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Throughout the supplement, the symbol C' will be used to indicate an unspecified positive constant
whose value may change from line to line. Subscripts will be used to indicate if C' depends on any
other parameters.

A Supplementary results

Lemma A.1. If P is o2 subgaussian, then
Ep||X||?* < (2do?)"k!
for all nonnegative integers k, and

2
[

Epe?™X < EpellPlIXl < 205
forallv € RY.
Proof. For the first claim, it suffices to take expectations of both sides of the inequality

2k I1x112 . . . .
HXZU 7 < e24027 — 1 and use the assumption that P is o?-subgaussian. To prove the second claim,
(2do2)F k!

we use the inequality v - X < [[o]|[|X || < 9= [|v||> + 5= |X |2 and apply subgaussianity. O

Proposition A.1. Let P and Q be two o2-subgaussian distributions. Then there exist smooth optimal
potentials (f, g) for S(P, Q) such that

~do? (14 5(lell +V3do)?) ~ 1 < f(z) < 3 (] + V2o
~do?(1+ 5 (Il + V3d0)?) ~ 1 < g(y) < 5 (Iyll + V2do)?

and the dual optimality conditions @) hold for all z,y € R,

Proof. Let (fo,go) be any pair of optimal potentials. Since (fo + K, gy — K) also satisfy the
optimality conditions and fy € L1(P) and gg € L1(Q), we can assume without loss of generality
that Ep fo(X) = Eggo(Y) = $S(P,Q) > 0. We define

- 2
Fa) = ,log/ego(y)*%ul’*me dQ(y)
o) = ,log/ef(m)f%\\xfylﬁ AP (),

for all z,y € R?

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



We need to check that these integrals are well defined. First, Jensen’s inequality implies

gO(y) = — log/efo(x)—%”x_yHQ dP(x)

IN

1
—Epfo(X) + §EPHX —y?

IN

1
SEPllX — y)?

for Q-a.e. y. Therefore
9o —3llz=yll> < ZEpIX—yl®~Fllz—y|?

for Q-a.e.y. By Lemma Ep| X||?> < 2do?, which implies that ¢ ®) =2 2=l is dominated by

edo”+(lzll+v2do)llyll | Subgaussianity implies

/eda2+<nm||+mo>uyu dQ(y) < 2¢4°” O+ 3(Ial+vad0)* o

Therefore f(z) is well defined for all 2 € R?. The same argument used to bound gy holds for f as
well, which implies that g is also well defined. Therefore our definitions of f and ¢ are valid on the
whole space, and moreover the claimed lower bounds on f and g hold. Jensen’s inequality combined
with the inequalities Eggo(Y) > 0 and Ep f(X) > 0 yield the upper bounds. The smoothness of f
and g follows from an easy application of dominated convergence.

1

We now show that (f, g) are optimal potentials. By construction | e @+9(w) =3 llz—yll® dP(z) =1
for all y € R%. Now, note that

/e.f(w)+9(y —3lz—yl? dP(z)dQ(y) = /ef(w)+go(y —Lllz—yl? dP(2)dQ(y)
= /efo(x)ﬂo(y —slle=vll® 4P (2)dQ(y) .
Jensen’s inequality yields

/ (f — fo) () dP(z) + / (9 — 90)(4) dQ(y) > — log / @) 4P(z) ~ log / (0 W=9) 4Q(y)
- ,log/efo(ngo(y)*% ==l 4P (2)dQ(y)

—1og/ef(””)’“go(y)‘%"w—y"g dP(x)dQ(y)
=0.

Since (fo,g0) maximizes (@), so does (f,g). Therefore (f,g) are optimal potentials.

In particular, this implies that [ (g — go) (v)dQ(y) = log [e®®=9W) dQ(y), and hence
g = go @Q-almost surely by the strict concavity of the logarithm function. We obtain that

[ef@taw)—3 le=ull* 4Q(y) = [ el @+a0()—3 le=ull* 4Q(y) = 1 for all z € R, 0

Proposition A.2. Let P,, Q,, be empirical measures, P and ) both assumed subgaussian. There
exist (fn, gn) optimal potentials for (P,,, Qy,) such that ( f,, gn) converges uniformly in compacts to
optimal potentials (f, g) for P and Q.

Proof. The proof is inspired by [Feydy et al.|(2019) and we divide it in two steps:

Step 1 By using the following extended version of the Arzela-Ascoli theorem we find a convergent
subsequence: suppose h,, is a sequence of functions in R? satisfying

(a) Local equicontinuity: for each xy € R and € > 0, there is a § > 0 such that
[l — zo|| <& implies |hn(z) — hp(zo)| <€ forallm

(b) Pointwise boundedness: for each x, the sequence h,, () is bounded.



Then, there exist a subsequence h,,; that converges uniformly on compacts to a continuous
function h.

Step 2 We prove the limit functions are optimal for (P, @) and conclude the entire sequence
converges by a uniqueness argument.

Proof of Step I: By Lemma|A.2] there exists a (random) o2 such that the measures { P, } are uniformly
o2-subgaussian. We choose (f,,, g,) and (f, g) as in Proposition

By Proposition (fn,gn) are pointwise bounded by a quantity independent of n. Likewise,
Proposition [T]implies that the derivatives of f,, and g, are also pointwise bounded, which implies
local equicontinuity.

We conclude for a certain subsequence 7, (fn;, gn;) converges to some (foo, goo)-

Proof of Step 2: 1t is easy to verify (by Jensen’s inequality and dominated convergence) that
Proposition 11 in [Feydy et al.|(2019)), holds in arbitrary domains (not necessarily bounded), and
we can assume (f, g) are unique (P ® Q)-a.s. once we fix Epf(X) = Egg(Y). Notice that if
foo = [, 900 = g, P-a.s. and Q-a.s. we can conclude: on each compact we apply the above argument
starting with any arbitrary subsequence nj and find a subsequence such that fnki — f,9n g, 0

therefore f = lim f,, () and ¢g(y) = lim g,,, uniformly in compacts.

It therefore suffices to show that that i) (fo, goo) satisfy the dual optimality conditions and that f
(respectively goo) is P (respectively @) integrable, with Ep foo (X) = Eggoo(Y). Let’s prove i.
Passing to a subsequence, we assume f,, — f and g,, — ¢ uniformly on compact sets. We have

e~ f=@) = lim [ eon@=zle=vl* qQ, (y)

n— oo

e 9W) — lim [ efr@—3slz=yl® qp (z).
n—oo "

It suffices to show that the order of the limit and integral on the right side can be swapped. For a fixed
x we observe that Proposition [A.T]implies that the integrand is dominated by a uniformly integrable
function. Therefore for an arbitrary € > 0 there exists a compact set K such that

/KC 9= =sllz=vl* 4Q(y) < &

/ et W=3le=vl® 40, () < e Wn>0.
KC

. 112 2 . . .
Write v, (y) = e @=zllz=vl® and v, = e9=@—zllz=vl" Since g, converges uniformly in
compacts so does v,,; in particular, there exists ng such that if n > ny,

[vn (1) — Voo (y)| < €,Vy € K. (1)

Also, since v, is Q-integrable, by the strong law of large numbers, almost surely there exists an 71
such that if n > nq,

[ re)i@uts) = [0t dQ(y)‘ <e o)

We obtain that for n sufficiently large,

[on00@uw) = [ vt d@<y>] < e,

Since € was arbitrary, we obtain

eI (@) /voo(y) dQ(y) :/egm(y)‘%”””‘y“QdQn(y)-

Repeating the proof for g.., we obtain that (f, g~ ) satisfy the dual optimality conditions.

Clearly (fo, goo) are integrable by dominated convergence, and an argument analogous to the one
used to show dual optimality establishes that Ep foo (X) = EQgeo(Y). The claim is therefore
proved. O



Lemma A.2. Suppose P is a o%-subgaussian measure. Then, there exists a (random) o,, < oo such
that { P, }, P are uniformly o2-subgaussian P almost surely.

x|2

I
Proof. By definition, there exists ¢ > 0 such that Ep (e 202d ) < 2. By the strong law of large

numbers we have that P almost surely

. X2 X2
limEp, | €242 | = Ep|ez22a | <2.
n—

Lx|?
In particular, this implies the sequence Ep, | e st ) is bounded by a random positive number. By

the equivalence of definitions of subgaussianity, this implies that P, are uniformly subgaussian, with
a new parameter that we call o2.

Proposition A.3. Assume P and Q) are subgaussian. Let (f, g) be the corresponding optimal dual
potentials constructed in Proposition and define

R, = S(P.,Q) - / F(2)dPy ().

Then,
lim nVar(R,) = 0.
n—oo

Our proof relies on the tensorization property for the variance (Efron and Stein, |1981; Boucheron
et al 2013 ivan Handel, [2014)), also known as Efron-Stein inequality: Let X, ... X, be i.i.d r.v’s
with distribution P and X7, ... X be independent copies of X1, ... X,,. Also, let w be an arbitrary
measurable function of the sample that is symmetric on its coordinates, and define Z = w (X1, ... X,,)
and 7' = w (X1, Xa,...X,). Then,

Var(Z) < -E(Z - Z')3. (3)

|3

Proof of Proposition[A.3] Denote by P}, the empirical distribution of X{, X5, ... X,, and let
R, =S(P.Q) - [ 1()dP;(a).

by Efron-Stein, it suffices to show lim,, .o n*E(R, — R},)3 = 0. We divide the proof in the
verification of two statements. First, we show lim,, o, n(R,, — R},)+ = 0. We will then show that
n?(R, — R,)3 is uniformly integrable.

Call (fy, g») the optimal potentials associated to (P,, Q). Since P, is subgaussian by Lemma|[A.2]
Proposition implies that we can assume that ( f,,, g,,) satisfy the dual optimality conditions for all

2,y € R?. Therefore
SnQ) = [ fal)dPu(o) + [ guls) dQ0),
S0Q) 2 [ fa@dPia) + [ 0n(0)dQw) — [ [ P01 @)aQ() + 1
~ [ @i + [ 0.wQw.

Therefore,
By Proposition[A.2] (f, gn) converges pointwise to ( f, g) almost surely, so lim,,_,o n(R,—R},) 1 =
0 almost surely.

To show uniform integrability, we note that n(R,, — R]) = n(S(P,, Q) — S(Pn,Q)) — (f(X1) —
f(X1)) and by Proposition and the subgaussianity of P, f(X;), f(X;) have finite second
moments. It therefore suffices to show that n*(S(P,, Q) — S(P},Q))3 is uniformly integrable.



Let 7’ be the underlying optimal entropic coupling between P, and () that we disintegrate in terms
of @ and the (random) kernel {P’(-|y)}, of conditional distributions over the sample P, given y, i.e.

dr’(z,y) = dQ(y) <P’(xy)5)q () + Z P'(xly)ox, (1‘)> :

We now slightly modify 7’ to make it have P, as first marginal; specifically, we define

_ _ — oo [P(Xily) r=X
dz(z,y) = dQ(y) (Z P('ry)(in(m)> , with P(z|y) = {P/(le) r=X;,i#A1
By the definitions of S(P,, Q) and S(P/, Q), it is easily verified that

Pn,cz<z/” 3 B a0ty + 107)

and that
/”Xl ull” P(X]]y)dQ(y +Z/H —ul” P'(X;ly)dQy) + I(x"),

where I(-) denotes mutual information. Therefore,

1X: —yl® — [1X] —
2

Y

S @)~ S(PL,Q) < 1(R) Epiximaow. @
Observe that I(7) = I(x’) since I(n’) doesn’t depend on the sample values, but only in the way
the conditionals P’(-|y) split over the sample, which by construction is the same for both 7 and
7. Therefore, we only need to bound the (expected squared) integral in @), and we proceed as in
Del Barrio and Loubes|(2019). Specifically, we have

Xy — 2 — 11X — 2
sen@ - < [P by aa0) ®
10+ 15 )
n

A

< hx-xii w2 [l Pxtiae )

from which it follows that

n*(S(Pa, Q=S(P,, Q)3 < (IX1 = X1II* X1 *)4+n” 1 X1 — X71° (/yIIP’(Xin)dQ(y)> :
(6)

The first term is clearly uniformly integrable since P has moments of all orders, so we focus on the
second term.

By Cauchy-Schwartz,

E <||X1 -xil* ( / Iyl P’(Xﬂy)d@(y)f) < B (1% - Xi|I°) x
P (( [ P’(Xﬂy)d@(y))g) .

(/ Piwiew) ([ 1n°Pximien)
= ([ 1° Pxtinaam)

And now, by Holder’s inequality ,

(/10 P’(Xﬂy)dcz(y))S

IN



Also, notice that the r.v’s [ lyl|® P'(X!]y)dQ(y) are equally distributed, and therefore

B ([ 1 Pxiima )E(Z/nynpxww )E(/n aq)).
o B (( [ 1P ximace )) < [ Il aQ(). )

Together, (7) and(7) imply that the quantity n?|X; — X} (vl P’(Xﬂy)dQ(g,/))2 has
uniformly bounded second moments, and is therefore uniformly integrable.  Therefore
n?(S(P,,Q) — S(P,,Q))% is uniformly integrable as well, and combining this with the almost sure
convergence implies the claim. O

Lemma A.3. Let g be defined as in [8). Then

oo+ 0%)" ] < Vo

<C
g < ﬁ,d{ aPl(\/allz] + ol|z)P |z|| > Vdo.

Proof. To bound g, we split the integral in the numerator according to the norm of y. Let
A ={y:|lyl| <7}, where 7 is a threshold to be chosen. Then

[1ayPes)- sllvl*+ey 4Q(y [ 15 yﬁeqw) syl +ay 4Q(y)
feg(y)—*\ly\l”ﬂde( ) feg(y sllylP+ay dQ(y) '

The first term is clearly bounded by 7°. For the second, we apply Propositionto show

-1
(/ I —HlylP+ay dQ(y)) — e 3lel ol (@) < pdo®+Violia]

pe =

and 1 2 2
eIW—3lWl* < gdo®+Vdollyl

We obtain
[ ]lzyﬁeg(y) syl ey dQ(y )
feg( slyl2+ay dQ(y)

(2do +do | /]lzyﬁe\/ﬁo\lyl\ﬂ-de(y)

1/2

< (e + Vol (/ﬂAyzﬁ dQ(y)>1/2 </e2(\/30+|r|)|yll dQ(y)) /

Since @ is subgaussian, Lemma[A-T]and the definition of A imply

12 2 Lyl 1/2 >
(/ 14y°° dQ(y)) < e 8T (/6456 28 4Q(y )) < V2e 5007 (218))1V/4(V2do) P .

Lemma [A.T]also implies

/62(\/30+Hw||)||y\| dQ(y) < 2624 (lel4Vdo)?.

Therefore, if we choose 72 > Cg) 4(c* + 0°) if ||z|| < Vdo and 72 > C\) 4(0®||z|| + o*|z?) if
||| > V/do for a sufficiently large constant C|g) 4, then we will have
[ 15yPes@=Svl* 2y aQ(y)
feg(y)*%l\yl\“rw-y dQ(y)
Combining this with the bound on the first term yields the claim. O

< C’\m,d(\/ga)lm

Lemma A.4. Let 6 be defined as in the proof of Theorem[2| Then for any positive integer k,

E&% < okkg?k .



Proof. First, let P be an arbitrary probability distribution, and let & > 0. We first show that if

1xu2 . . . . .
t = Epe =  is finite, then P is t%-subgaussmn. To see this, set 72 = tfd. Then

X2 1xp2 \ T
Fez2d7 < (Ee o ) :tl/t§61/€<2,

where the first step uses Jensen’s inequality and the fact that ¢ > 1.

The above considerations imply that if ) is o2 subgaussian and we set
lx )2 Iy |2
7% = max{Ep, e2rdo? ka?, Eqg, e2rio? ka’}

then P,, Q,,, P, and Q are all 72 subgaussian, which implies that 52 < 72. Therefore, by Jensen’s
inequality,

~2k LXI2 g o, D2 g o

0" < Ep,e2-? K 0™" + FEg, e2d-7 k"o |
and taking expectations with respect to P and () yields

Iy 2

N X2
E&%F < Epe2ao? kP 4+ Ege2d0? Era?t < 4kko?F |

B Omitted proofs

B.1 Proof of Proposition I]

We choose the potentials f and g as in Proposition[A.T] That establishes the k& = 0 case.
For convenience, write f(z) = f(z) — 3||z||>. We seek to bound |D° f(z)|.

Our calculation is similar to classical calculations which relate the cumulants of a distribution to its
moments (see McCullaghl (1987, Section 2.3). Given a multi-index 3, write

pg = [ yPes =3P+ 4 (y) ®)
O e vy aQ(y)

We use the convention that y# = Hle yf ‘. The notation 11 is chosen to remind the reader that these
quantities are moments of ¢ under the tilted measure whose density with respect to () is proportional
to 9 —3llyl*+zy

By the multivariate Fad di Bruno formula (see, e.g.|Constantine and Savits}, |1996),

k
Da?(x) = _D> log(e—f(w)) = Z A,Brse s Br H KB, s 9)
B1;---Br j=1
it +Br=a

where the coefficients A, g, .. g, are combinatorial quantities related to partitions of [k] whose

precise value is unimportant.

k
Applying Lemma([A.3]yields the claim.

B.2  Proof of Proposition 3]

We use the symbol C, decorated with subscripts, to indicate constants whose value may change
from line to line. We apply |van der Vaart and Wellner| (1996, Corollary 2.7.4). Denote by L the

quantity % S elleil?/2do® The subgaussianity of P implies that EL < 2. We partition R? into
sets B; defined by By = [—0,0]% and B; = [-270,270] \ [-27710, 297 15]. Note that for each 7,
the Lebesgue measure of {z : d(x, B;) < 1} is bounded by Cy(1 + 092%). Moreover, by Markov’s
inequality, the mass that P, assigns to each Bj is at most Le 277 Finally, by definition of the class
JF*, the functions in F° have C*(By) norm at most C, 4(1 + ¢°), and on B; for j > 1 have C*(B;)
norm at most C; 427°(1 + o®), where C*(12) represents the Holder space on €2 of smoothness s.



Applying van der Vaart and Wellner| (1996, Corollary 2.7.4) with V' = d/s and r = 2 yields

d+2s
2s
log N(e, F°, Ly(Py)) < Cye= /s /2 Z(l n Ud2dj)%2%(l +US)%8—%
j=>0
d+2s
. 2s
< Cae L (14 02 [ 3 28 o~ i

j=0
< Cdgfd/sLd/Qs(l + 0,2d) ’
where the final step follows because the series is summable with value independent of o and L.

To show the second claim, we note that Ep, || X ||* < CyLo* by the same argument used to bound
the moments of P in Lemma|A.T] The definition of the class F* implies

2 _ 2 4y 4y
w1 £13, p,) = max Bp, [FQOP < Callp, (141 X]1Y) < Ca(1 + Lo*)
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