) must necessarily be uniform:
Prh⇠Unif(H){h(c) = i} = 1/k for all c 2 C and i 2 [k]. Combined with the definition of ĝh,
we see that Prh2H{ĝh(x) = 1} = g(x), which implies that: bias(`, g, ĝ) = 0. The definitions of
bias(`, f, f̂) and variance(`, f̂), combined with the fact that ĝh = f̂h, then give that:

bias(`, f, f̂) bias(`, g, ĝ) + |Ef (`)� Eg(`)| 1/2k

variance(`, f̂) =variance(`, ĝ) = Eh⇠Unif(H)

h
(Eĝh(`))

2
i
� (Eg(`))

2

15

We’ll now consider the first term of variance(`, f̂):

Eh⇠Unif(H)

h
(Eĝh(`))

2
i
=Eh⇠Unif(H)

h�
E(x,y)⇠Dxy

[`(ĝh(x), y) | x 2 X`]
�2i

=Eh⇠Unif(H)

⇥
E(x,y),(x0,y0)⇠Dxy

[`(ĝh(x), y)`(ĝh(x
0), y0) | x, x0

2 X`]
⇤

=Eh⇠Unif(H)

⇥
E(x,y),(x0,y0)⇠Dxy

[1{⇡(x) = ⇡(x0)}

`(ĝh(x), y)`(ĝh(x
0), y0) | x, x0

2 X`]]

+ Eh⇠Unif(H)

⇥
E(x,y),(x0,y0)⇠Dxy

[1{⇡(x) 6= ⇡(x0)}

`(ĝh(x), y)`(ĝh(x
0), y0) | x, x0

2 X`]]

=Eh⇠Unif(H)

⇥
E(x,y),(x0,y0)⇠Dxy

[1{⇡(x) = ⇡(x0)}

`(ĝh(x), y)`(ĝh(x
0), y0) | x, x0

2 X`]]

+ E(x,y),(x0,y0)⇠Dxy
[1{⇡(x) 6= ⇡(x0)}

(g(x)`(1, y) + (1� g(x))`(0, y))

(g(x0)`(1, y0) + (1� g(x0))`(0, y0)) | x, x0
2 X`]

where the last step follows from the pairwise independence property of H. Next, we’ll look at the
second term of variance(`, f̂):

(Eg(`))
2 =

�
E(x,y)⇠Dxy

[g(x)`(1, y) + (1� g(x))`(0, y) | x 2 X`]
�2

=E(x,y),(x0,y0)⇠Dxy
[

(g(x)`(1, y) + (1� g(x))`(0, y))

(g(x0)`(1, y0) + (1� g(x0))`(0, y0)) | x, x0
2 X`]

Subtracting the above expression for (Eg(`))
2 from that for Eh⇠Unif(H)

h
(Eĝh(`))

2
i
:

variance(`, f̂) =Eh⇠Unif(H)

⇥
E(x,y),(x0,y0)⇠Dxy

[1{⇡(x) = ⇡(x0)}

`(ĝh(x), y)`(ĝh(x
0), y0) | x, x0

2 X`]]

� E(x,y),(x0,y0)⇠Dxy
[1{⇡(x) = ⇡(x0)}

(g(x)`(1, y) + (1� g(x))`(0, y))

(g(x0)`(1, y0) + (1� g(x0))`(0, y0)) | x, x0
2 X`]

=E(x,y),(x0,y0)⇠Dxy
[1{⇡(x) = ⇡(x0)}⇥ (

Eh⇠Unif(H) [`(ĝh(x), y)`(ĝh(x
0), y0)]�

(g(x)`(1, y) + (1� g(x))`(0, y))

(g(x0)`(1, y0) + (1� g(x0))`(0, y0))) | x, x0
2 X`]

=E(x,y),(x0,y0)⇠Dxy
[1{⇡(x) = ⇡(x0)}

Covh⇠Unif(H) (`(ĝh(x), y), `(ĝh(x
0), y0)) | x, x0

2 X`

⇤

where the last step follows from the fact that Eh⇠Unif(H) [`(ĝh(x), y)] = g(x)`(1, y) + (1 �

g(x))`(0, y), and the definition of a covariance. By the Cauchy-Schwarz inequality:

variance(`, f̂) E(x,y),(x0,y0)⇠Dxy
[1{⇡(x) = ⇡(x0)}

⇥

q
Varh⇠Unif(H) (`(ĝh(x), y))Varh⇠Unif(H) (`(ĝh(x0), y0)) | x, x0

2 X`

i

X

c2C

⇣
E(x,y)⇠Dxy

h
1{⇡(x) = c}

q
Varh⇠Unif(H) (`(ĝh(x), y)) | x 2 X`

i⌘2

X

c2C

(Prx⇠Dx {⇡(x) = c | x 2 X`}

⇥E(x,y)⇠Dxy

hq
Varh⇠Unif(H) (`(ĝh(x), y)) | (⇡(x) = c) ^ (x 2 X`)

i⌘2

16

X

c2C

⇣
(Prx⇠Dx {⇡(x) = c | x 2 X`})

2

⇥E(x,y)⇠Dxy

⇥
Varh⇠Unif(H) (`(ĝh(x), y)) | (⇡(x) = c) ^ (x 2 X`)

⇤�

the last step by Jensen’s inequality. Since ` is a binary function, we either have that
Varh(`(ĝh(x), y)) = Varh(ĝh(x)), or Varh(`(ĝh(x), y)) = 0, so Varh(`(ĝh(x), y))

Varh(ĝh(x)) = g(x)(1�g(x)). Since |g(x)� f(x)| 1/2k for all x, it follows that Varh(ĝh(x))
1/2k + f(x)(1� f(x)).

Theorem 3. Let f : X ! [0, 1] be a stochastic classifier, and Dx a data distribution on X . Suppose
that we’re given m metrics (`i,X`i) for i 2 [m], each of which is potentially associated with a
different conditional label distribution Dyi|x. Take H to be a pairwise independent set of hash
functions h : C ! [k], and ⇡ : X ! C to be a function that pre-assigns instances to clusters before
hashing.

Sample a h ⇠ Unif(H), and define the deterministic classifier f̂h : X ! {0, 1} as:

f̂h(x) = 1

⇢
f(x) �

2h(⇡(x))� 1

2k

�

where the expression (2h(⇡(x))� 1)/2k maps [k] (the range of h) into [0, 1].

Then, with probability 1� � over the sampling of h ⇠ Unif(H), for all i 2 [m]:

���Ef (`i)� Ef̂h
(`i)
��� <

1

2k
+

m

�

X

c2C

✓⇣
Prx⇠Dx|X`i

{⇡(x) = c}
⌘2

⇥Ex⇠Dx|X`i

1

2k
+ f(x) (1� f(x)) | ⇡(x) = c

�◆◆ 1
2

where Dx|X`i
is the data distribution Dx restricted to X`i .

Proof. By Lemma 1 and Chebyshev’s inequality, for each i 2 [m], with probability 1� �/m over
the sampling of h ⇠ Unif(H):

���Ef (`i)� Ef̂h
(`i)
��� < bias(`i, f, f̂h) +

s
m⇥ variance(`i, f̂h)

�

The claim then follows from the union bound.

B.4 Sanity Check

We’re now going to check that the upper bound of Theorem 3 (which we’ll call UB) is no smaller
than the lower bound of Theorem 1 (which we’ll call LB), since this fact might not be immediately
obvious from inspection of the two bounds:

UB =
1

2k
+

m

�

X

c2C

✓⇣
Prx⇠Dx|X`i

{⇡(x) = c}
⌘2

⇥Ex⇠Dx|X`i

1

2k
+ f(x) (1� f(x)) | ⇡(x) = c

�◆◆ 1
2

�

sX

c2C

✓⇣
Prx⇠Dx|X`i

{⇡(x) = c}
⌘2

Ex⇠Dx|X`i
[f(x) (1� f(x)) | ⇡(x) = c]

◆

�

s

max
c2C

⇢⇣
Prx⇠Dx|X`i

{⇡(x) = c}
⌘2

Ex⇠Dx|X`i
[f(x) (1� f(x)) | ⇡(x) = c]

�

�max
c2C

n
Prx⇠Dx|X`i

{⇡(x) = c}
q

Ex⇠Dx|X`i
[f(x) (1� f(x)) | ⇡(x) = c]

o

17

�max
c2C

n
Prx⇠Dx|X`i

{⇡(x) = c}Ex⇠Dx|X`i

hp
f(x) (1� f(x)) | ⇡(x) = c

io

the last step by Jensen’s inequality. Since
p
f(x)(1� f(x)) � max{f(x), 1� f(x)}:

UB �max
c2C

n
Prx⇠Dx|X`i

{⇡(x) = c}Ex⇠Dx|X`i
[max {f(x), 1� f(x)} | ⇡(x) = c]

o

This bound maximizes over the clusters in C, instead of individual elements of X , but is otherwise
identical to LB. Taking C = X and ⇡(x) = x to be the identity function (this is the finest-grained
clustering possible) shows that UB � LB, as expected.

B.5 Stochastic Ensemble

Before proving Theorem 4, we will find it useful to state a couple of lemmas. In the first, we show
that the selector function s defined in the theorem satisfies a pairwise independence property.
Lemma 2. Take ⇡ : X ! C to be a function that pre-assigns instances to clusters, and q : X ! R to
be a pre-defined score function. Choose p:0 = 0 and denote p:j = p1 + . . . + pj , 8j 2 [n]. Define
clip(z) = z � bzc. Sample |C| random numbers r1, . . . , r|C| independently and uniformly from [0, 1)

and define the deterministic classifier f̂(x) =
Pn

j=1 sj(x) ĝj(x), where

sj(x) =
X

c2C

I
�
⇡(x) = c, clip(q(x) + rc) 2 [p:j�1, p:j)

�
.

Then:

(i) For any choice of r1, . . . , r|C| and for any x 2 X ,
Pn

j=1 sj(x) = 1.

(ii) For any x 2 X and j 2 [n]:
Er1,...,r|C| [sj(x)] = pj .

(iii) For any x, x0
2 X with ⇡(x) 6= ⇡(x0), j, j0 2 [n]:

Er1,...,r|C| [sj(x) sj0(x
0)] = pj pj0 .

Proof. Notice that for any choice of rc 2 [0, 1) and x 2 X , clip(q(x) + rc) 2 [0, 1). Moreover, the
intervals [p:0, p:1), . . . , [p:n�1, p:n) are disjoint, and their union is [0, 1). Hence for any x, there is
exactly one j 2 [n] for which sj(x) = 1 and therefore

Pn
j=1 sj(x) = 1.

We next note that for a fixed x 2 X , clip(q(x) + r) is a bijective function in r from [0, 1) to [0, 1),
and hence clip(q(x) + rc) follows the same distribution as rc. We then have:

Er1,...,r|C| [sj(x)] =
X

c2C

I (⇡(x) = c)Erc

h
I
�
clip(q(x) + rc) 2 [p:j�1, p:j)

�i

=
X

c2C

I (⇡(x) = c)Erc

h
I
�
rc 2 [p:j�1, p:j)

�i

=
X

c2C

I (⇡(x) = c) pj = pj ,

where the last step follows from the instance x belonging to exactly one cluster in C.

Next, for any x, x0
2 X with ⇡(x) 6= ⇡(x0), j, j0 2 [n], using the fact that r1, . . . , r|C| are drawn

independently, we have:

Er1,...,r|C| [sj(x) sj0(x
0)]

=
X

c 6=c0

I (⇡(x) = c) I (⇡(x0) = c0)
⇣

Erc

h
I
�
clip(q(x) + rc) 2 [p:j�1, p:j)

�i
Erc0

h
I
�
clip(qc0(x0) + rc0) 2 [p:j0�1, p:j0)

�i⌘

=
X

c 6=c0

I (⇡(x) = c) I (⇡(x0) = c0) Erc

h
I
�
rc 2 [p:j�1, p:j)

�i
Erc0

h
I
�
rc0 2 [p:j0�1, p:j0)

�i

18

=
X

c 6=c0

I (⇡(x) = c) I (⇡(x0) = c0) pj pj0 = pj pj0 ,

which completes the proof.

We then show that the constructed deterministic classifier has zero bias and bound its variance.
Lemma 3. Let f be a stochastic classifier, (`,X`) a metric, ⇡ : X ! C a function that pre-assigns
instances to “buckets”, and f̂ be a deterministic classifier as defined in Lemma 2. Further define the
bias and variance of this deterministic classifier defined for random shifts r1, . . . , r|C|, interpreted as
a random variable over the choice of the shifts:

bias(`, f, f̂) :=
���Ef (`)� Er1,...,r|C|

h
Ef̂ (`)

i���

variance(`, f̂) :=Varr1,...,r|C|

⇣
Ef̂ (`)

⌘

Then:

bias(`, f, f̂) = 0

variance(`, f̂) =
X

c2C

⇣
Prx⇠Dx|X`

{⇡(x) = c}
⌘2

Ex⇠Dx|X`
[f(x) (1� f(x)) | ⇡(x) = c]

where Dx|X` is the data distribution Dx restricted to X`. Notice that these bounds do not depend on
the loss ` or conditional label distribution Dy|x (but the variance bound does depend on X`).

Proof. We first show that bias(`, f, f̂) = 0.

Er1,...,r|C|

h
Ef̂ (`)

i
= Er1,...,r|C|

h
Ex,y[f̂(x)`(1, y) + (1� f̂(x))`(0, y) | x 2 X`]

i

= Er1,...,r|C|

2

4Ex,y

2

4
nX

j=1

sj(x)
�
ĝj(x)`(1, y) + (1� ĝj(x))`(0, y)

�����x 2 X`

3

5

3

5

= Ex,y

2

4
nX

j=1

Er1,...,r|C| [sj(x)]
�
ĝj(x)`(1, y) + (1� ĝj(x))`(0, y)

�����x 2 X`

3

5

= Ex,y

2

4
nX

j=1

pj
�
ĝj(x)`(1, y) + (1� ĝj(x))`(0, y)

�
| x 2 X`

3

5

= Ex,y

⇥
f(x)`(1, y) + (1� f(x))`(0, y)

�
| x 2 X`

⇤

= Ef (`).

Here, the second equality follows from the fact that for any choice of shifts r1, . . . , r|C| and x 2 X ,Pn
j=1 sj(x) = 1 (see first statement in Lemma 2). The fourth equality follows from the second

statement in Lemma 2.

For the variance, we have:

variance(`, f̂) =Er1,...,r|C|

⇣
Ef̂ (`)

⌘2�
� (Ef (`))

2 .

We’ll consider the first term of variance(`, f̂):

Er1,...,r|C|

⇣
Ef̂ (`)

⌘2�
=Er1,...,r|C|

⇣
E(x,y)⇠Dxy

h
`(f̂(x), y) | x 2 X`

i⌘2�

=Er1,...,r|C|

h
E(x,y),(x0,y0)⇠Dxy

h
`(f̂(x), y)`(f̂(x0), y0) | x, x0

2 X`

ii

=Er1,...,r|C|

⇥
E(x,y),(x0,y0)⇠Dxy

[1{⇡(x) = ⇡(x0)}

`(f̂(x), y)`(f̂(x0), y0) | x, x0
2 X`

ii

19

+ Er1,...,r|C|

⇥
E(x,y),(x0,y0)⇠Dxy

[1{⇡(x) 6= ⇡(x0)}

`(f̂(x), y)`(f̂(x0), y0) | x, x0
2 X`

ii

=Er1,...,r|C|

⇥
E(x,y),(x0,y0)⇠Dxy

[1{⇡(x) = ⇡(x0)}

`(f̂(x), y)`(f̂(x0), y0) | x, x0
2 X`

ii

+ E(x,y),(x0,y0)⇠Dxy
[1{⇡(x) 6= ⇡(x0)}

(f(x)`(1, y) + (1� f(x))`(0, y))

(f(x0)`(1, y0) + (1� f(x0))`(0, y0)) | x, x0
2 X`]

where the last step follows from the third result (pairwise independence) in Lemma 2.

Next, we’ll look at the second term of variance(`, f̂):

(Ef (`))
2 =

�
E(x,y)⇠Dxy

[f(x)`(1, y) + (1� f(x))`(0, y) | x 2 X`]
�2

=E(x,y),(x0,y0)⇠Dxy
[

(f(x)`(1, y) + (1� f(x))`(0, y))

(f(x0)`(1, y0) + (1� f(x0))`(0, y0)) | x, x0
2 X`]

Subtracting the above expression for (Eg(`))
2 from that for Er1,...,r|C|

⇥�
Ef̂ (`)

�2⇤:

variance(`, f̂) =Er1,...,r|C|

⇥
E(x,y),(x0,y0)⇠Dxy

[1{⇡(x) = ⇡(x0)}

`(f̂(x), y)`(f̂(x0), y0) | x, x0
2 X`

ii

� E(x,y),(x0,y0)⇠Dxy
[1{⇡(x) = ⇡(x0)}

(f(x)`(1, y) + (1� f(x))`(0, y))

(f(x0)`(1, y0) + (1� f(x0))`(0, y0)) | x, x0
2 X`]

=E(x,y),(x0,y0)⇠Dxy
[1{⇡(x) = ⇡(x0)}⇥ (

Er1,...,r|C|

h
`(f̂(x), y)`(f̂(x0), y0)

i
�

(f(x)`(1, y) + (1� f(x))`(0, y))

(f(x0)`(1, y0) + (1� f(x0))`(0, y0))) | x, x0
2 X`]

=E(x,y),(x0,y0)⇠Dxy
[1{⇡(x) = ⇡(x0)}

Covr1,...,r|C|

⇣
`(f̂(x), y), `(f̂(x0), y0)

⌘
| x, x0

2 X`

i

where the last step follows uses the fact that Er1,...,r|C|

h
`(f̂(x), y)

i
= f(x)`(1, y)+(1�f(x))`(0, y),

and the definition of a covariance. By the Cauchy-Schwarz inequality:

variance(`, f̂) E(x,y),(x0,y0)⇠Dxy
[1{⇡(x) = ⇡(x0)}

⇥

r
Varr1,...,r|C|

⇣
`(f̂(x), y)

⌘
Varr1,...,r|C|

⇣
`(f̂(x0), y0)

⌘
| x, x0

2 X`

#

X

c2C

E(x,y)⇠Dxy

"
1{⇡(x) = c}

r
Varr1,...,r|C|

⇣
`(f̂(x), y)

⌘
| x 2 X`

#!2

X

c2C

(Prx⇠Dx {⇡(x) = c | x 2 X`}

⇥E(x,y)⇠Dxy

"r
Varr1,...,r|C|

⇣
`(f̂(x), y)

⌘
| (⇡(x) = c) ^ (x 2 X`)

#!2

X

c2C

⇣
(Prx⇠Dx {⇡(x) = c | x 2 X`})

2

20

⇥E(x,y)⇠Dxy

h
Varr1,...,r|C|

⇣
`(f̂(x), y)

⌘
| (⇡(x) = c) ^ (x 2 X`)

i⌘

the last step by Jensen’s inequality. Since ` is a binary function, we either have that Var(`(f̂(x), y)) =
Var(f̂(x)), or Var(`(f̂(x), y)) = 0, so

Var(`(f̂(x), y)) Var(f̂(x)) = E
hX

j,j0

sj(x)sj0(x)ĝj(x)ĝj0(x)
i
�

⇣
E
hX

j

sj(x)ĝj(x)
i⌘2

=
X

j

pjgj(x) +
X

j 6=j0

pjpj0 ĝj(x)ĝj0(x) �

⇣X

j

pj ĝj(x)
⌘2

= f(x)(1� f(x)),

where the second step follows from Lemma 2.

We are now ready to prove Theorem 4:
Theorem 4. Let f : X ! [0, 1] be a stochastic classifier, and Dx a data distribution on X . Suppose
that we’re given m metrics (`i,X`i) for i 2 [m], each of which is potentially associated with a
different conditional label distribution Dyi|x. Take ⇡ : X ! C to be a function that pre-assigns
instances to clusters, and q : X ! [0, 1] to be a pre-defined score function. Choose p:0 = 0 and
denote p:j = p1 + . . . + pj , 8j 2 [n]. Define clip(z) = z � bzc.

Sample |C| random numbers r1, . . . , r|C| independently and uniformly from [0, 1)and define the
deterministic classifier f̂(x) =

Pn
j=1 sj(x) ĝj(x), where s : X ! {0, 1}n selects one of n base

classifiers and is given by:

sj(x) =
X

c2C

1 {⇡(x) = c, clip(q(x) + rc) 2 [p:j�1, p:j)}

Then, with probability 1� � over the sampling of r1, . . . , r|C|:
���Ef (`i)� Ef̂ (`i)

��� <
⇣m
�

X

c2C

⇣⇣
Prx⇠Dx|X`i

{⇡(x) = c}
⌘2

⇥ Ex⇠Dx|X`i
[f(x) (1� f(x)) | ⇡(x) = c]

⌘⌘ 1
2

where Dx|X`i
is the data distribution Dx restricted to X`i .

Proof. By Lemma 3 and Chebyshev’s inequality, for each i 2 [m], with probability 1� �/m over
the sampling of r1, . . . , r|C|:

���Ef (`i)� Ef̂ (`i)
��� < bias(`i, f, f̂) +

s
m⇥ variance(`i, f̂)

�
.

The claim then follows from the union bound.

B.5.1 Logarithmically-many Random Numbers Suffice

We note that just like with the hash function construction described in Appendix B.3, in the above
theorem, it suffices to use 1+dlog2 |C|e random numbers instead of |C| random numbers. Specifically,
sample random numbers v0, . . . , vdlog2|C|e

independently and uniformly from [0, 1), and for a cluster
index c 2 {0, . . . , |C| � 1}, given its binary expansion b1, . . . , bdlog2|C|e

2 {0, 1}, define rc =

v0 +
P

dlog2|C|e

⌧=1 b⌧ v⌧ . Then the deterministic classifier defined with these rc’s would still satisfy the
stated property in Theorem 4 with high probability over the sampling of v0, . . . , vdlog2|C|e

. This is
because the pairwise independence property that we needed to prove the theorem still holds with
1 + dlog2 |C|e random numbers:

21

Lemma 4. Take ⇡ : X ! C to be a function that pre-assigns instances to clusters, and q : X ! R
to be a pre-defined score function. Choose p:0 = 0 and denote p:j = p1 + . . . + pj , 8j 2 [n].
Define clip(z) = z � bzc. Sample 1 + dlog2 |C|e random numbers v0, . . . , vdlog2|C|e

independently
and uniformly from [0, 1), and for each cluster index c 2 {0, . . . , |C|� 1}, given its binary expansion
b1, . . . , bdlog2|C|e

2 {0, 1}, define rc = v0 +
P

dlog2|C|e

⌧=1 b⌧ v⌧ . Define the deterministic classifier
f̂(x) =

Pn
j=1 sj(x) ĝj(x), where

sj(x) =
X

c2C

I
�
⇡(x) = c, clip(q(x) + rc) 2 [p:j�1, p:j)

�
.

Then for any choice of v0, . . . , vdlog2|C|e
and for any x 2 X ,

Pn
j=1 sj(x) = 1. Moreover, for any

x 2 X and j 2 [n]:
Ev0,...,vdlog2|C|e [sj(x)] = pj ,

and for any x, x0
2 X and j, j0 2 [n]:

Ev0,...,vdlog2|C|e [sj(x) sj0(x
0)] = pj pj0 .

Proof. Notice that for any choice of rc 2 R and x 2 X , clip(q(x) + rc) 2 [0, 1). Moreover, the
intervals [p:0, p:1), . . . , [p:n�1, p:n) are disjoint, and their union is [0, 1). Hence for any x, there is
exactly one j 2 [n] for which sj(x) = 1 and therefore

Pn
j=1 sj(x) = 1.

We next show unbiasedness:

Er1,...,r|C| [sj(x)] =
X

c2C

I (⇡(x) = c)Ev0,...,vdlog2|C|e

h
I
�
clip(q(x) + rc) 2 [p:j�1, p:j)

�i
. (2)

Note that for a fixed z 2 R, clip(z + v) is a bijective function in v from [0, 1) to [0, 1). Hence
for a fixed x, conditioned on each v1, . . . , vdlog2|C|e

taking any fixed value, clip(q(x) + rc) =
clip (q(x) +

P
⌧ b⌧v⌧ + v0) follows the same distribution as v0. Hence:

Ev0,...,vdlog2|C|e

h
I
�
clip(q(x) + rc) 2 [p:j�1, p:j)

�i

= Ev1,...,vdlog2|C|

h
Ev0

h
I
�
clip(q(x) + rc) 2 [p:j�1, p:j)

� ��� v1, . . . , vdlog2|C|e

ii

= Ev0

h
I
�
v0 2 [p:j�1, p:j)

�i
= pj .

Plugging back in Equation 2, and using that the instance x belongs to exactly one cluster in C.

Ev0,...,vdlog2|C|e [sj(x)] =
X

c2C

I (⇡(x) = c) pj = pj .

We move to the pairwise independence property. For any x, x0
2 X with ⇡(x) 6= ⇡(x0), j, j0 2 [m]:

Ev0,...,vdlog2|C|e [sj(x) sj0(x
0)] (3)

=
X

c 6=c0

I (⇡(x) = c) I (⇡(x0) = c0)
⇣

Ev0,...,vdlog2|C|e

h
I
�
clip(q(x) + rc) 2 [p:j�1, p:j)

�
I
�
clip(qc0(x0) + rc0) 2 [p:j0�1, p:j0)

�i⌘
.

Take b0 = 1 and re-write rc =
P

dlog2|C|

⌧=0 b⌧v⌧ . For each pair of clusters c 6= c0, choose indices
⌧c 6= ⌧ 0c such that c has a bit 1 at ⌧c and 0 at ⌧ 0c, and c0 has a bit 0 at ⌧c and 1 at ⌧ 0c (such a pair
of non-identical indices always exists for any c 6= c0). Then conditioned on all v⌧ ’s other than v⌧c
and v⌧ 0

c
taking fixed values, we have that clip(q(x) + rc) and clip(q(x) + rc0) are independent, with

clip(q(x) + rc) following the same distribution as v⌧c , and clip(q(x) + rc0) following the same
distribution as v⌧ 0

c
. Hence:

Ev0,...,vdlog2|C|e

h
I
�
clip(q(x) + rc) 2 [p:j�1, p:j)

�
I
�
clip(qc0(x0) + rc0) 2 [p:j0�1, p:j0)

�i

= Ev⌧c

h
I
�
v⌧c 2 [p:j�1, p:j)

�i
Ev⌧0

c

h
I
�
v⌧ 0

c
2 [p:j0�1, p:j0)

�i
= pj pj0 .

22

Plugging this back in Equation 3, we get:

Ev0,...,vdlog2|C|e [sj(x) sj0(x
0)] =

X

c 6=c0

I (⇡(x) = c) I (⇡(x0) = c0) pj pj0 = pj pj0 ,

which completes the proof.

23

	Introduction
	Stochastic Classifiers
	Lower Bound
	Thresholding
	Hashing

	Orderliness: Determinism Is Not Enough
	Repeated Use
	Fairness Principles
	Clustering + Hashing

	Stochastic Ensembles
	Experiments
	ROC Curve Matching
	Histogram Matching

	Conclusions and Future Work
	Additional Experimental Details and Results
	Datasets and Setup
	Additional Results
	Optimizing a Complex Multiclass Metric

	Proofs
	Lower Bound
	Thresholding
	Hashing
	Sanity Check
	Stochastic Ensemble
	Logarithmically-many Random Numbers Suffice

