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1 Comparison of Our Upper Bound with that of Wangni et al. [2]

Wangni et al. [2] also define a sparsity notion (Definition 2). They call a vector a X (p, k)-
approximately sparse, if the /1 norm of X excluding the top k entries is at most p times the ¢; norm of
the top k entries. They show for such a vector, with communication cost roughly O(k log d+ kp log d)
bits (Theorem 4), the MSE (thus the convergence rate) blows up by (1 + p). This result is strictly
worse than ours. Consider the d dimensional vector X = (d%,1,1,--- ,1). This vector is (1, 0.5d)-
approximately sparse for large enough d, so their cost is O(d log d). However, according to our notion
of sparsity, the Hoyer’s sparseness is d -8, and thus the communication cost is d°-? log d°-®, which
is asymptotically much better. On the other hand, for (p, k)-approximately sparse vector, its Hoyer’s
sparseness is at most (1 + p)?k/d. For the most interesting case p = O(1), our results implies their
bound up to a constant, but not vice versa. For large p, their cost is O(pk log d) and MSE is pF /n?.
For our algorithm, we can use coordinate sampling as in [1]] and achieve the same MSE with cost
O(pklog %) which also implies their result. To sum up, the result of [2] is implied by ours up to a
constant, but there exist input instances such that our bound is asymptotically much better.

2 Missing Proofs

2.1 Proof of Lemma 2.1

Lemma 2.1 (Lemma 2.1 restated). Let © = F, then E[¢] = v and E[||[o — v|3] < F|v|.
Moreover, E[|0;|] = |v;.

Proof. One can verify that E[9;] = v; (thus E[6] = v). Also, E[(4; — u;)?] = (uj — |u;j])(|u;] +

1 — u;). For w; > 0, this is bounded by u; — |u;| < wu;; for u; < 0, this is bounded by
|u;] + 1 —wu; < |u;|. Thus, for any u;, E[(4; — u;)?] < |u;|. We have
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For the second part, because scaling and roundmg doesn’t change the sign of each entry,
Elsign(v;) - |9;]] = E[0;] = v; = sign(v;) - |vi],
which implies E[|0;|] = |v;]. O

2.2 Proof of Lemma 3.4

Lemma 2.2 (Lemma 3.4 restated). For any m and let Y™ be its output, we have
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Proof. We need the following lemma, which is a result of the rectangle property and the fact that the
inputs sampled from D are independent across all clients.

Lemma 2.3. Let X1, Xo, - -, X,, be a random inputs sampled from D, for any particular transcript
m. Then, X1, Xo, - , X, are still independent of each other.

We have
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By elementary calculus, for any fixed y, one can verify E[(X — y)?] > E E[X])?] = Var[X]

for any random variable X. Therefore, we have
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where the first equality holds because, when [X1, - , X,,] ~ Dy, Xji’s are independent across ¢
(Lemma[2.3). Combined with the previous equation, we get

t b n
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E[X1 yoe
which completes the proof. O

References

[1] A.T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan. Distributed mean estimation with limited
communication. /ICML, 2017.

[2] J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient sparsification for communication-efficient
distributed optimization. In Advances in Neural Information Processing Systems 31. 2018.



	Comparison of Our Upper Bound with that of Wangni et al. wangni2018Gradient
	Missing Proofs
	Proof of Lemma 2.1
	Proof of Lemma 3.4


