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1 Comparison of Our Upper Bound with that of Wangni et al. [2]1

Wangni et al. [2] also define a sparsity notion (Definition 2). They call a vector a X (ρ, k)-2

approximately sparse, if the `1 norm ofX excluding the top k entries is at most ρ times the `1 norm of3

the top k entries. They show for such a vector, with communication cost roughlyO(k log d+kρ log d)4

bits (Theorem 4), the MSE (thus the convergence rate) blows up by (1 + ρ). This result is strictly5

worse than ours. Consider the d dimensional vector X = (d0.9, 1, 1, · · · , 1). This vector is (1, 0.5d)-6

approximately sparse for large enough d, so their cost isO(d log d). However, according to our notion7

of sparsity, the Hoyer’s sparseness is d−0.8, and thus the communication cost is d0.2 log d0.8, which8

is asymptotically much better. On the other hand, for (ρ, k)-approximately sparse vector, its Hoyer’s9

sparseness is at most (1 + ρ)2k/d. For the most interesting case ρ = O(1), our results implies their10

bound up to a constant, but not vice versa. For large ρ, their cost is O(ρk log d) and MSE is ρF2/n
2.11

For our algorithm, we can use coordinate sampling as in [1] and achieve the same MSE with cost12

O(ρk log d
k ), which also implies their result. To sum up, the result of [2] is implied by ours up to a13

constant, but there exist input instances such that our bound is asymptotically much better.14

2 Missing Proofs15

2.1 Proof of Lemma 2.116

Lemma 2.1 (Lemma 2.1 restated). Let v̂ = F û, then E[v̂] = v and E[‖v̂ − v‖22] ≤ F‖v‖1.17

Moreover, E[|v̂i|] = |vi|.18

Proof. One can verify that E[v̂j ] = vj (thus E[v̂] = v). Also, E[(ûj − uj)2] = (uj − bujc)(bujc+19

1 − uj). For uj ≥ 0, this is bounded by uj − bujc ≤ uj ; for uj < 0, this is bounded by20

bujc+ 1− uj ≤ |uj |. Thus, for any uj , E[(ûj − uj)2] ≤ |uj |. We have21

E[‖v̂ − v‖22] =
d∑
j=1

E[(v̂j − vj)2] = F 2
d∑
j=1

E[(ûj − uj)2] ≤ F 2
d∑
j=1

|uj | = F

d∑
j=1

|vj | = F‖v‖1.

For the second part, because scaling and rounding doesn’t change the sign of each entry,

E[sign(vi) · |v̂i|] = E[v̂i] = vi = sign(vi) · |vi|,

which implies E[|v̂i|] = |vi|.22

2.2 Proof of Lemma 3.423

Lemma 2.2 (Lemma 3.4 restated). For any π and let Y π be its output, we have

t∑
j=1

b∑
k=1

n∑
i=1

[pπijk(1− pπijk)] ≤ n2 · E[X1,··· ,Xn]∼Dπ
[
‖X − Y π‖2

]
.
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Proof. We need the following lemma, which is a result of the rectangle property and the fact that the24

inputs sampled from D are independent across all clients.25

Lemma 2.3. LetX1, X2, · · · , Xn be a random inputs sampled fromDπ for any particular transcript26

π. Then, X1, X2, · · · , Xn are still independent of each other.27

We have28

E[X1,··· ,Xn]∼Dπ
[
‖X − Y π‖2

]
=E[X1,··· ,Xn]∼Dπ

 t∑
j=1

‖ 1
n

n∑
i=1

Xij − Y πj ‖2


=
1

n2
E[X1,··· ,Xn]∼Dπ

 t∑
j=1

b∑
k=1

(

n∑
i=1

Xijk − nY πjk)2


=
1

n2

t∑
j=1

b∑
k=1

E[X1,··· ,Xn]∼Dπ

[
(

n∑
i=1

Xijk − nY πjk)2
]

By elementary calculus, for any fixed y, one can verify E[(X − y)2] ≥ E[(X − E[X])2] = Var[X]29

for any random variable X . Therefore, we have30

E[X1,··· ,Xn]∼Dπ

[
(

n∑
i=1

Xijk − nY πjk)2
]
≥Var[X1,··· ,Xn]∼Dπ

[
n∑
i=1

Xijk

]

=

n∑
i=1

Var[X1,··· ,Xn]∼Dπ [Xijk]

=

n∑
i=1

pπijk(1− pπijk),

where the first equality holds because, when [X1, · · · , Xn] ∼ Dπ, Xijk’s are independent across i
(Lemma 2.3). Combined with the previous equation, we get

E[X1,··· ,Xn]∼Dπ
[
‖X − Y π‖2

]
≥ 1

n2

t∑
j=1

b∑
k=1

n∑
i=1

[pπijk(1− pπijk)],

which completes the proof.31
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