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A Supplementary results

Lemma A.1. If P is σ2 subgaussian, then

EP ‖X‖2k ≤ (2dσ2)kk!

for all nonnegative integers k, and

EP e
v·X ≤ EP e‖v‖‖X‖ ≤ 2e

dσ2

2 ‖v‖
2

for all v ∈ Rd.

Proof. For the first claim, it suffices to take expectations of both sides of the inequality
‖X‖2k

(2dσ2)kk!
≤ e

‖X‖2

2dσ2 − 1 and use the assumption that P is σ2-subgaussian. To prove the second claim,

we use the inequality v ·X ≤ ‖v‖‖X‖ ≤ dσ2

2 ‖v‖
2 + 1

2dσ2 ‖X‖2 and apply subgaussianity.

Proposition A.1. Let P and Q be two σ2-subgaussian distributions. Then there exist smooth optimal
potentials (f, g) for S(P,Q) such that

−dσ2(1 +
1

2
(‖x‖+

√
2dσ)2)− 1 ≤ f(x) ≤ 1

2
(‖x‖+

√
2dσ)2

−dσ2(1 +
1

2
(‖y‖+

√
2dσ)2)− 1 ≤ g(y) ≤ 1

2
(‖y‖+

√
2dσ)2

and the dual optimality conditions (4) hold for all x, y ∈ Rd.

Proof. Let (f0, g0) be any pair of optimal potentials. Since (f0 + K, g0 − K) also satisfy the
optimality conditions and f0 ∈ L1(P ) and g0 ∈ L1(Q), we can assume without loss of generality
that EP f0(X) = EQg0(Y ) = 1

2S(P,Q) ≥ 0. We define

f(x) = − log

∫
eg0(y)−

1
2‖x−y‖

2

dQ(y)

g(y) = − log

∫
ef(x)−

1
2‖x−y‖

2

dP (x) ,

for all x, y ∈ Rd.
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We need to check that these integrals are well defined. First, Jensen’s inequality implies

g0(y) = − log

∫
ef0(x)−

1
2‖x−y‖

2

dP (x)

≤ −EP f0(X) +
1

2
EP ‖X − y‖2

≤ 1

2
EP ‖X − y‖2

for Q-a.e. y. Therefore
eg0(y)−

1
2‖x−y‖

2

≤ e 1
2EP ‖X−y‖

2− 1
2‖x−y‖

2

for Q-a.e. y. By Lemma A.1, EP ‖X‖2 ≤ 2dσ2, which implies that eg0(y)−
1
2‖x−y‖

2

is dominated by
edσ

2+(‖x‖+
√
2dσ)‖y‖. Subgaussianity implies∫

edσ
2+(‖x‖+

√
2dσ)‖y‖ dQ(y) ≤ 2edσ

2(1+ 1
2 (‖x‖+

√
2dσ)2 <∞

Therefore f(x) is well defined for all x ∈ Rd. The same argument used to bound g0 holds for f as
well, which implies that g is also well defined. Therefore our definitions of f and g are valid on the
whole space, and moreover the claimed lower bounds on f and g hold. Jensen’s inequality combined
with the inequalities EQg0(Y ) ≥ 0 and EP f(X) ≥ 0 yield the upper bounds. The smoothness of f
and g follows from an easy application of dominated convergence.

We now show that (f, g) are optimal potentials. By construction
∫
ef(x)+g(y)−

1
2 ||x−y||

2

dP (x) = 1

for all y ∈ Rd. Now, note that∫
ef(x)+g(y)−

1
2 ||x−y||

2

dP (x)dQ(y) =

∫
ef(x)+g0(y)−

1
2 ||x−y||

2

dP (x)dQ(y)

=

∫
ef0(x)+g0(y)−

1
2 ||x−y||

2

dP (x)dQ(y) .

Jensen’s inequality yields∫
(f − f0) (x) dP (x) +

∫
(g − g0)(y) dQ(y) ≥ − log

∫
ef0(x)−f(x) dP (x)− log

∫
eg0(y)−g(y) dQ(y)

= − log

∫
ef0(x)+g0(y)−

1
2 ||x−y||

2

dP (x)dQ(y)

− log

∫
ef(x)+g0(y)−

1
2 ||x−y||

2

dP (x)dQ(y)

= 0 .

Since (f0, g0) maximizes (3), so does (f, g). Therefore (f, g) are optimal potentials.
In particular, this implies that

∫
(g − g0) (y) dQ(y) = log

∫
eg0(y)−g(y) dQ(y), and hence

g = g0 Q-almost surely by the strict concavity of the logarithm function. We obtain that∫
ef(x)+g(y)−

1
2 ||x−y||

2

dQ(y) =
∫
ef(x)+g0(y)−

1
2 ||x−y||

2

dQ(y) = 1 for all x ∈ Rd.

Proposition A.2. Let Pn, Qn be empirical measures, P and Q both assumed subgaussian. There
exist (fn, gn) optimal potentials for (Pn, Qn) such that (fn, gn) converges uniformly in compacts to
optimal potentials (f, g) for P and Q.

Proof. The proof is inspired by Feydy et al. (2019) and we divide it in two steps:

Step 1 By using the following extended version of the Arzela-Ascoli theorem we find a convergent
subsequence: suppose hn is a sequence of functions in Rd satisfying

(a) Local equicontinuity: for each x0 ∈ Rd and ε > 0, there is a δ > 0 such that

||x− x0|| < δ implies |hn(x)− hn(x0)| < ε for all n

(b) Pointwise boundedness: for each x, the sequence hn(x) is bounded.
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Then, there exist a subsequence hnj that converges uniformly on compacts to a continuous
function h.

Step 2 We prove the limit functions are optimal for (P,Q) and conclude the entire sequence
converges by a uniqueness argument.

Proof of Step 1: By Lemma A.2, there exists a (random) σ2 such that the measures {Pn} are uniformly
σ2-subgaussian. We choose (fn, gn) and (f, g) as in Proposition A.1.

By Proposition A.1, (fn, gn) are pointwise bounded by a quantity independent of n. Likewise,
Proposition 1 implies that the derivatives of fn and gn are also pointwise bounded, which implies
local equicontinuity.

We conclude for a certain subsequence nj , (fnj , gnj ) converges to some (f∞, g∞).

Proof of Step 2: It is easy to verify (by Jensen’s inequality and dominated convergence) that
Proposition 11 in Feydy et al. (2019), holds in arbitrary domains (not necessarily bounded), and
we can assume (f, g) are unique (P ⊗ Q)-a.s. once we fix EP f(X) = EQg(Y ). Notice that if
f∞ = f, g∞ = g, P -a.s. and Q-a.s. we can conclude: on each compact we apply the above argument
starting with any arbitrary subsequence nk and find a subsequence such that fnkj → f, gnkj → g;
therefore f = lim fn(x) and g(y) = lim gn, uniformly in compacts.

It therefore suffices to show that that i) (f∞, g∞) satisfy the dual optimality conditions and that f∞
(respectively g∞) is P (respectively Q) integrable, with EP f∞(X) = EQg∞(Y ). Let’s prove i.
Passing to a subsequence, we assume fn → f and gn → g uniformly on compact sets. We have

e−f∞(x) = lim
n→∞

∫
egn(y)−

1
2‖x−y‖

2

dQn(y)

e−g∞(y) = lim
n→∞

∫
efn(x)−

1
2‖x−y‖

2

dPn(x) .

It suffices to show that the order of the limit and integral on the right side can be swapped. For a fixed
x we observe that Proposition A.1 implies that the integrand is dominated by a uniformly integrable
function. Therefore for an arbitrary ε > 0 there exists a compact set K such that∫

KC

eg∞(y)− 1
2‖x−y‖

2

dQ(y) ≤ ε∫
KC

egn(y)−
1
2‖x−y‖

2

dQn(y) ≤ ε ∀n ≥ 0 .

Write vn(y) = egn(y)−
1
2‖x−y‖

2

and v∞ = eg∞(y)− 1
2‖x−y‖

2

. Since gn converges uniformly in
compacts so does vn; in particular, there exists n0 such that if n ≥ n0,

|vn(y)− v∞(y)| ≤ ε, ∀y ∈ K. (1)

Also, since v∞ is Q-integrable, by the strong law of large numbers, almost surely there exists an n1
such that if n ≥ n1, ∣∣∣∣∫ v∞(y)dQn(y)−

∫
v∞(y) dQ(y)

∣∣∣∣ ≤ ε, (2)

We obtain that for n sufficiently large,∣∣∣∣∫ vn(y)dQn(y)−
∫
v∞(y) dQ(y)

∣∣∣∣ ≤ 4ε .

Since ε was arbitrary, we obtain

e−f∞(x) =

∫
v∞(y) dQ(y) =

∫
eg∞(y)− 1

2‖x−y‖
2

dQn(y) .

Repeating the proof for g∞, we obtain that (f∞, g∞) satisfy the dual optimality conditions.

Clearly (f∞, g∞) are integrable by dominated convergence, and an argument analogous to the one
used to show dual optimality establishes that EP f∞(X) = EQg∞(Y ). The claim is therefore
proved.
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Lemma A.2. Suppose P is a σ2-subgaussian measure. Then, there exists a (random) σu <∞ such
that {Pn}, P are uniformly σ2

u-subgaussian P almost surely.

Proof. By definition, there exists σ > 0 such that EP

(
e
||X||2

2σ2d

)
≤ 2. By the strong law of large

numbers we have that P almost surely

lim
n→

EPn

(
e
||X||2

2dσ2

)
= EP

(
e
||X||2

2σ2d

)
≤ 2 .

In particular, this implies the sequence EPn

(
e
||X||2

2σ2d

)
is bounded by a random positive number. By

the equivalence of definitions of subgaussianity, this implies that Pn are uniformly subgaussian, with
a new parameter that we call σ2

u.

Proposition A.3. Assume P and Q are subgaussian. Let (f, g) be the corresponding optimal dual
potentials constructed in Proposition A.1, and define

Rn = S(Pn, Q)−
∫
f(x)dPn(x).

Then,
lim
n→∞

nVar(Rn) = 0.

Our proof relies on the tensorization property for the variance (Efron and Stein, 1981; Boucheron
et al., 2013; van Handel, 2014), also known as Efron-Stein inequality: Let X1, . . . Xn be i.i.d r.v’s
with distribution P and X ′1, . . . X

′
n be independent copies of X1, . . . Xn. Also, let w be an arbitrary

measurable function of the sample that is symmetric on its coordinates, and defineZ = ω (X1, . . . Xn)
and Z ′ = ω (X ′1, X2, . . . Xn). Then,

V ar(Z) ≤ n

2
E(Z − Z ′)2+. (3)

Proof of Proposition A.3. Denote by P ′n the empirical distribution of X ′1, X2, . . . Xn, and let

R′n = S(P ′n, Q)−
∫
f(x)dP ′n(x).

by Efron-Stein, it suffices to show limn→∞ n2E(Rn − R′n)2+ = 0. We divide the proof in the
verification of two statements. First, we show limn→∞ n(Rn −R′n)+ = 0. We will then show that
n2(Rn −R′n)2+ is uniformly integrable.

Call (fn, gn) the optimal potentials associated to (Pn, Q). Since Pn is subgaussian by Lemma A.2,
Proposition A.1 implies that we can assume that (fn, gn) satisfy the dual optimality conditions for all
x, y ∈ Rd. Therefore

S(Pn, Q) =

∫
fn(x) dPn(x) +

∫
gn(y) dQ(y),

S(P ′n, Q) ≥
∫
fn(x)dP ′n(x) +

∫
gn(y)dQ(y)−

∫∫
efn(x)+gn(y)−

1
2 ||x−y||

2

dP ′n(x)dQ(y) + 1

=

∫
fn(x) dP ′n(x) +

∫
gn(y) dQ(y) .

Therefore,
n(Rn −R′n)+ ≤ (fn(X1)− f(X1))− (fn(X ′1)− f(X ′1)) .

By Proposition A.2, (fn, gn) converges pointwise to (f, g) almost surely, so limn→∞ n(Rn−R′n)+ =
0 almost surely.

To show uniform integrability, we note that n(Rn −R′n) = n(S(Pn, Q)− S(Pn, Q))− (f(X1)−
f(X ′1)) and by Proposition A.1 and the subgaussianity of P , f(X1), f(X ′1) have finite second
moments. It therefore suffices to show that n2(S(Pn, Q)− S(P ′n, Q))2+ is uniformly integrable.
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Let π′ be the underlying optimal entropic coupling between P ′n and Q that we disintegrate in terms
of Q and the (random) kernel {P ′(·|y)}y of conditional distributions over the sample P ′n given y, i.e.

dπ′(x, y) = dQ(y)

(
P ′(x|y)δX′1(x) +

n∑
i=2

P ′(x|y)δXi(x)

)
.

We now slightly modify π′ to make it have Pn as first marginal; specifically, we define

dπ̄(x, y) = dQ(y)

(
n∑
i=1

P̄ (x|y)δXi(x)

)
, with P̄ (x|y) =

{
P ′(X ′1|y) x = X1

P ′(Xi|y) x = Xi, i 6= 1
.

By the definitions of S(Pn, Q) and S(P ′n, Q), it is easily verified that

S(Pn, Q) ≤
n∑
i=1

∫
‖Xi − y‖2

2
P̄ (Xi|y)dQ(y) + I(π̄),

and that

S(P ′n, Q) =

∫
‖X ′1 − y‖

2

2
P ′(X ′1|y)dQ(y) +

n∑
i=2

∫
‖Xi − y‖2

2
P ′(Xi|y)dQ(y) + I(π′) ,

where I(·) denotes mutual information. Therefore,

S(Pn, Q)− S(P ′n, Q) ≤ I(π̄)− I(π′) +

∫
‖X1 − y‖2 − ‖X ′1 − y‖

2

2
P ′(X ′1|y)dQ(y). (4)

Observe that I(π̄) = I(π′) since I(π′) doesn’t depend on the sample values, but only in the way
the conditionals P ′(·|y) split over the sample, which by construction is the same for both π̄ and
π′. Therefore, we only need to bound the (expected squared) integral in (4), and we proceed as in
Del Barrio and Loubes (2019). Specifically, we have

S(Pn, Q)− S(P ′n, Q) ≤
∫
‖X1 − y‖2 − ‖X ′1 − y‖

2

2
P ′(X ′1|y)dQ(y) (5)

≤ 1

2
‖X1 −X ′1‖

(
‖X1‖+ ‖X ′1‖

n
+ 2

∫
‖y‖P ′(X ′1|y)dQ(y)

)
,

from which it follows that

n2(S(Pn, Q)−S(P ′n, Q))2+ ≤ (‖X1 −X ′1‖
2 ‖X1‖2)+n2 ‖X1 −X ′1‖

2
(∫
‖y‖P ′(X ′1|y)dQ(y)

)2

.

(6)
The first term is clearly uniformly integrable since P has moments of all orders, so we focus on the
second term.

By Cauchy-Schwartz,

E

(
‖X1 −X ′1‖

4
(∫
‖y‖P ′(X ′1|y)dQ(y)

)4
)2

≤ E
(
‖X1 −X ′1‖

8
)
×

E

((∫
‖y‖P ′(X ′1|y)dQ(y)

)8
)
.

And now, by Hölder’s inequality ,(∫
‖y‖P ′(X ′1|y)dQ(y)

)8

≤
(∫

P ′(X ′1|y)dQ(y)

)7(∫
‖y‖8 P ′(X ′1|y)dQ(y)

)
=

1

n7

(∫
‖y‖8 P ′(X ′1|y)dQ(y)

)
.
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Also, notice that the r.v’s
∫
‖y‖8 P ′(X ′i|y)dQ(y) are equally distributed, and therefore

E

(∫
‖y‖8 P ′(X ′1|y)dQ(y)

)
=

1

n
E

(
n∑
i=1

∫
‖y‖8 P ′(X ′i|y)dQ(y)

)
=

1

n
E

(∫
‖y‖8 dQ(y)

)
.

We obtain

E

((∫
‖y‖P ′(X ′1|y)dQ(y)

))8

≤ 1

n8

∫
‖y‖8 dQ(y). (7)

Together, (7) and(7) imply that the quantity n2 ‖X1 −X ′1‖
2 (∫ ‖y‖P ′(X ′1|y)dQ(y)

)2
has

uniformly bounded second moments, and is therefore uniformly integrable. Therefore
n2(S(Pn, Q)− S(P ′n, Q))2+ is uniformly integrable as well, and combining this with the almost sure
convergence implies the claim.

Lemma A.3. Let µβ be defined as in (8). Then

|µβ | ≤ C|β|,d
{
σ|β|(σ + σ2)|β| ‖x‖ ≤

√
dσ

σ|β|(
√
σ‖x‖+ σ‖x‖)|β| ‖x‖ >

√
dσ .

Proof. To bound µβ , we split the integral in the numerator according to the norm of y. Let
A = {y : ‖y‖ ≤ τ}, where τ is a threshold to be chosen. Then

µβ =

∫
1Ay

βeg(y)−
1
2‖y‖

2+x·y dQ(y)∫
eg(y)−

1
2‖y‖2+x·y dQ(y)

+

∫
1Ay

βeg(y)−
1
2‖y‖

2+x·y dQ(y)∫
eg(y)−

1
2‖y‖2+x·y dQ(y)

.

The first term is clearly bounded by τβ . For the second, we apply Proposition A.1 to show(∫
eg(y)−

1
2‖y‖

2+x·y dQ(y)

)−1
= e−

1
2‖x‖

2

ef(x) ≤ edσ
2+
√
dσ‖x‖

and
eg(y)−

1
2‖y‖

2

≤ edσ
2+
√
dσ‖y‖ .

We obtain∫
1Ay

βeg(y)−
1
2‖y‖

2+x·y dQ(y)∫
eg(y)−

1
2‖y‖2+x·y dQ(y)

≤ e2dσ
2+
√
dσ‖x‖

∫
1Ay

βe
√
dσ‖y‖+x·y dQ(y)

≤ e2dσ
2+
√
dσ‖x‖

(∫
1Ay

2β dQ(y)

)1/2(∫
e2(
√
dσ+‖x‖)‖y‖ dQ(y)

)1/2

Since Q is subgaussian, Lemma A.1 and the definition of A imply(∫
1Ay

2β dQ(y)

)1/2

≤ e−
τ2

8dσ2

(∫
e
‖y‖2

4dσ2 y2β dQ(y)

)1/2

≤
√

2e−
τ2

8dσ2 (2|β|)!1/4(
√

2dσ)|β| .

Lemma A.1 also implies ∫
e2(
√
dσ+‖x‖)‖y‖ dQ(y) ≤ 2e2dσ

2(‖x‖+
√
dσ)2 .

Therefore, if we choose τ2 ≥ C|β|,d(σ4 + σ6) if ‖x‖ ≤
√
dσ and τ2 ≥ C|β|,d(σ3‖x‖+ σ4‖x‖2) if

‖x‖ >
√
dσ for a sufficiently large constant C|β|,d, then we will have∫

1Ay
βeg(y)−

1
2‖y‖

2+x·y dQ(y)∫
eg(y)−

1
2‖y‖2+x·y dQ(y)

≤ C|β|,d(
√
dσ)|β|

Combining this with the bound on the first term yields the claim.

Lemma A.4. Let σ̃ be defined as in the proof of Theorem 2. Then for any positive integer k,

Eσ̃2k ≤ 2kkσ2k .
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Proof. First, let P be an arbitrary probability distribution, and let α > 0. We first show that if

t = EP e
‖X‖2
α is finite, then P is t α2d -subgaussian. To see this, set τ2 = t α2d . Then

Ee
‖X‖2

2dτ2 ≤
(
Ee

‖X‖2
α

) α
2dτ2

= t1/t ≤ e1/e < 2 ,

where the first step uses Jensen’s inequality and the fact that t ≥ 1.

The above considerations imply that if Q is σ2 subgaussian and we set

τ2 = max{EPne
‖X‖2

2kdσ2 kσ2, EQne
‖Y ‖2

2kdσ2 kσ2} ,

then Pn, Qn, P , and Q are all τ2 subgaussian, which implies that σ̃2 ≤ τ2. Therefore, by Jensen’s
inequality,

σ̃2k ≤ EPne
‖X‖2

2dσ2 kkσ2k + EQne
‖Y ‖2

2dσ2 kkσ2k ,

and taking expectations with respect to P and Q yields

Eσ̃2k ≤ EP e
‖X‖2

2dσ2 kkσ2k + EQe
‖Y ‖2

2dσ2 kkσ2k ≤ 4kkσ2k .

B Omitted proofs

B.1 Proof of Proposition 1

We choose the potentials f and g as in Proposition A.1. That establishes the k = 0 case.

For convenience, write f(x) = f(x)− 1
2‖x‖

2. We seek to bound |Dαf(x)|.
Our calculation is similar to classical calculations which relate the cumulants of a distribution to its
moments (see McCullagh, 1987, Section 2.3). Given a multi-index β, write

µβ =

∫
yβeg(y)−

1
2‖y‖

2+x·y dQ(y)∫
eg(y)−

1
2‖y‖2+x·y dQ(y)

. (8)

We use the convention that yβ =
∏d
i=1 y

βi
i . The notation µβ is chosen to remind the reader that these

quantities are moments of y under the tilted measure whose density with respect to Q is proportional
to eg(y)−

1
2‖y‖

2+x·y .

By the multivariate Faá di Bruno formula (see, e.g. Constantine and Savits, 1996),

Dαf(x) = −Dα log(e−f(x)) =
∑

β1,...βk
β1+···+βk=α

λα,β1,...,βk

k∏
j=1

µβj , (9)

where the coefficients λα,β1,...,βk are combinatorial quantities related to partitions of [k] whose
precise value is unimportant.

Applying Lemma A.3 yields the claim.

B.2 Proof of Proposition 3

We use the symbol C, decorated with subscripts, to indicate constants whose value may change
from line to line. We apply van der Vaart and Wellner (1996, Corollary 2.7.4). Denote by L the
quantity 1

n

∑n
i=1 e

‖xi‖2/2dσ2

. The subgaussianity of P implies that EL ≤ 2. We partition Rd into
sets Bj defined by B0 = [−σ, σ]d and Bj = [−2jσ, 2jσ] \ [−2j−1σ, 2j−1σ]. Note that for each j,
the Lebesgue measure of {x : d(x,Bj) ≤ 1} is bounded by Cd(1 + σd2dj). Moreover, by Markov’s
inequality, the mass that Pn assigns to each Bj is at most Le−2

2j−3

. Finally, by definition of the class
Fs, the functions in Fs have Cs(B0) norm at most Cs,d(1 + σs), and on Bj for j ≥ 1 have Cs(Bj)
norm at most Cs,d2js(1 + σs), where Cs(Ω) represents the Hölder space on Ω of smoothness s.
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Applying van der Vaart and Wellner (1996, Corollary 2.7.4) with V = d/s and r = 2 yields

logN(ε,Fs, L2(Pn)) ≤ Cdε−d/sLd/2s
∑
j≥0

(1 + σd2dj)
2s
d+2s 2

2djs
d+2s (1 + σs)

2d
d+2s e−

d22j−3

d+2s


d+2s
2s

≤ Cdε−d/sLd/2s(1 + σ2d)

∑
j≥0

2
4djs
d+2s e−

d22j−3

d+2s


d+2s
2s

≤ Cdε−d/sLd/2s(1 + σ2d) ,

where the final step follows because the series is summable with value independent of σ and L.

To show the second claim, we note that EPn‖X‖4 ≤ CdLσ4 by the same argument used to bound
the moments of P in Lemma A.1. The definition of the class Fs implies

max
f∈Fs

‖f‖2L2(Pn)
= max
f∈Fs

EPn |f(X)|2 ≤ CdEPn(1 + ‖X‖4) ≤ Cd(1 + Lσ4) .
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