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1 Training Configuration

For image preprocessing, we follow the augmentation procedures in Krizhevsky et al. [2012], which
includes aspect ratio distortion, random flipping, random cropping, and hue, saturation, contrast and
brightness changes to preprocess each training example.

2 Model Optimization

Here we provide the details of the model optimization explained in Section 3.5 in the form of an
algorithm. Algorithm 1 optimizes £(0, ¢), where E specifies the number of epochs to fine-tune the
quantized sparse model, and it returns the final optimized hyperparameters ¢* and quantized weights
Q- [0]. Note that we assume the pruned weights given by the pruning constant zg to remain zero
throughout fine-tuning.

Algorithm 1 Model Optimization

function OPTIMIZE(O, E)

1:

2 e 0,k1

3 while e < F do

4: ¢* + argming KL <qgi’<(9)||p(0))

5: for 0 € 6 do

6: Sample the component selector my in ¢*
7 end for

8: for k epochs do

9: Sample a mini-batch (X,y) from D
10: 6 — SCD (—log p (71, Qu+ 0]))
11: end for
12: e<—e+k k<+ 2k

13: end while
14: return ¢*, Q- [0]
15: end function

For ResNet-50 on ImageNet, line 4 in the algorithm above takes 24 minutes to complete on an Intel
Core 17-6700k CPU, while each epoch of the SGD optimization (line 8—11) requires 1.5 GPU-day to
complete on an Nvidia GTX 1080 Ti. For each Image model we fine-tune for 10 epochs.
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3 Bit-width Saving Tricks

Recentralized quantization Q) is designed to capture the high-probability components in the weight
distribution, which in theory provides a less redundant use of bits compared to shift quantization.
We further reduce the bit-width by removing certain representable values that occur rarely after
quantization. Although it does not bring better compression rates for Huffman-coded weights because
we are removing rarely used values, it lowers the number of bits required for representing weights
assuming constant bit-widths.

The tricks are generally applicable. Consider the c_ (orange) and c; (blue) Gaussian components
in the first block of Figure 2 in the paper, it is notable that the means x_ and p4 are surrounded
with many fine-grained quantization levels, thus sacrificing these representations by quantizing to
nearby values is equivalently efficient. Similarly, very few values quantized by c_ lie about the
well-quantized region of c; and vice versa. It means that we can remove the largest representation
from c_ and smallest representation from c . By removing these values from the representation, we
use exactly at most 1 bits to represent a ) quantized value which internally uses (n — 1)-bit shift
quantization. To further simplify computation, we constrain o_ and o to the nearest powers-of-two
values. For instance, a 3-bit recentralized quantization uses the following representable values
{-9,-5,3 U{-3,5,9} U {0} if y = 1,u— = —1,ur = 1,b = 0, where the first two sets
correspond to values quantized by the c_ and c; components respectively.
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