
Supplementary material for: Sample Efficient Active

Learning of Causal Trees

A Algorithm for finding a central node

Algorithm 4 gives a simple way to find a central node in any given tree.

Algorithm 4 Finding a central node
input Undirected tree G with some distribution q over the nodes i = 1, . . . , n.

1: Choose a node v from 1, . . . , n. Find neighbors NG(v).
2: while maxj2NG(v) q(R 2 B

v:Xj

G ) � 1/2 do

3: v  argmaxj2NG(v) q(R 2 B
v:Xj

G ).
4: end while

output Central node vc = v.

B Proof of posterior update computation

After the intervention on Xi, the posterior update is given by the following:

P (R 2 BXi:Y
G |X, do(Xi = 1)) =

P (R 2 BXi:Y
G |do(Xi = 1))P (X|R 2 BXi:Y

G , do(Xi = 1))

P (X|do(Xi = 1)

=
P (R 2 BXi:Y

G )P (X|R 2 BXi:Y
G , do(Xi = 1))

P (X|do(Xi = 1))
,

(1)

where the last step follows since the prior probability of the root node being in BXi:Y
G is independent

of the intervention.

Given the values of the neighbors NG(i) of Xi, the rest of the variables are independent of the value
of Xi. Moreover, since P (Xi = 1|R 2 BXi:Y

G , do(Xi = 1)) = 1 by definition, we can write:

P (X|R 2 BXi:Y
G , do(Xi = 1)) = P (NG(i)|R 2 BXi:Y

G , do(Xi = 1))P (X \ {NG(i), Xi}|NG(i))
(2)

Since intervening at Xi makes its parents independent of its children, if R 2 BXi:Y
G then Y is

independent of NG(i) \ Y , giving

P (NG(i)|R 2 BXi:Y
G , do(Xi = 1))

= P (NG(i) \ Y |R 2 BXi:Y
G , do(Xi = 1))P (Y |R 2 BXi:Y

G , do(Xi = 1))

= P (NG(i) \ Y |R 2 BXi:Y
G , do(Xi = 1))P (Y ).

(3)

The children of Xi also become independent conditioned on Xi giving

P (NG(i) \ Y |R 2 BXi:Y
G , do(Xi = 1)) =

Y

A2NG(i)\Y

P (A|Xi = 1). (4)
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Combining (1) through (4), for Y 2 NG(i) the posterior update becomes

P (R 2 BXi:Y
G |X, do(Xi = 1)) =

P (R 2 BXi:Y
G )P (X|R 2 BXi:Y

G , do(Xi = 1))

P (X|do(Xi = 1))

/ P (R 2 BXi:Y
G )P (X|R 2 BXi:Y

G , do(Xi = 1))

= P (R 2 BXi:Y
G )P (X \ {NG(i), Xi}|NG(i))P (Y )

Y

A2NG(i)\Y

P (A|Xi = 1)

/ P (R 2 BXi:Y
G )P (Y )

Y

A2NG(i)\Y

P (A|Xi = 1)

/ P (R 2 BXi:Y
G )

P (Y )

P (Y |Xi = 1)
, (5)

where in the last step we have divided by
Q

A2NG(i) P (A|Xi = 1) which is independent of Y .

For Y being the intervention node Xi, all likelihoods of the neighbors NG(i) become conditional on
Xi = 1 and the posterior update reduces to

P (R = Xi|X, do(Xi = 1)) / P (R = Xi),

where the constant of proportionality is the same as in (5).

Once normalized, we can distribute the update across the different nodes Y in branch BXi:Y
G according

to their prior probabilities.

C Computation of expected information gain

The information greedy algorithm intervenes on the node that in expectation reduces the entropy of
the posterior the most. Define the reduction in entropy as the difference between the entropy of the
prior and the entropy of the posterior, i.e.

�H = H(P (R))�H(P (R|X)),

where X is the observed data. The goal of the information greedy approach is to choose the node that
maximizes E�H , where the expectation is taken over both the true root and the observed data. In
our experiments, we computed this expected information gain either via sampling or analytically.

C.1 Analytical method

Since the expected change in entropy between a prior and posterior is equal to the mutual information
between the observation and the quantity being estimated, we can write

E�H = I(X;R|do(Xi = 1)).

Now, Section B showed that the only relevant information is contained in the set of neighbors NG(i)
of Xi, letting us write

E�H =I(N ;R|do(Xi = 1)) = H(N |do(Xi = 1))�H(N |R, do(Xi = 1))

=H

0

@
X

Y 2NG(i)

P (R 2 BXi:Y
G )p(N |R 2 BXi:Y

G , do(Xi = 1))

1

A

�

X

Y 2NG(i)

P (R 2 BXi:Y
G )H

⇣
p(N |R 2 BXi:Y

G , do(Xi = 1))
⌘

For certain models, e.g. binary graphs, the above expression may be simple to compute. For linear-
Gaussian models, however, the first term becomes the entropy of a Gaussian mixture which does not
have a closed form expression.
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C.2 Sampling method

For all Xi 2 X, simulate possible interventions on Xi by repeating j = 1 . . . N times:

• Choose the candidate root branch BA using the current posterior P (R 2 BA)

• Simulate a fake interventional sample P (X|R 2 BA, do(Xi = 1)), assuming that the true
root is in BA. In practice, the only values that are useful are NG(i), the neighbours of Xi:

– Sample a from the observational distribution P (A|R 2 BA, do(Xi = 1)) = P (A).
– For Zk 2 NG(i) \A, sample zk from P (Zk|R 2 BA, do(Xi = 1)) = P (Zk|Xi = 1).

• Simulate updating the posterior as in Lemma 1, for Y 2 NG(i), including each Zk and A:

– P (R 2 BXi:Y
G |a, zk) / P (R 2 BXi:Y

G ) P (Y=y)
P (Y=y|Xi=1)

• Compute entropy HXi,j of the simulated posterior

Choose target as Xt := argmaxXi
\E�HXi = argmaxXi

PN
j=1�HXi,j

D Proof of Proposition 1: Information greedy counterexample

The information greedy algorithm intervenes on the node that gives the most expected reduction
in the entropy of the posterior distribution on the identity of the root node. For the first K steps,
this maximum information node is one of the K `i nodes (Figure 2 in the main text). To see this,
suppose that the algorithm is choosing a node on which to intervene after having intervened on nodes
`1, . . . , `i�1. Define Ni to be the number of nodes remaining after the previous i� 1 interventions,
observe that (K + 2 � i)(de4Ke + 1) � Ni � (K + 1 � i)de4Ke. Then the expected entropy
reduction at node `i is

de4Ke+ 1

Ni
logNi +

✓
1�
de4Ke+ 1

Ni

◆�
logNi � log(Ni � de

4K
e � 1)

�

= logNi �

✓
1�
de4Ke+ 1

Ni

◆
log(Ni � de

4K
e � 1)

�
1

K + 2� i
log

�
(K + 1� i)de4Ke

�
�

4K

K + 1
� 2,

since an intervention on `i finds the root with probability de4Ke+1
Ni

, and the entropy of a uniform
distribution on Ni nodes is logNi. Compare this to the expected entropy reduction that is bounded
above by log 4 at each other node (since the maximum edge degree is 3 at all nodes other than the
K `i nodes). Therefore, the information greedy algorithm will first intervene at one of the `i. If the
intervention does not immediately discover the root, it will indicate that the root is towards the center
of the graph. The algorithm will then choose another of the `i since these remain the nodes with
largest expected information gain. This process repeats until either the root is found or all the `i have
been intervened on. Hence, in expectation at least K/2 steps are needed.

E Proof of Theorem 1: Central node algorithm in the noiseless setting

First, we prove the exponential convergence of the central node algorithm. By the definition of the
central node, each branch has probability mass no greater than 1

2 . Since the noiseless interventions
eliminate all branches except one (if the intervention happens to be on the root node, then all branches
are eliminated and the algorithm stops), each intervention must eliminate all but 1

2 of the remaining
probability mass. For a starting prior uniform on |G0| nodes,

|G(t)| 
|G0|

2t
,

and the bound results.

We now relate TCN to Topt. From Algorithm 2, let t be the number of interventions the central node
algorithm has taken at the current time.
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Recall from Algorithm 2 that G(t) is the tree of possible source nodes remaining in G0 after t
interventions have been taken. Choose an optimal algorithm, and let Gopt(⌧) be the tree of possible
source nodes remaining in G0 after the optimal algorithm has taken ⌧ interventions. The t � th
node Algorithm 2 intervenes on is the central node vc(t), similarly let the ⌧ � th node the optimal
algorithm intervenes on be denoted vo(⌧).

Define ⌧(t) as the largest number of interventions the optimal algorithm takes while still preserving
the inequality

Gopt(⌧(t)) ◆ G(t).

In other words, ⌧(t) is such that Algorithm 2 has determined the root node r0 lies in a set G(t)
contained in the set of nodes that the optimal algorithm deems possible after ⌧(t) interventions. We
proceed inductively, bounding the increase in ⌧ for each increase in t.

Begin by noting that Gopt(⌧(0)) = G(0), hence ⌧(0) = 0. At time t, we have Gopt(⌧(t)) ◆ G(t).
Algorithm 2 then intervenes on the central node vc(t + 1) of G(t), observing ut+1 and forming
G(t+ 1) = Bvc(t+1):ut+1

G(t) . Meanwhile, the optimal algorithm intervenes on some node vo(⌧(t) + 1),
yielding Gopt(⌧(t) + 1).

If vo(⌧(t) + 1) /2 G(t+ 1), then Gopt(⌧(t) + 1) � G(t+ 1) since any vertex the optimal algorithm
eliminated as a possible root node at step ⌧(t+ 1) must lie on a branch from vo(⌧(t+ 1)) that does
not include vc(t + 1), otherwise every node in G(t + 1) would be eliminated which would be a
contradiction. Hence an intervention on vo(⌧(t)+1) cannot eliminate any nodes in G(t+1) as possible
root nodes. We then have that ⌧(t+1) = ⌧(t)+1 maintains the inequality Gopt(⌧(t+1)) ◆ G(t+1).

If vo(⌧(t) + 1) 2 G(t+ 1), we can simply set ⌧(t+ 1) = ⌧(t) to have the optimal algorithm wait an
additional step, since Gopt(⌧(t+ 1)) = Gopt(⌧(t)) ◆ G(t) � G(t+ 1).

Using induction, we can now bound ⌧(t) in expectation. Since vc(t+ 1) is a central node of G(t), if
vc(t+1) 6= vo(t+1) the probability that the central node algorithm eliminates the branch containing
the node vo(t+1) the optimal algorithm intervened on is� 1/2. Hence P (⌧(t+1)�⌧(t) = 1) � 1/2,
where the probability is based on the root node r0 having a uniform prior distribution p0(i) = 1/n.
Hence E(⌧(t)) � t/2 for all t, yielding ETopt > 1

2ETCN since both algorithms terminate when
G(t) = G(⌧(t)) = {r0}.

F Proof of Theorem 2: K-central node algorithm in the noiseless setting

From Algorithm 3, let t be the number of steps the central node algorithm has taken at the current
time.

Recall from Algorithm 3 that G(t) is the tree of possible source nodes remaining in G0 after t
interventions have been taken. Choose an optimal algorithm, and let Gopt(⌧) be the tree of possible
source nodes remaining in G0 after the optimal algorithm has taken ⌧ interventions. The t� th set of
nodes Algorithm 3 intervenes on is the set of K-central nodes vkc (t), similarly let the ⌧ � th set of
nodes the optimal algorithm intervenes on be denoted vko (⌧).

In order to proceed with the proof, as a baseline we allow the central node algorithm to take two steps
for every step taken by the optimal algorithm, and then will slow the optimal algorithm down by a
factor ⌧(t) such that the slowed optimal algorithm is strictly worse than the central algorithm. Hence,
define ⌧(t) as the largest number of interventions the optimal algorithm takes while still preserving
the inequality

Gopt(⌧(t)) ◆ G(2t).

In other words, ⌧(t) is such that Algorithm 3 has determined the root node r0 lies in a set G(2t)
contained in the set of nodes that the optimal algorithm deems possible after ⌧(t) interventions. We
proceed inductively, bounding the increase in ⌧ for each increase in t.

Begin by noting that Gopt(⌧(0)) = G(0), hence ⌧(0) = 0. At time t, we have Gopt(⌧(t)) ◆ G(2t).
The first step of Algorithm 3 then intervenes on the K-central nodes vkc (2t+ 1) of G(2t), observing
uk
2t+1 and forming G(2t + 1). The second step intervenes on the K-central nodes vkc (2t + 2) of

G(2t+ 1), observing uk
2t+2 and forming G(2(t+ 1)). Meanwhile, the optimal algorithm intervenes

on some K nodes vko (⌧(t) + 1), yielding Gopt(⌧(t) + 1). Note that after the two steps the central
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node algorithm takes, by the definition of K-central nodes, the mass of G(2(t+1)) is at most 1
(K+1)2

that of G(2t).

If none of the vko (⌧(t)+ 1) are in G(2(t+1)) or if the central node algorithm identifies the true node,
then by necessity (as in the previous central node proof) Gopt(⌧(t) + 1) ◆ G(2(t + 1)). We then
have that ⌧(t+ 1) = ⌧(t) + 1 maintains the inequality Gopt(⌧(t+ 1)) ◆ G(2(t+ 1)).

If at least one of the vko (⌧(t)+1) 2 G(2(t+1)), we can simply set ⌧(t+1) = ⌧(t) to have the optimal
algorithm wait an additional step, since Gopt(⌧(t+ 1)) = Gopt(⌧(t)) ◆ G(2t) � G(2(t+ 1)).

Using induction, we can now bound ⌧(t) in expectation. Since the vkc (2(t+ 1)) and vkc (2(t+ 2)) are
K-central nodes of G(2t) and G(2t+ 1) respectively, each potential G(2(t+ 1) (excluding cases
where one of the intervened nodes has been the root, in which case the algorithm would terminate) has
at most probability mass 1

(K+1)2 . The K nodes chosen by the optimal algorithm can be contained in
at most K of these with total mass at most K

(K+1)2 . Hence, the probability that either the central node
algorithm terminates or none of the vko (⌧(t) + 1) are in G(2(t+ 1)) is at least 1� K

(K+1)2 � 7/9.
Hence P (⌧(t+ 1)� ⌧(t) = 1) � 7/9, where the probability is based on the root node r0 having a
uniform prior distribution p0(i) = 1/n. Hence E(⌧(t)) � 7

9 t for all t, yielding ETopt >
7
18ETCN

since both algorithms terminate when G(t) = G(⌧(t)) = {r0} and we have slowed down the central
node algorithm by a factor of two.

G Proof of Theorem 3: Central node algorithm in the noiseless setting with

restricted nodes

Algorithm 5 Node-Restricted Central Node Algorithm
input Observational tree skeleton G0. Restricted set of nodes P ⇢ V

1: t 0, G(0) G0.
2: while G(t) contains more than one node do

3: t t+ 1.
4: Find a central node vc(t) of G(t� 1) under the uniform distribution over unrestricted nodes

(Algorithm 4).
5: if vc(t) /2 P then

6: Intervene on vc(t) and observe direction of root node ut 2 {vc(t)} [NG(t�1)(vc(t)).
7: Set G(t) Bvc(t):ut

G(t�1) .
8: else

9: Form the tree G0 as G(t� 1) rooted at vc(t). Now, if we remove the connected component
in P \ G0 containing vc(t), we get `(t) possible rooted subtrees of G0, let us call them
T1, T2 . . . T`(t). Let the roots (induced by vc(t)) of each of these trees be r1, r2 . . . r`(t).
Without loss of generality, suppose that the probability mass of each of these subtrees with
respect to the posterior distribution of the root node at time t� 1 be p1 � p2 � p`(t).

10: Sequentially intervene on the roots r1, r2 . . . r`(t) in order until the subtree containing the
root is found. Suppose it takes s(t) steps. Let r̃ be the root of the tree that has the root node.

11: G(t+ s(t)� 1) B
r̃:ut+s(t)�1

G(t+s(t)�2).
12: end if

13: end while

output Node remaining in G(t) as the root node r0 of G0.

From Algorithm 5, let t be the number of interventions the central node algorithm has taken at the
current time.

Recall from Algorithm 5 that G(t) is the tree of possible source nodes remaining in G0 after t
interventions have been taken. Choose an optimal algorithm, and let Gopt(⌧) be the tree of possible
source nodes remaining in G0 after the optimal algorithm has taken ⌧ interventions. The t � th
node Algorithm 5 intervenes on is the central node vc(t), similarly let the ⌧ � th node the optimal
algorithm intervenes on be denoted vo(⌧).
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Define ⌧(t) as the largest number of interventions the optimal algorithm takes while still preserving
the inequality

Gopt(⌧(t)) ◆ G(t).

We will prove the invariant: E[⌧(t)] � t/3 inductively.

Base Case: Begin by noting that Gopt(⌧(0)) = G(0), hence ⌧(0) = 0. At time t, we have
Gopt(⌧(t)) ◆ G(t). Now, we have the following cases:

Inductive Step: Suppose, the hypothesis is true for t. We show it is true for t+ 1.

Case 1: Algorithm 5 intervenes on the central node vc(t+ 1) of G(t), observing ut+1 and forming
G(t+ 1) = Bvc(t+1):ut+1

G(t) . Meanwhile, the optimal algorithm intervenes on some node vo(⌧(t) + 1),
yielding Gopt(⌧(t) + 1).

If vo(⌧(t) + 1) /2 G(t+ 1), then Gopt(⌧(t) + 1) � G(t+ 1) since any vertex the optimal algorithm
eliminated as a possible root node at step ⌧(t + 1) must lie on a branch from vo(⌧(t + 1)) that
does not include vc(t + 1), otherwise every node in G(t + 1) would be eliminated which would
be a contradiction. Hence an intervention on vo(⌧(t) + 1) cannot eliminate any nodes in G(t+ 1)
as possible root nodes. We then have that ⌧(t + 1) = ⌧(t) + 1. This maintains the invariance
Gopt(⌧(t+ 1)) ◆ G(t+ 1).

If vo(⌧(t) + 1) 2 G(t+ 1), we can simply set ⌧(t+ 1) = ⌧(t) to have the optimal algorithm wait an
additional step, since Gopt(⌧(t+ 1)) = Gopt(⌧(t)) ◆ G(t) � G(t+ 1).

Since vc(t + 1) is a central node of G(t), if vc(t + 1) 6= vo(t + 1) the probability that the central
node algorithm eliminates the branch containing the node vo(t+ 1) the optimal algorithm intervened
on is � 1/2. Hence P (⌧(t + 1) � ⌧(t) = 1) � 1/2, where the probability is based on the root
node r0 having a uniform prior distribution p0(i) = 1/n. Therefore, E[⌧(t+ 1)] � E[⌧(t)] + 1

2 �

t/3 + 1/2 � t+1
3

Case 2: At step t+ 1, vc(t+ 1) is restricted in Gt. Let us consider the tree Gt rooted at vc(t+ 1).
Now, If we remove the nodes in P \Gt, we get `(t+ 1) possible rooted subtrees, let us call them
T1, T2 . . . T`(t+1). Let the root of each of these trees be r1, r2 . . . r`(t+1). Without loss of generality,
suppose that the probability mass of each of these subtrees with respect to the posterior distribution of
the root node at time t be p1 � p2 � p`(t+1). Our Central node algorithm intervenes sequentially on
the roots r1, r2 . . . r`(t+1) in that order until it finds the tree that contains the root node. Let s(t+ 1)
be the number of interventions after time t that the central node algorithm takes before it finds the
tree with the root node. Let s(⌧(t)) be the number of interventions before (but after ⌧(t)) the first
intervention is made on the tree with the root node by the optimal algorithm

Clearly, G(t+ s(t+ 1) + 1) ⇢ Gopt(⌧(t) + s(⌧(t))).

We have:

⌧(t+ k + 1)  ⌧(t) + s(⌧(t)), 8k < s(t+ 1).

⌧(t+ s(t+ 1) + 1) = ⌧(t) + s(⌧(t)) (6)

Clearly, G(t+ k + 1) ⇢ G(t+ s(t+ 1) + 1) ⇢ Gopt(⌧(t) + s(⌧(t))) ⇢ Gopt(⌧(t+ k + 1))

Because the central node algorithm intervenes in the order of decreasing probability of root being
found in the trees T1, T2 . . . T`(t+1), we have : E[s(⌧(t))|Ft] � E[s(t+1)|Ft] = (p1+2p2 . . .)�1 �
1� p1 �

1
2 . This implies 3E[s(⌧(t))|Ft] � E[s(t+ 1)|Ft] + 1

This means that: E[⌧(t) + s(⌧(t))] � 1
3E[t+ s(t+ 1) + 1]. Therefore, the following holds:

E[⌧(t+ k + 1)]
a
= E[⌧(t+ s(t+ 1) + 1)] = E[⌧(t) + s(⌧(t))] �

1

3
E[t+ s(t+ 1) + 1]

�
1

3
E[⌧(t+ k + 1)], 0  k  s(⌧(t)) (7)

(a) - This is from (6).

This proves the induction step. The invariance implies the final result.
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H Central node algorithm in the noisy setting

In this section, we show how to modify the central node algorithm so as to obtain error and runtime
guarantees in the noisy setting with a binary alphabet. First, recall the condition on the noise that we
require:
Condition 2 (Bounded edge strength, restatement of Condition 1). We say that a tree G’s edge

strength is lower bounded by ✏ > 0 if the following holds: for any nodes i, j adjacent in the graph

such that i causes j, we have

|P(Xj = 1 | do(Xi = 1))� P(Xj = 1)| > ✏.

Under the bounded edge strength condition, given interventional data at a node v we may efficiently
construct good estimators of whether each branch Bv:u

G contains the root:
Proposition 3 (Restatement of Proposition 2). Under Condition 1, let �0 > 0 be a desired soundness.

Suppose Xi has neighbors u1, . . . , ud 2 NG(Xi). Then with d2 log(1/�0)/✏2e = O(log(1/�0)/✏2)
samples from do(Xi = 1), we may output estimators âXi:u1 , . . . , âXi:ud 2 {0, 1} such that for each

j 2 [d],

P(âXi:uj = 1 | R 2 B
Xi:uj

G ) � 1� �0, P(âXi:uj = 0 | R 62 B
Xi:uj

G ) � 1� �0.

Proof. For each j 2 [d], let xuj ,1, . . . , xuj ,K 2 {0, 1} be the observations of Xuj on the K different
interventions. Write

p = P[Xuj = 1 | do(Xi = 1), R 2 B
Xi:uj

G ], q = P[Xuj = 1 | do(Xi = 1), R 62 B
Xi:uj

G ],

and by the bounded noise condition assume without loss of generality that p� q � ✏.

Let suj =
PK

j=k xuj ,k, and let âXi:uj = 1(sui � (q + ✏/2)K). By Hoeffding bounds,

P[âXi:uj = 0 | R 2 B
Xi:uj

G ]  exp(�✏2K/2), P[âXi:uj = 1 | R 62 B
Xi:uj

G ]  exp(�✏2K/2).

We are now ready to present our algorithm, which is inspired by the algorithms of Ben-Or & Hassidim
(2008) and Emamjomeh-Zadeh et al. (2016) for noisy search in graphs. These papers’ noise models
differ from ours: in their case each noisy node query tells the algorithm whether it is the root node,
or, if not, on which branch the root node lies. The algorithm of Emamjomeh-Zadeh et al. (2016) runs
in time O((log(n) + log(1/�)2)/(p� 1/2)2), where p > 1/2 is the probability that a noisy query is
correct and � is the desired bound on the error probability of the algorithm. Directly applying this
algorithm to our setting, we would need to perform O((log�)/✏2) interventions in order to simulate
one noisy query, where � is the maximum degree of the tree. This would give a total run-time
of O((log�)(log(n) + log(1/�)2)/✏2). In contrast, the algorithm that we present below runs in
time O(log(n/�)/✏2), which avoids the sub-optimal dependence on �, and does not depend on the
maximum degree of the tree.

We now present Algorithm 6, which is the multiplicative weights algorithm at the core of the noisy
central node algorithm. In Algorithm 6, we maintain a weight qt(w) for each node w and iteration t.
On each iteration t, we find a central node vc(t) of qt�1(·), so that each of the branches around vc(t)
has at most half of the total weight. If the weight of vc(t) is large, we temporarily remove vc(t) from
consideration and flag it for later. Otherwise, we intervene on vc(t), compute estimators âvc(t):ui as
in Proposition 2 for each of the branches around vc(t), and lower the weight of the branches Bvc(t):ui

G

for which âvc(t):ui = 0.

Our error guarantees for the multiplicative weights algorithm will follow from a potential argument.
We will prove that the sum of the weights  T :=

P
w2S qT (w) at the end of the multiplicative

weights algorithm is usually very small, but that qT (R) is usually very large if R is not added to the
output set M . Since qT (R)   T we conclude that R is in the output set most of the time:
Proposition 4. Suppose that we run the multiplicative weights algorithm (Algorithm 6) for T
iterations and with input set S and parameters ⌧, �0, ⌘ 2 [0, 1]. For all t  T define the potential

function  t :=
P

w2S qt(w). Then

E[ T ]  �
T ,

where � = �(⌧, �0, ⌘) := max(1� ⌧, 1� (1/2� ⌧) · (1� �0) · (1� ⌘)).
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Algorithm 6 MULTIPLICATIVE-WEIGHTS algorithm
input Observational tree G for a model whose noise is bounded by ✏ > 0 (Condition 1). Set

S ⇢ V (G). Number of iterations T . Parameters ⌧, �0, ⌘ 2 [0, 1].
1: M  ;.
2: q0(w) 1/|S|, 8w 2 S.
3: for 1  t  T do

4: Identify central node index vc(t) of G with respect to qt�1 (Algorithm 4).
5: if qt�1(vc(t)) � ⌧ · (

P
w2S qt�1(w)) then

6: M  M [ {vc(t)}.
7: qt(vc(t)) 0.
8: qt(w) qt�1(w), 8w 6= vc(t).
9: else

10: qt(vc(t)) qt�1(vc(t)).
11: Intervene d2 log(1/�0)/✏2e times with do(vc(t) = 1), and for all i 2 [d] obtain an estimator

âvc(t):ui 2 {0, 1} for 1(R 2 Bvc(t):ui

G ), with soundness parameter �0 as in Proposition 2.
12: for 1  i  d and w 2 Bvc(t):ui

G do

13: if âvc(t):ui = 0. then

14: qt(w) ⌘ · qt�1(w).
15: else

16: qt(w) qt�1(w).
17: end if

18: end for

19: end if

20: end for

output M .

Proof. Let Ft be the filtration corresponding to the state of the algorithm at the end of the tth step.
For any t � 1, consider E[ t | Ft�1]. Let Et denote the event that qt�1(vc(t)) > ⌧ ·  t�1. If Et

holds then vc(t) is removed so
E[ t | Ft�1, Et]  (1� ⌧) · t�1. (8)

Otherwise, for each node w 2 S, let Dt,w be the event that, on iteration t, the node w is in a
branch Bvc(t):ui

G that does not contain the root. In this case, with probability � 1� �0, the estimator
âvc(t):ui = 0, in which case the weight of w is decreased by a factor of ⌘ :

E[qt(w) | Ft�1,¬Et, Dt,w]  (1� (1� �0) · (1� ⌘)) · qt�1(w).

Since vc(t) is a central node of weight qt�1(vc(t))  ⌧ · t�1 and no branch has weight more than
 t�1/2 because vc(t) is the central node, the total weight of the branches not containing the root
node is � ( 12 � ⌧) · t�1. Therefore by linearity of expectation

E[ t | Ft�1,¬Et]  (1� (1/2� ⌧) · (1� �0) · (1� ⌘)) · t�1. (9)
Overall, (8) and (9) allow us to conclude that

E[ t|Ft�1]  max(1� ⌧, (1� (1/2� ⌧) · (1� �0) · (1� ⌘))) · t�1 = � t�1,

and so E[ T ] = E[E[ T | Ft�1]]  �E[ t�1]  · · ·  �TE[ 0] = �T .

Proposition 5. Suppose that we run the multiplicative weights algorithm (Algorithm 6) for T
iterations and with input set S 3 R and parameters ⌧, �0, ⌘ 2 [0, 1]. Let M be the set outputted by

the algorithm. Then for any � � 0,

P[qT (R)  ⌘(�0+�)T /|S| | R 62M ]  exp(�2T�2)

Proof. Since R 62M holds, the weight of R is only ever lowered by the multiplicative weight update.
On any given step, the probability that qt�1(R) is lowered is at most �0, by Proposition 2. Let ⇠ be
the number of steps on which the weight of R is decreased. By a Hoeffding bound,

P[⇠ � (�0 + �)T | R 62M ]  exp(�2T�2).

The theorem follows from qT (R) = ⌘⇠ · q0(R) = ⌘⇠/|S|.
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Proposition 6. Suppose that we run the multiplicative weights algorithm (Algorithm 6) for T
iterations and with input set S 3 R and parameters ⌧, �0, ⌘ 2 [0, 1]. Let � > 0 such that ⌘(�0+�) > �
and

T � max

✓
log(20|S|)

log(⌘(�0+�)/�)
,
log 2

2�2

◆
.

Then if M is the set outputted by the algorithm,

P[R 62M ]  1/10.

Proof. Let A := ⌘(�0+�)T /|S|. By Proposition 4 and a Markov bound,

P[ T � A]  �T /A  1/20.

Since 0  qT (R)   T , we have P[qT (R) � A]  1/8. Therefore, by Proposition 5 and Bayes’
rule

P[R 62M ] 
1

8 · P[qT (R) � A | R 62M ]


1

20 · (1� 1/2)
 1/10.

For the sake of concreteness, let us fix values ⌧, �0, ⌘, and �. First, fix ⌧ = ⌧(�0, ⌘) = 1
2 ·⇣

(1��0)·(1�⌘)
1+(1��0)·(1�⌘)

⌘
because this minimizes �(p0, �, ⌧). Then choose, say, ⌘ = 3/4, �0 = 1/10, and

� = 1/10. One may verify that ⌘�0+� > 0.94 > 0.91 > �. In particular, if we choose these
parameters then when T � 60 log(20|S|) we have P[R 62M ]  1/10.

We now apply the multiplicative weights algorithm in Algorithm 7, which returns the root with
probability � 2/3.

Algorithm 7 Noisy Central Node Algorithm. Finds root with probability � 2/3.
input Observational tree G.

1: Choose parameters �0 = 1/10, ⌘ = 3/4 and ⌧ =
⇣

(1��0)·(1�⌘)
1+(1��0)·(1�⌘)

⌘
.

2: M1  MULTIPLICATIVE-WEIGHTS(S = V (G), T = 60 log(20n), ⌧, �0, ⌘).
3: M2  MULTIPLICATIVE-WEIGHTS(S = M1, T = 60 log(20|M1|), ⌧, �0, ⌘).
4: Let �1  1/(10|M2|

2).
5: for v 2M2 do

6: Let u1, . . . , ud be the neighbors of v.
7: Do d2 log(1/�1)/✏2e interventions do(v = 1) to get estimators âv:ui of 1(R 2 Bv:ui

G ) with
soundness parameter �1, as in Proposition 2.

8: if âv:ui = 0 for all ui such that M2 \Bv:ui
G 6= ; then

9: output v.
10: end if

11: end for

output “not found”

Proposition 7. Algorithm 7 returns R with probability � 2/3, and uses O((log n)/✏2) queries.

Proof. Correctness Let E be the event that R 2M2.

Consider the set A := {(v, ui) : v 2M2, B
v:ui
G \M2 6= ;}. Let E0 be the event that

âv:ui = 1(R 2 Bv:ui
G ) 8(v, ui) 2 A.

Suppose that E and E0 both hold. Then the output R̂ of the algorithm is equal to the true root R. To
see this, consider the loop in steps 5-11.

• If v = R, then since E0 holds we will have âv:ui = 0 for all neighbors ui of v such that
M2 \Bv:ui

G 6= ;. Therefore, the algorithm outputs v in step 9.
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• If v 6= R, then let ui be the neighbor of v such that R 2 Bv:ui
G . Since R 2M2 by event E,

we have Bv:ui
G \M2 6= ;, and also âv:ui = 1 by event E0. Thus, the algorithm does not

output v in step 9.

So it suffices to show that P[E \ E0] � 2/3.

By two applications of Proposition 6 and a union bound, P[E] � 8/10.

We have chosen �1 so that for any (v, ui) 2 A, P[âv:ui 6= 1(R 2 Bv:ui
G )]  �1 = 1/|M2|

2. Note
that |A|  |M2|

2, since for each node v 2M2 at most |M2| of the branches Bv:ui
G contain a node in

M2. Therefore, by a union bound P[E0] � 9/10.

By a union bound, P[E \ E0] � 2/3.

Query complexity Note that |M2| = O(log log n) since |M1| = O(log n) and |M2| = O(log |M1|),
because at most one vertex is added to the output set on each iteration of the multiplicative weights
algorithm. Each iteration of a multiplicative weights algorithm uses O(1/✏2) interventions. The two
calls to multiplicative weights do a total of O(log n) iterations, and hence O((log n)/✏2) interven-
tions.

The clean-up steps (steps 5-11) take O(log(1/�1)/✏2) interventions for each node in M2, and
therefore O(|M2| log(|M2|)/✏2) = O((log log n)(log log log n)/✏2) = O((log n)/✏2) interventions
in total.

Finally, in Algorithm 8 we show how to boost the error from Algorithm 7 by repetition.

Algorithm 8 Noisy Central Node Algorithm. Finds root with probability � 1� �.
input Observational tree G0. Confidence parameter �.

1: �0  �/(4n).
2: while true do

3: v  Algorithm 7.
4: Let u1, . . . , ud be the neighbors of v.
5: Do d2 log(1/�0)/✏2e interventions do(v = 1) to get estimators âv:ui of 1(R 2 Bv:ui

G ) with
soundness parameter �0.

6: if âv:ui = 0 for all i 2 [d] then

7: Output v.
8: end if

9: end while

Theorem 5 (Restatement of Theorem 4). Algorithm 8 uses O(log(n/�)/✏2) queries in expectation,

and returns R with probability � 1� �.

Proof. Correctness The maximum degree of a node is at most n. Thus, by a union bound, on
any given iteration the estimators âv:ui are all correct with probability � 1 � �/4. So if on a
given iteration v = R, then the algorithm returns v on that iteration with probability � 1 � �/4.
Otherwise, if v 6= R, then the algorithm returns v with probability  �/4. Therefore, by the
error-bound of Algorithm 7 (Proposition 7) the probability of outputting a true positive on any
given iteration is � (2/3) · (1 � �/4) � 1/2, and the probability of outputting a false positive is
 (1/3) · (�/4)  �/12. Overall, the probability of encountering a true positive before a false
positive is therefore � (1/2)/(1/2 + �/12) � 1� �. So the algorithm outputs the correct root with
probability � 1� �.

Query complexity Since the probability of finding a true positive on any given iteration is � 1/2,
the expected number of iterations N is at most 2. On each iteration, the call to Algorithm 7
incurs a cost of  Q1 = O((log n)/✏2) queries, and the interventions from step 5 incur a cost of
 Q2 = O(log(n/�)/✏2) queries. So the expected number of interventions is E[N · (Q1+Q2)] 
2(Q1 +Q2) = O(log(n/�)/✏2).
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Figure 6: Different skeleton selection strategies, similar qualitative behaviour: Average number
of interventions for finite sample algorithms for small graphs, n = 10 (left column) and n = 20
(right column), where each row is a skeleton generation strategy: a) random trees, b) random power
trees, c) random graphs + BFS tree, for varying ranges of ✏.

Remark 2. The final post-processing step in Algorithm 8 and can also be applied to the result of

Emamjomeh-Zadeh et al. (2016) to fix their algorithm’s suboptimal dependence with respect to �.

I Complete empirical results

We consider several possible experimental settings and for each setting we simulate 200 random trees
of n nodes with randomly generated parameters. We generate the undirected tree with three different
strategies: a) sampling uniformly from the space of undirected trees with a randomly generated Prüfer
sequence, b) generating power-law trees, and c) generating high degree d = n/2 random graphs,
sampled asymptotically uniformly in the space of graphs, and then creating an undirected version of
the BFS tree. For each of these strategies, we use the NetworkX library functions: a) random tree,
b) random powerlaw tree, c) random regular graph. Once we have an undirected tree, we pick
the root node uniformly at random among the nodes, and orient the edges accordingly.
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Figure 7: The gain of using central node increases with the size of the graph: Average number
of interventions for finite sample algorithms for n = 10 strategy a (top left), n = 30 strategy a (top
right), n = 50 strategy b (bottom left), n = 1000 strategy a (bottom right). In this last experiment
information greedy is too computationally expensive, so we omit it.

For most of the experiments we focus on binary random variables, so when not explicitly mentioned
the results are for binary variables. In the end of the Section in Figure10, we show the same
conclusions generalize also to the discrete case.

In the binary random variable case, each random variable is a function of its parent: if XPai = 0,
then Xi ⇠ Bern (✏), else Xi ⇠ Bern (1� ✏), where for each random variable we sample ✏ uniformly
from a range [�, 0.5� �]. The root node is distributed as Xr ⇠ Bern (0.5).

For discrete variables, we focus on the three valued case. Each random variable takes value x 2
{0, 1, 2} and agrees in value with its parent with probability ✏, while it takes the other two values
each with probability (1� ✏)/2, where for each random variable we sample ✏ uniformly from a range
[�, 1

3 � �]. The root node Xr has a uniform probability of taking each value.

We compare three finite sample algorithms, all using the posterior update described in Appendix B: a
baseline algorithm that intervenes on a node randomly selected using the probability of being root in
the current prior, the information greedy algorithm, implemented following the sampling strategy
presented in Appendix C.2 with N = 50, and our central node algorithm presented in Algorithm 1.

Figures 6 and 7 show the average number of interventions required to find the root node, for different
values of � (or, in other words different ranges in which we sample for each random variable ✏).
In all cases, as the ✏ get closer, it becomes easier to identify the root node. Figure 6 shows that
for different types of trees, generated with the three strategies described before, the baseline and
information greedy algorithm are consistently outperformed by our central node algorithm. Figure 7
shows that when the size of the graph increases, so does the gain of central node w.r.t. the baseline
algorithm. Moreover, the information greedy algorithm is much more computationally expensive
than the central node, because of all the simulated interventions required in the sampling strategy
explained in Appendix C.2, making it unfeasible to run at n = 100.
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Figure 8: Average number of interventions decreases with the number of available samples per

intervention: Average number of interventions for the finite sample extension of the noiseless central
node algorithm for n = 10 strategy a (top left), n = 10 strategy b (top right), n = 50 strategy a
(bottom left), n = 50 strategy c (bottom right), plotted in the number of samples per intervention
for various ranges of ✏. At 50 samples per intervention in most settings (especially the easier setting
where the different values of ✏ of each random variable are all very similar ⇠ [0.24, 0.26]) the simple
finite sample extension of the noiseless central node algorithm reaches similar performance to the
noiseless case, thus justifying this simple extension.

Figure 8 shows the behavior of the finite sample extension of the noiseless central node algorithm
presented Algorithm 2, in which the algorithm continues getting more interventional sample for a
given intervention target until it reaches a certain confidence in which branch the root node lies, or
until its sample budget for that intervention is reached. In Figure 8 we show the average number of
interventions required to find the root node for different settings of n and different tree generating
strategies, when varying the number of interventional samples collected for each intervention from
1 (Algorithm 1) to 50. Each curve represented different values of �. As expected, the behavior of
the central node algorithm improves smoothly with the number of interventional samples, quickly
converging to the performance of the noiseless Algorithm 2. Figure 9 shows the performance of the
K-central node algorithm for varying K, n and tree generation strategies.
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Figure 9: Different settings, same behaviour for K central node algorithm for various K: Aver-
age number of interventions for finite sample algorithms for n = 10 strategy a (top left), n = 10
strategy b (top right), n = 20 strategy c (bottom left), n = 50 strategy a (bottom right).
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Figure 10: Results for discrete random variables: Average number of interventions for finite
sample algorithms for small graphs, n = 10 (left column) and n = 20 (right column), where each
row is a skeleton generation strategy: a) random trees, b) random power trees, c) random graphs +
BFS tree, for varying ranges of ✏.
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