© ®© N o

Focused Quantization for Sparse DNNs
Supplementary Material

Anonymous Author(s)
Affiliation
Address

email

1 Training Configuration

For image preprocessing, we follow the augmentation procedures in Krizhevsky et al. [2012], which
includes aspect ratio distortion, random flipping, random cropping, and hue, saturation, contrast and
brightness changes to preprocess each training example.

2 Model Optimization

Here we provide the details of the model optimization explained in Section 3.5 in the form of an
algorithm. Algorithm 1 optimizes £(0, ¢), where E specifies the number of epochs to fine-tune the
quantized sparse model, and it returns the final optimized hyperparameters ¢* and quantized weights
Q- [0]. Note that we assume the pruned weights given by the pruning constant zg to remain zero
throughout fine-tuning.

Algorithm 1 Model Optimization

function OPTIMIZE(O, E)

1:

2 e 0,k1

3 while e < F do

4: ¢* + argming KL <qgi’<(9)||p(0))

5: for 0 € 6 do

6: Sample the component selector my in ¢*
7 end for

8: for k epochs do

9: Sample a mini-batch (X,y) from D
10: 6 — SCD (—log p (71, Qu+ 0]))
11: end for
12: e<—e+k k<+ 2k

13: end while
14: return ¢*, Q- [0]
15: end function

For ResNet-50 on ImageNet, line 4 in the algorithm above takes 24 minutes to complete on an Intel
Core 17-6700k CPU, while each epoch of the SGD optimization (line 8—11) requires 1.5 GPU-day to
complete on an Nvidia GTX 1080 Ti. For each Image model we fine-tune for 10 epochs.

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31

32

33

3 Bit-width Saving Tricks

Recentralized quantization Q) is designed to capture the high-probability components in the weight
distribution, which in theory provides a less redundant use of bits compared to shift quantization.
We further reduce the bit-width by removing certain representable values that occur rarely after
quantization. Although it does not bring better compression rates for Huffman-coded weights because
we are removing rarely used values, it lowers the number of bits required for representing weights
assuming constant bit-widths.

The tricks are generally applicable. Consider the c_ (orange) and c; (blue) Gaussian components
in the first block of Figure 2 in the paper, it is notable that the means x_ and p4 are surrounded
with many fine-grained quantization levels, thus sacrificing these representations by quantizing to
nearby values is equivalently efficient. Similarly, very few values quantized by c_ lie about the
well-quantized region of c; and vice versa. It means that we can remove the largest representation
from c_ and smallest representation from c . By removing these values from the representation, we
use exactly at most 1 bits to represent a) quantized value which internally uses (n — 1)-bit shift
quantization. To further simplify computation, we constrain o_ and o to the nearest powers-of-two
values. For instance, a 3-bit recentralized quantization uses the following representable values
{-9,-5,3 U{-3,5,9} U {0} if y = 1,u— = —1,ur = 1,b = 0, where the first two sets
correspond to values quantized by the c_ and c; components respectively.

References

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in Neural Information Processing Systems 25. 2012.

	Training Configuration
	Model Optimization
	Bit-width Saving Tricks

